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ABSTRACT
Large scale distributed databases are designed to support com-

mercial and cloud based applications. The minimal expectation

from such systems is that they ensure consistency and reliability

in case of node failures. The distributed database guarantees reli-

ability through the use of atomic commitment protocols. Atomic

commitment protocols help in ensuring that either all the changes

of a transaction are applied or none of them exist. To ensure effi-

cient commitment process, the database community has mainly

used the two-phase commit (2PC) protocol. However, the 2PC

protocol is blocking under multiple failures. This necessitated

the development of the non-blocking, three-phase commit (3PC)

protocol. However, the database community is still reluctant to

use the 3PC protocol, as it acts as a scalability bottleneck in the

design of efficient transaction processing systems. In this work,

we present Easy Commit which leverages the best of both the

worlds (2PC and 3PC), that is, non-blocking (like 3PC) and re-

quires two phases (like 2PC). Easy Commit achieves these goals

by ensuring two key observations: (i) first transmit and then com-

mit, and (ii) message redundancy. We present the design of the

Easy Commit protocol and prove that it guarantees both safety

and liveness. We also present a detailed evaluation of EC protocol,

and show that it is nearly as efficient as the 2PC protocol.

1 INTRODUCTION
Large scale distributed databases have been designed and de-

ployed for handling commercial and cloud-based applications [11,

14–18, 35, 37, 46–48, 56, 57]. The common denominator across

all these databases is the use of transactions. A transaction is a

sequence of operations that either reads or modifies the data. In

case of geo-scale distributed applications, the transactions are

expected to act on data stored in distributed machines spanning

vast geographical locations. These geo-scale applications require

the transactions to adhere to ACID [22] transactional semantics,

and ensure that the database state remains consistent. The data-

base is also expected to respect the atomicity boundaries that is

either all the changes persist or none of the changes take place.

In fact atomicity acts as a contract and establishes trust among

multiple communicating parties. However, it is a common knowl-

edge [39] that the distributed systems undergo node failures.

Recent failures [19, 38, 55] have shown that the distributed sys-

tems are still miles away from achieving undeterred availability.

In fact there is a constant struggle in the community to decide

the appropriate level of database consistency and availability,

necessary for achieving maximum system performance. The use

of strong consistency semantics such as serializability [6] and

linearizability [30] ensures system correctness. However, these

properties have a causal effect on the underlying parameters such
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Figure 1: Two-Phase Commit Protocol

as latency and availability. Hence, a requirement for stronger

consistency leads to a reduction in system availability.

There have been works that try to increase the database avail-

ability [2, 3]. But, more recently the distributed systems commu-

nity has observed a shift in paradigm towards ensuring consis-

tency. A large number of systems are moving towards providing

strong consistency guarantees [15, 16, 18, 34, 41, 56]. Such a prag-

matic shift has necessitated the use of agreement protocols such

as Two-Phase Commit [21]. Commit protocols help in achieving

the twin requirements of consistency and reliability in case of

partitioned distributed databases. Prior research [9, 18, 42, 54, 56]

has shown that data partitioning is an efficient approach to re-

duce contention and achieve high system throughput. However,

a key point in hindsight is that the use of commit protocol should

not be a cause for an increase in WAN communication latency

in geo-scale distributed applications.

Transaction commit protocols help in reaching an agreement

among the participating nodes when a transaction has to be com-

mitted or aborted. To initiate an agreement each participating

node is asked to vote its decision on the operations on its trans-

actional fragment. The participating nodes can decide to either

commit or abort an ongoing transaction. In case of a node failure,

the active participants take essential steps (run the termination

protocol) to preserve database correctness.

One of the earliest and popular commitment protocol is the

two-phase commit [21] (henceforth referred as 2PC) protocol.

Figure 1 presents the state diagram [39, 52] representation of

the 2PC protocol. This figure shows the set of possible states

(and transitions) that a coordinating node
1
and the participating

nodes follow, in response to a transaction commit request. We

use solid lines to represent the state transitions and dotted lines

to represent the inputs/outputs to the system. For instance, the

coordinator starts the commit protocol on transaction comple-

tion, and requests all the participants to commence the same

by transmitting Prepare messages. In case of multiple failures

the two-phase commit protocol has been proved to be block-

ing [39, 51]. For example, if the coordinator and a participant

fail, and if the remaining participants are in the READY state, then
they cannot make progress (blocked!), as they are unaware about

the state of the failed participant. This blocking characteristics

1
The coordinating node is the one which initiates the commit protocol, and in this

work it is also the node which received the client request to execute the transaction.
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of the 2PC protocol endangers database availability, and makes

it unsuitable for use with the partitioned databases
2
. The inher-

ent shortcomings of the 2PC protocol led towards the design of

resilient three-phase commit [50, 52] (henceforth referred as 3PC)

protocol. The 3PC protocol introduces an additional PRE-COMMIT
state between the READY and COMMIT states, which ensures that

there is no direct transition between the non-committable and

committable states. This simple modification makes the 3PC pro-

tocol non-blocking under node failures.

However, the 3PC protocol acts as the major performance sup-

pressant in the design of efficient distributed databases. It can be

easily observed that the addition of the PRE-COMMIT state leads to
an extra phase of communication among the nodes. This violates

the need of an efficient commit protocol for geo-scale systems.

Hence, the design of a hybrid commit protocol, which leverages

the best of both worlds (2PC and 3PC), is in order. We present

the Easy Commit (a.k.a EC) protocol, which requires two phases

of communication, and is non-blocking under node failures. We

associate two key insights with the design of Easy Commit pro-

tocol that allow us to achieve the non-blocking characteristic

in two phases. The first insight is to delay the commitment of

updates to the database until the transmission of global decision

to all the participating nodes, and the second insight is to induce

message redundancy in the network. Easy Commit protocol in-

troduces message redundancy by ensuring that each participating

node forwards the global decision to all the other participants

(including the coordinator). We now list down our contributions.

• Wepresent the design of a new two-phase commit protocol

and show it is non-blocking under node-failures.

• We also present an associated termination protocol, to be

initiated by the active nodes, on failure of the coordinating

node and/or participating nodes.

• We extend ExpoDB [45] framework to implement the EC

protocol. Our implementation can be used seamlessly with

various concurrency control algorithms by replacing 2PC

protocol with EC protocol.

• Wepresent a detailed evaluation of the EC protocol against

the 2PC and 3PC protocol over two different OLTP bench-

mark suites: YCSB [10] and TPC-C [12], and scale the

system upto 64 nodes, on the Microsoft Azure cloud.

The outline for rest of the paper is as follows: in Section 2,

we motivate the need for EC protocol. In Section 3, we present

design of the EC protocol. In Section 4, we present a discussion

on assumptions associated with the design of commit protocols.

In Section 5, we present the implementations of various commit

protocols. In Section 6, we evaluate the performance of EC proto-

col against the 2PC and 3PC protocols. In Section 8, we present

the related work, and conclude this work in Section 9.

2 MOTIVATION AND BACKGROUND
The state diagram representation for the two-phase commit pro-

tocol is presented in Figure 1. In 2PC protocol, the coordinator

and participating nodes require at most two transitions to tra-

verse from INITIAL state to the COMMIT or ABORT state. We use

figure 3a to present the interaction between the coordinator and

the participants, on a linear time scale. The 2PC commit protocol

starts with the coordinator node transmitting a Prepare message

2
Partitioned database is the terminology used by the database community to refer

to the shared-nothing distributed databases, and should not be intermixed with the

term network partitioning.

Figure 2: Three-Phase Commit Protocol

(a) Time span of 2PC Protocol

(b) Time span of 3PC Protocol

(c) Time span of EC Protocol

Figure 3: Commit Protocols Linearly Spanned

to each of the cohorts
3
and adding a begin_commit entry in its

log. When a cohort receives the Prepare message, it adds a ready
entry in its log, sends its decision (Vote-commit or Vote-abort) to
the coordinator. If a cohort decides to abort the transaction then

it independently moves to the ABORT state, else it transits to the

READY state. The coordinator waits for the decision from all the

cohorts. On receiving all the responses, it analyzes all the votes. If

there is a Vote-abort decision, then the coordinator adds an abort
entry in the log, transmits the Global-Abort message to all the co-

horts and moves to the ABORT state. If all the votes are to commit,

then the coordinator transmits the Global-Commit message to all

the cohorts, and moves to COMMIT state, after adding a commit
entry to log. The cohorts on receiving the coordinator decision

move to the ABORT or COMMIT state, and add the abort or commit
entry to the log, respectively. Finally, the cohorts acknowledge

the global decision, which allows the coordinator to mark the

completion of commit protocol.

3
The term cohort refers to a participating node in the transaction commit process.

We use these terms interchangeably.
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The 2PC protocol has been proved to be blocking [39, 51] under

multiple node failures. To illustrate this behavior let us consider a

simple distributed database systemwith a coordinatorC and three

participants X , Y and Z . Now assume a snapshot of the system

whenC received Vote-commit from all the participants, and hence,

it decides to send Global-Commit message to all the participants.

However, sayC fails after transmittingGlobal-Commitmessage to

X , but before sending messages to Y and Z . The participant X on

receiving the Global-Commit message, commits the transaction.

Now, assume X fails after committing the transaction. On the

other hand, nodesY andZ would timeout due to no response from
the coordinator, andwould be blocked indefinitely, as they require

node X to reach an agreement. They cannot make progress, as

neither they have knowledge of the global decision nor they know

the state of nodeX before failure. This situation can be prevented

with the help of the three-phase commit protocol [50, 52].

Figure 2 presents the state transition diagram for the coor-

dinator and cohort executing the three-phase commit protocol,

while figure 3b expands the 3PC protocol on the linear time scale.

In the first phase, the coordinator and the cohorts, perform the

same set of actions as in the 2PC protocol. Once the coordinator

checks all the votes, it decides whether to abort or commit the

transaction. If the decision is to abort, the remaining set of actions

performed by the coordinator (and the cohorts) are similar to the

2PC protocol. However, if the coordinator decides to commit the

transaction, then it first transmits a Prepare-to-Commit message,

and adds a pre-commit entry to the log. The cohorts on receiving

the Prepare-to-Commit message, move to the PRE-COMMIT state,
add a corresponding pre-commit entry to the log, and acknowl-

edge the message reception to the coordinator. The coordinator

then sends a Global-Commit message to all the cohorts, and the

remaining set of actions are similar to the 2PC protocol.

The key difference between the 2PC and 3PC protocol is the

PRE-COMMIT state, which makes the latter non-blocking. The

design of 3PC protocol is based on the Skeen’s [50] design of

a non-blocking commit. In his work Skeen laid down two fun-

damental properties for the design of a non-blocking commit

protocol: (i) no state should be adjacent to both the ABORT and
COMMIT states, and (ii) no non-committable

4
state should be adja-

cent to the COMMIT state. These requirements motivated Skeen to

introduce the notion of a new committable state (PRE-COMMIT)
to the 2PC state transition diagram.

The existence of PRE-COMMIT state makes the 3PC protocol

non-blocking. The aforementioned multi-node failure case does

not indefinitely block the nodes Y and Z which are waiting in

the READY state. The nodes Y and Z can make safe progress (by

aborting the transaction) as they are assured that the node X
could not have committed the transaction. Such a behavior is

implied by the principle that no two nodes could be more than

one state transition apart. The node X is guaranteed to be in one

of the following states: INITAL, READY, PRE-COMMIT and ABORT,
at the time of failure. This indicates that node X could not have

committed the transaction, as nodesY andZ are still in the READY
state (It is important note that in the 3PC protocol the coordinator

sends the Global-Commit message after it transmits the Prepare-
to-commit message to all the nodes.). Interestingly, if either of

nodes Y or Z are in the PRE-COMMIT state then they can actually

commit the transaction. However, it can be easily observed that

the non-blocking characteristic of the 3PC protocol comes at an

additional cost, an extra round of handshaking.

4INITAL, READY and WAIT states are considered as non-committable states.

Figure 4: Easy Commit Protocol

3 EASY COMMIT
We now present the Easy Commit (EC) protocol. EC is a two-

phase protocol, but unlike 2PC it exhibits non-blocking behavior.

The EC protocol achieves these goals through two key insights: (i)

first transmit and then commit, and (ii) message redundancy. In

the second phase, Easy Commit ensures that each participating

node forwards the coordinating node’s decision to all the other

participants. To ensure non-blocking behavior, EC protocol also

requires each node (coordinator and participants) to transmit the

global decision to all the other nodes, before they commit. Hence,

the commit step subsumes message transmission to all the nodes.

3.1 Commitment Protocol
We present the EC protocol state transition diagram, and the

coordinator and participant algorithms in Figure 4 and Figure 5,

respectively. The EC protocol is initiated by the coordinator node.

It sends the Prepare message to each of the cohorts and moves

to the READY state. When a cohort receives the Prepare message,

it sends its decision to the coordinator, and moves to the READY
state. On receiving the responses from each of the cohorts, the co-

ordinator first transmits the global decision to all the participants,

and then commits (or aborts) the transaction. Each of the cohorts,

on receiving a response from the coordinator, first forward the

global decision to all the participants (and the coordinator), and

then commit (or abort) the transaction locally.

We introduce multiple entries to the log to facilitate recovery

during node failures. Note: the EC protocol allows the coordinator

to commit as soon as it has communicated the global decision to

all the other nodes. This implies that the coordinator need not

wait for the acknowledgments. When a node timeouts, while
waiting for a message, it executes the termination protocol. Some

of the noteworthy observations are:

I. A participant node cannot make a direct transition from the

INITIAL state to the ABORT state.

II. The cohorts, irrespective of the global decision, always for-

ward it to every participant.

III. The cohorts need not wait for message from the coordinator,

if they receive global decision from other participants.

IV. There exists some hidden states (a.k.a TRANSMIT-A and TRAN-
SMIT-C), only after which a node aborts or commits the

transaction (cf. discussed in Section 3.2).

In Figure 3c, we also present the linear time scale model for the

Easy Commit protocol. Here, in the second phase, we use solid

lines to represent the global decision from the coordinator to the

cohorts, and the dotted lines to represent message forwarding.
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Send Prepare to all participants;

Add begin_commit to log;

Wait for (Vote-commit or Vote-abort) from all participants;

if timeout then
Run Termination Protocol;

end if
if All messages are Vote-commit then
Add global-commit-decision-reached in log;

Send Global-commit to all participants;

Commit the transaction;

Add transaction-commit to log;

else
Add global-abort-decision-reached in log;

Send Global-abort to all participants;

Abort the transaction;

Add transaction-abort to log;

end if

(a) Coordinator’s algorithm

Wait for Prepare from the coordinator;

if timeout then
Run Termination Protocol;

end if
Send decision (Vote-commit or Vote-abort) to coordinator;

Add ready to log;

Wait for message from coordinator;

if timeout then
Run Termination Protocol;

end if
if Coordinator decision is Global-commit then

Add global-commit-received in log;

Forward Global-commit to all nodes;

Commit the transaction;

Add transaction-commit to log;

else
Add global-abort-received in log;

Forward Global-abort to all nodes;

Abort the transaction;

Add transaction-abort to log;

end if

(b) Participant’s algorithm

Figure 5: Easy Commit Algorithm.

3.2 Termination Protocol
We now consider the correctness of the EC algorithm under node-
failures. We want to ensure that the EC protocol exhibits both

liveness and safety properties. A commit protocol is said to be

safe if there isn’t any instant during the execution of the system

under consideration when two or more nodes are in conflicting

states (that is one node is in COMMIT state while other is in ABORT).
A protocol is said to respect liveness if its execution causes none

of the nodes to block.

During the execution of a commit protocol, each node waits

for a message for a specific amount of time before it timeouts.
When a node timeouts then it concludes loss of communication

with the sender node, which in our case corresponds to failure of

the sender node. A node is assumed to be blocked if it is unable

to make progress on timeout. In case of such node failures, the

active nodes execute the termination protocol to ensure system

Figure 6: Logical expansion of Easy Commit Protocol.

makes progress. We illustrate the termination protocol by stating

the actions taken by the coordinator and the participating nodes

on timeout. The coordinator can timeout only in the WAIT state,

while the cohorts can timeout in INITIAL and READY states.

A. Coordinator Timeout in WAIT state – If the coordinator

timeouts in this state, then it implies that the coordinator

didn’t receive the vote from one of the cohorts. Hence, the

coordinator first adds a log entry for the global-abort-decision-
reached, then transmits the Global-abort message to all the

active participants, and finally aborts the transaction.

B. Cohort Timeout in INITIAL State – If the cohort timeouts

in this state, then it implies that it didn’t receive the Prepare
message from the coordinator. Hence, this cohort communi-

cates with other active cohorts to reach a common decision.

C. Cohort Timeout in READY State – If the cohort timeouts in

this state, it implies that it didn’t receive a Global-Commit
(or Global-Abort) message from any node. Hence, it would

consult the active participants to reach a decision common to

all the participants.

Leader Election: In last two cases we force the cohorts to

perform transactional commit or abort based on an agreement.

This agreement requires selection of a new leader (or coordinator).

The target of this leader is to ensure that all the active participants,

follow the same decision that is commit (or abort) the transaction.

The selected leader can be in the INITIAL or the WAIT state. It

consults all the nodes if any of them has received a copy of the

global decision. If none of the nodes know the global decision,

then the leader first adds a log entry for the global-abort-decision-
reached, then transmits the Global-abort message to all the active

participants, and finally aborts the transaction.

To prove correctness of EC protocol, Figure 6 expands the

state transition diagram. We introduces two intermediate hidden

states (a.k.a TRANSMIT-A and TRANSMIT-C). All the nodes are

oblivious to these states, and the purpose of these states is to

ensure message redundancy in the network. As a consequence,

we can categorize the states of the EC protocol under five heads:

• UNDECIDED – The state before reception of global decision

(that is INITIAL, READY and WAIT states).
• TRANSMIT-A – The state on receiving the global abort.

• TRANSMIT-C – The state on receiving the global commit.

• ABORT – The state after transmitting Global-Abort.
• COMMIT – The state after transmitting Global-Commit.

Figure 7 illustrate whether two states can co-exist (Y) or they

conflict (N). We derive this table on the basis of our observations:

I - IV and cases A - C. We now have sufficient tools to prove the

liveness and safety property of EC protocol.
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UNDECIDED T-A T-C ABORT COMMIT

UNDECIDED Y Y Y N N

T-A Y Y N Y N

T-C Y N Y N Y

ABORT N Y N Y N

COMMIT N N Y N Y

Figure 7: Coexistent states in EC protocol (T-A refers to
TRANSMIT-A and T-C refers to TRANSMIT-C).

Theorem 3.1. Easy Commit protocol is safe, that is in the pres-
ence of only node failures, for a specific transaction, two nodes
cannot be in both Aborted and Committed states, at any instant.

Proof. Let us assume the case that two nodes p and q are in
the conflicting states (say p voted to abort the transaction and q
voted to commit). This would imply that one of them received

Global-Commit message while the other received Global-Abort.
From (II) and (III) we can deduce that p and q should transmit the

global decision to each other, but as they are in different states, it

implies a contradiction. Also, from (I) we have the guarantee that

p could not have directly transited to the ABORT state. This implies

p and q would have received message from some other node. But,

then they should have received the same global decision.

Hence, we assume that either of the nodes p or q moved to

a conflicting state and then failed. But, this violates property

(IV) which states that a node needs to transmit its decision to all

the other nodes before it can commit or abort the transaction.

Also, once either of p or q fails, the rest of the system follows

termination protocol (cases (A) to (C)), and reaches a safe state. It

is important to see that the termination protocol is re-entrant. □

Theorem 3.2. Easy Commit protocol is live that is in the pres-
ence of only node failures, it does not block.

Proof. The proof for this theorem is a corollary of Theorem

3.1. The termination protocol cases (A) to (C) provide the guar-

antee that the nodes do not block and can make progress, in case

of a node failure. □

3.3 Comparison with 2PC Protocol
We now draw out comparisons between the the 2PC and EC

protocols. Although, EC protocol is non-blocking, but still 2PC

protocol has a lower message complexity. EC protocol’s message

complexity isO(n2), while the message complexity for 2PCO(n).
To illustrate the non-blocking property of EC protocol, we

now tackle the motivational example of multiple failures. For the

sake of completeness we restate the example here. Let us assume

a distributed system with coordinator C and participants X , Y
and Z . We also assume thatC decides to transmit Global-Commit
message to all the nodes, and fails just after transmitting message

to the participant X . Say, the node X also fails after receiving the

message fromC . Thus, nodes Y and Z neither received messages

fromC nor from nodeX . In this setting, the nodes Y and Z would

eventually timeout, and run the termination protocol. From case

(C) of termination protocol, it is evident that the nodes Y and Z
would select a new leader among themselves, and would safely

transit to the ABORT state.

3.4 Comparison with 3PC protocol
Although, EC protocol looks similar to 3PC protocol, but it is

a stricter and an efficient variant to 3PC protocol. It introduces

the notion of a set of intermediate hidden states: TRANSMIT-A
and TRANSMIT-C, which can be superimposed on the ABORT and

COMMIT states, respectively. Also, in the EC protocol, the nodes

do not expect any acknowledgements. So unlike the 3PC proto-

col, there are no inputs to the TRANSMIT-A, TRANSMIT-C, ABORT
and COMMIT states. However, EC protocol has a higher message

complexity than 3PC, which has a message complexity of O(n).

4 DISCUSSION
Until now, all our discussion assumed existence of only node

failures. In Section 3 we prove that EC protocol is non-blocking

under node failures. We now discuss the behavior of the 2PC, 3PC

and EC protocols under communication failures that is message

delay and message loss. Later in this section we also study the

degree to which these protocols support independent recovery.

4.1 Message Delay and Loss
We now analyze the characteristics of 2PC, 3PC and EC proto-

col, under unexpected delays in message transmission. Message

delays represent an unprecedented lag in the communication

network. The presence of message delays can cause a node to

timeout and act as if a node failure has occurred. This node may

receive a message pertaining transaction commitment or abort,

after the decision has been made. It is interesting to note that

2PC and 3PC protocols are not safe under message delays [7, 39].

Prior works [26, 39] have shown that it is impossible to design

a non-blocking commitment protocol for unbounded asynchro-

nous networks with even a single failure.

We illustrate the nature of 3PC protocol under message delay,

as it is trivial to show that 2PC protocol is unsafe under message

delays. The 3PC protocol state diagram does not provide any

intuition about the transitions that two nodes should perform

when both of them are active but unable to communicate. In fact,

partial communication or unprecedented delay in communication

can easily hamper the database consistency.

Let us consider a simple configuration with a coordinator C
and the participants X , Y and Z . Now assume that C receives

Vote-commitmessage from all the cohorts, and, hence it decides to

send the Prepare-to-Commit message to all the cohorts. However,

it is possible that the system starts facing unanticipated delays

on all the communication links with C at one end. We can also

assume that the paths to node X are also facing severe delays.

In such a situation, the coordinator would proceed to globally
commit the transaction (as it has moved to the PRE-COMMIT state),
while the nodes X , Y and Z would abort the transaction (as from

their perspective the system has undergone multiple failures).

This implies that the 3PC termination protocol is not sound under

message delays, and similarly we can show that EC protocol is

unsafe under message delays.

This situation can aggravate if the network undergoes mes-

sage loss. Interestingly, message loss has been deemed to be true

representation of the network partitioning [39]. Hence, no com-

mit protocol is safe (or non-blocking) under message loss [7]. If

the system is suffering from message loss then the participating

nodes (and coordinator) would timeout, and would run the as-

sociated terminating protocol that could make nodes transit to

conflicting states. Thus, we also conclude that 2PC, 3PC and EC

protocols are unsafe under message loss.
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Figure 8: ExpoDB Framework - executed at each server
process, hosted on a cloud node. Each server process re-
ceives a set of messages (from clients and other servers),
and uses multiple threads to interact with various dis-
tributed database components.

4.2 Independent Recovery
Independent recovery is one of the desired properties from the

nodes in a distributed system. An independent recovery protocol

lays down a set of rules that help a failed node to terminate

(commit or abort) the transaction which was executing at the

time of its failure, without any help from other active participants.

It is interesting to note that 2PC and 3PC protocols only support

partial independent recovery [7, 39].

It is easy to present a case where the 3PC protocol lacks in-

dependent recovery. Consider a cohort in the READY state that

votes to commit the transaction, and fails. On recovery this node

needs to consult with the other nodes about the fate of the last

transaction. This node cannot independently commit (or abort)

the transaction, as it does not know the global decision, which

could have been either commit or abort.

EC protocol supports independent recovery in following cases:

(i) If a cohort fails before transmitting its vote, then on recovery

it can simply abort the transaction.

(ii) If the coordinator fails before transmitting the global deci-

sion then it aborts the transaction on recovery.

(iii) If either coordinator or participant fail after transmitting

the global decision and writing the log, then on recovery

they can use this entry to reach the consistent state.

5 EASY COMMIT IMPLEMENTATION
We now present a discussion on our implementation of the

Easy Commit (EC) protocol. We have implemented EC proto-

col in the ExpoDB platform [45]. ExpoDB is an in-memory, dis-

tributed transactional platform that incorporates and extends

the Deneva [28] testbed. ExpoDB also offers secure transactional

capability, and presents a flexible framework to study distributed

ledger—blockchain [8, 43].

5.1 Architectural Overview
ExpoDB includes a lightweight layer for testing distributed pro-

tocols and design strategy. Figure 8 presents the block diagram

representation of the ExpoDB framework. It supports a client-

server architecture, where each client or server process is hosted

on one of the cloud nodes. To maintain inherent characteristics

of a distributed system, we opt for a shared nothing architecture.

Each partition is mapped to one server node.

A transaction is expressed as a stored procedure that contains

both program logic and database queries, which read or modify

the records. The clients and server processes communicate with

each other using TCP/IP sockets. In practice, the client and server

processes are hosted on different cloud nodes, and we maintain

an equal number of client and server cloud instances.

Each client creates one or more transactions, and sends the

transaction execution request to the server process. The server

process in turn executes the transaction by accessing the local

data and runs the transaction until further execution requires ac-

cess to remote data. The server process then communicates with

other server processes that have access to remote data (remote

partitions), to continue the execution. Once, these processes re-

turn the result, the server process continues execution till comple-

tion. Next, it takes a decision to commit or abort the transaction

(that is, executes the associated commit protocol).
In case a transaction has to be aborted then the coordinat-

ing server sends messages to the remote servers to rollback the

changes. Such a transaction is resumed after an exponential back-

off time. On successful completion of a transaction, the coordi-

nating server process sends an acknowledgment to the client

process, and performs necessary garbage collection.

5.2 Design of 2PC and 3PC
2PC: The 2PC protocol starts after the completion of the trans-

action execution. The read-only transactions and single partition

transactions do not make use of the commit protocol. Hence,

the commit protocol comes into play when the transaction is

multi-partition and performs updates to the data-storage. The co-

ordinating server sends a Preparemessage to all the participating

servers, and waits for their response. The participating servers

respond with the Vote-commit message
5
. On receiving the Vote-

commit message the coordinating server starts the final phase,

and transmits the Global-Commit message to all the participants.

Each participant on receiving the Global-Commit message com-

mits the transaction, releases the local transactional resources,

and responds with an acknowledgment for the coordinator. The

coordinator waits on a counter for response from each participant

and then commits the transaction, sends a response to the client

node, and releases the associated transactional data-structures.

3PC: To gauge the performance of the EC protocol, we also

implemented the three-phase commit protocol. The 3PC protocol

implementation is a straightforward extension to the 2PC proto-

col. We add an extra PRE-COMMIT phase before the final phase. On
receiving, all the Vote-commit messages, the coordinator sends

the Precommit message to each participant. The participating

nodes acknowledge the reception of the Precommitmessage from

the coordinator. The coordinating server on receiving these ac-

knowledgments, starts the finish phase.

5.3 Easy Commit Design
We now explain the design of Easy Commit protocol in the Ex-
poDB framework. The first phase (that is the INITIAL phase) is
same for both the 2PC and the EC protocol. In the EC protocol,

5
Without node failures, any transaction that reaches the prepare phase is assumed

to successfully commit.
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once the coordinator receives the Vote-commit message from all

the nodes, it first sends the Global-commitmessage to each of the

participating processes, and then commits the transaction. Next

it, responds to the client with the transaction completion notifi-

cation. When the participating nodes receive the Global-Commit
message from the coordinator, they forward the Global-Commit
message to all the other nodes (including the coordinator), and

then commit the transaction.

Although, in the EC protocol the coordinator has a faster re-

sponse rate to the client, but its throughput takes a slight dip

due to additional, implementation enforced wait. It can be noted

that we have not performed any cleanup tasks (such as releasing

the transactional resources) yet. The cleanup of the transactional

resources is performed once it is ensured that neither of those

resources would be ever used, nor any messages associated with

the transaction would be further received. Hence, we have to

force all the nodes (both the coordinator and the participants) to

poll the message queue, and wait till they have received the mes-

sages from each other node. Once all the messages are received,

each node performs the cleanup.

To implement EC protocol we had to extend the message being

transmitted with a new field which identifies all the participants

of the transaction. This array contains the Id for each participant,
and is updated by the coordinator (as only the coordinator has

information about all the partitions) and transmitted as part of

the Global-Commit message.

6 EVAUATION
In this section, we present a comprehensive evaluation of our

novel Easy Commit protocol against 2PC and 3PC. As discussed

in Section 5, we use the ExpoDB framework for implementing the

EC protocol. For our experimentation, we adopt the evaluation

scheme of Harding et al. [28].

To evaluate various commit protocols, we deploy the ExpoDB
framework on the Microsoft Azure cloud. For running the client

and server processes, we use upto 64 Standard_D8S_V3 instances,
deployed in the US East region. Each Standard_D8S_V3 instance
consists of 8 virtual CPU cores and 32GB of memory. For our ex-

periments, we ensure a one-to-one mapping between the server

(or client) process and the hosting Standard_D8S_V3 instance.

On each server process, we allowed creation of 4 worker threads,

each of which were attached to a dedicated core, and 8 I/O threads.

At each server node, a load of 10000 open client connections is

applied. For each experiment, we first initiated a warmup phase

for 60 seconds, followed by 60 seconds of execution. The mea-

sured throughput does not include the transactions completed

during warmup phase. If a transaction gets aborted then it is

restarted again, only after a fixed time. To attenuate the noise in

our readings, we average our results over three runs.

To evaluate the commit protocols, we use the NO_WAIT con-

currency control algorithm. We use the NO_WAIT algorithm as: (i)

it is the simplest algorithm, amongst all the concurrency control

algorithms present in the ExpoDB framework, and (ii) has been

proved to achieve high system throughput. It has to be noted that

the use of underlying concurrency control algorithm is orthog-

onal to our approach. We present the design of a new commit

protocol, and hence other concurrency control algorithms (except

Calvin) available in the ExpoDB framework, can also employ EC

protocol during the commit phase. We present a discussion on

the different concurrency control algorithms, later in this section.
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Figure 9: System throughput (transactions per second) on vary-
ing the skew factor (theta) for the 2PC, 3PC and EC protocols.
These experiments run the YCSB benchmark. Number of server
nodes are set to 16 and partitions per transaction are set to 2.

In NO_WAIT protocol, a transaction requesting access to a

locked record is aborted. On aborting the transaction, all the locks

held with this transaction are released, which allows other trans-

actions waiting on these locks to progress. NO_WAIT algorithm

prevents deadlock by aborting transactions in case of conflicts,

and hence, has high abort rate. The simple design of NO_WAIT
algorithm, and its ability to achieve high system throughput [28]

motivated us to use it for concurrency control.

6.1 Benchmark Workloads
We test our experiments on two different benchmark suites:

YCSB [10] and TPC-C [12]. We use YCSB benchmark to evaluate

EC protocol on characteristics interesting to the OLTP database

designers (Section 6.2 to Section 6.5), and use TPC-C to gauge

the performance of EC protocol from the perspective of a real

world application (Section 6.6 and Section 6.7).

YCSB – The Yahoo! Cloud Serving Benchmark consists of 11

columns (including a primary key) and 100B random characters.

In our experiments we used a YCSB table of size 16million records

per partition. Hence, the size of our database was 16 GB per node.

For all our experiments we ensured that each YCSB transaction

accessed 10 records (we mention changes to this scheme explic-

itly). Each access to YCSB data followed the Zipfian distribution.

Zipfian distribution tunes the access to hot records through the

skew factor (theta). When theta is set to 0.1, the resulting dis-

tribution is uniform, while the theta value 0.9 corresponds to

extremely skewed distribution. In our evaluation using YCSB

data, we only executed multi-partition transactions, as single

partition transactions do not require use of commit algorithms.

TPC-C – The TPC-C benchmark helps to evaluate system

performance by modeling an application for warehouse order

processing. It consists of a read-only, item table that is replicated

at each server node while rest of the tables are partitioned using

the warehouse ID. ExpoDB supports Payment and NewOrder trans-
actions, which constitute 88% of the workload. Each transaction

of Payment type accesses at most 2 partitions. These transaction

first update the payment amounts for the local warehouse and

district, and then update the customer data. The probability that

a customer belongs to a remote warehouse is 0.15. In case of

transactions of type NewOrder, first the transaction reads the lo-

cal warehouse and district records and then modifies the district

record. Next, it modifies item entries in the stock table. Only,

10% NewOrder transactions are multi-partition , as only 1% of the

updates require remote access.

163



0

20

40

60

80

100

120

2 3 4 5 6

Sy
st

em
 T

hr
ou

gh
pu

t 
(T

ho
us

an
d 

tx
ns

 p
er

 se
co

nd
s)

 

Varying Partitions per Transaction 

2PC 3PC EC

Figure 10: System throughput (transactions per second) on vary-
ing the number of partitions per transactions for the commit pro-
tocols. These experiments use YCSB benchmark. The number of
server nodes are set to 16 and theta is set to 0.6.

6.2 Varying Skew factor (Theta)
We evaluate the system throughput by tuning the skew factor

(theta), available in YCSB benchmarks, from 0.1 to 0.9. Figure 9

presents the statistics when the number of partitions per trans-

action are set to 2. In this experiment, we use 16 server nodes to

analyze the effects induced by the three commit protocols.

A key takeaway from this plot is that, for theta ≤ 0.7 the

system throughputs for EC and 2PC protocols are better than the

system throughput for the 3PC protocol. On increasing the theta

further the transactional access becomes highly skewed. This

results in an increased contention between the transactions as

they try to access (read or write) the same record. Hence, there is

a significant reduction in the system throughput across various

commit protocols. Thus, it can be observed that the magnitude

of difference in the system throughputs for 2PC, 3PC and EC

protocol is relatively insignificant. It is important to note that on

highly skewed data, the gains due to the choice of underlying

commit protocols are overshadowed by other system overheads

(such as cleanup, transaction management and so on).

In the YCSB benchmark, for theta ≤ 0.5 the data access is

uniform across the nodes, which implies that the client transac-

tions access data on various partitions – low contention. Hence,

each server node achieves nearly the same throughput. It can be

observed that for all the three commit protocols the throughput

is nearly constant (not same). We attribute the delta difference

in the throughputs of the EC and 2PC protocols to the system in-

duced overheads, network communication latency, and resource

contention between the threads (for access to cpu and cache).

6.3 Varying Partitions per Transaction
We now measure the system throughput achieved by the three

commit protocols on varying the number of partitions per trans-

actions from 2 to 6. Figure 10 presents the throughput achieved

on the YCSB benchmark, when theta is fixed to 0.6, and number

of server nodes are set to 16. The number of operations accessed

by each transaction are set to 16, and the transaction read-write

ratio is maintained at 1 : 1.

It can be observed that on increasing the number of partitions

per transaction there is a dip in the system throughput, across all

of the commit protocols. On moving from 2 to 4 partitions there

is an approximate decrease of 55%, while the reduction is system

performance is around 25% from 4 partitions to 6 partitions,

for the three commit protocol. As the number of partitions per

transaction increase, the number of messages being exchanged in

each round increases linearly for 2PC and 3PC, and quadratically

for EC. Also, an increase in partitions imply the transactional

resources are held longer across multiple sites, which leads to

throughput degradation for all the protocols. Note: in practice, the

number of partitions per transaction are not more than four [12].

6.4 Varying Server Nodes
We study the effect of varying the number of server nodes (from

2 nodes to 32 nodes) on the system throughput and latency, for

the 2PC, 3PC and EC protocols. In Figure 11 we set the number

of partitions per transaction to 2 and plot graphs for the low

contention (theta = 0.1), medium contention (theta = 0.6) and

high contention (theta = 0.7). In these experiments, we increase

size of YCSB table in accordance to the the increase in number

of server nodes.

In Figure 11, we use the plots on the left to study the system

throughput on varying the number of server nodes. It can be

observed that as the contention (or skew factor) increases the

system throughput decreases, and such a reduction is sharply

evident on moving from theta = 0.6 to theta = 0.7. Another

interesting observation is that the system throughput attained

by the EC protocol is significantly greater than the throughput

attained under 3PC protocol. The gains in system throughput are

due to reduction of an extra phase which compensates for the

extra messages communicated during the EC protocol.

In comparison to the 2PC protocol the system throughput

under EC protocol is marginally lower at low contention and

medium contention, and relatively same at high contention. These

gains are the result of zero acknowledgment messages required

by the coordinating node, in the commit phase, which helps EC

protocol perform nearly as efficient as the 2PC protocol. This

helps us to conclude that a database system using EC is as scalable

as its counterpart employing 2PC.

6.4.1 Latency. In Figure 11, we use the plots on the right, to

shows the 99 percentile system latency when one of the three

commit protocols are employed by the system. We again vary

the number of server nodes from 2 to 32. The 99 percentile la-

tency is measured from the first commit to the final commit of a

transaction. On increasing the number of server nodes there is

a steep increase in latency for each commit protocol. The high

latency values for 3PC protocol can be easily cited to the extra

phase of communication.

6.4.2 Proportion of time consumed by various components:
Figure 12 presents the time spent on various components of the

distributed database system. We show the time distribution for

the different degree of contention (theta). We categorize these

measures under seven different heads.

Useful Work is the time spent by worker threads doing com-

putation for read and write operations. Txn Manager is the

time spent in maintaining transaction associated resources. In-
dex is the time spent in transaction indexing. Abort is the time

spent in cleaning up aborted transactions. Idle is the time worker

thread spends when not performing any task. Commit is the
time spent in executing the commit protocol. Overhead repre-

sents the time to fetch transaction table, transaction cleanup and

releasing transaction table.

The key intuition from these plots is that as the contention

(theta) increases there is an increase in time spent in abort.

At low contention as most of the transactions are read-only,

so the time spent in commit phase is least, and as contention

increase, commit phase plays an important role in achieving high

throughput from databases. Also, it can be observed at medium

and high contention, worker threads executing 3PC protocol
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(a) Low contention – (theta = 0.1).
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(b) Medium contention – (theta = 0.6).
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(c) High contention – (theta = 0.7).
Figure 11: System Throughput (transactions per second) and System Latency (in seconds), on varying the number of server nodes for
the 2PC, 3PC and EC protocols. The measured latency is the 99-percentile latency, that is, latency from the first start to final commit of
a transaction. For these experiments we use the YCSB benchmarks and set the number of partitions per transaction to 2.

are idle for the maximum time and perform the least amount of

useful work, which indicates a decrease in system throughput

under 3PC protocol due to an extra phase of communication.

6.5 Varying Transaction Write Percentage
We now vary the transactional write percentage, and draw out

comparisons between the system throughput achieved by the Ex-
poDB when employing one of the three commit protocols. These

experiments are based on YCSB benchmark, and vary the per-

centage of write operations accessed by each transaction from

10 to 90. We set the skew factor to 0.6, number of server nodes

to 16 and partitions per transaction to 2.

It can be seen that when only 10% of the operations are write

then all the protocols achieve nearly the same system throughput.

This is because most of the requests sent by the client consists

of read-only transactions, and under read only transactions, the

commit protocols are not executed. However, as the write percent-

age increases the gap between the system throughput achieved by

3PC protocol and the other two commit protocols increases. This

indicates that 3PC protocol performs poorly when the underlying

application consists of write intensive transactions.

In comparison to the 2PC protocol, EC protocol undergoes

marginal reduction in throughput. As the number of write op-

erations increase, the number of transactions undergoing the

commit protocol also increase. We have already seen that under

EC protocol (i) the amount of message communication is higher

than the 2PC protocol, and (ii) each node needs to wait for ad-

ditional wait-time before releasing the transactional resources.

Some of these held resources include locks on data items, and it is

easy to surmise that under EC protocol locks are held longer than

the 2PC protocol. The increase in duration of locks being held

also leads to an increased abort rate, which is another important

factor for reduced system throughput.

6.6 Scalability of TPC-C Benchmarks
We now gauge the performance of the EC protocol with respect

to a real-world application, that is using TPC-C benchmark. Fig-

ure 14 presents the characteristics of the 2PC, 3PC and EC proto-

cols, under TPC-C benchmark, on varying the number of server

nodes. It has to be noted that a major chunk of TPC-C trans-

actions are single-partition, while most of the multi-partition

transactions access only two partitions. Our evaluation scheme
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Figure 12: Percentage of time spent by various database compo-
nents, on executing the YCSB benchmark. We set the number of
server nodes to 16 and partitions per transaction to 2.
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Figure 13: System throughput (transactions per second) on vary-
ing the transaction write percentage for the 2PC, 3PC and EC pro-
tocols. These experiments use YCSB benchmark, and set the num-
ber of server nodes to 16 and partitions per transactions to 2.

sets 128 warehouses per server, and, hence a multi-partition can

access two co-located partitions (that is on a single server).

Figure 14a represents the scalability of the Payment trans-
actions for the three commit protocols. It is evident from this

plot that as the number of server nodes increase, the system

throughput increases for each commit protocol. However, there
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(b) NewOrder Transaction

Figure 14: System throughput on varying the number of server
nodes, on the TPC-C benchmark. The number of warehouses per
server are set to 128.
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Figure 15: System throughput achieved by three different con-
currency control algorithms. For experimentation, we use the
TPC-C Payment transaction, and vary the number of server nodes
to 16. The number of warehouses per server are set to 128. Here
WDIE and TST refer to WAIT-DIE and TIMESTAMP, respectively.

is a performance bottleneck in case of 3PC protocol. In case of

payment transactions as updates are performed at the homeware-

house, which requires exclusive access, so there is an increase in

abort rate for the underlying concurrency control algorithm (in

our case NO_WAIT). Now, as 3PC protocol requires an additional

phase to commit the transaction, hence there is an increase in

the abort rate. Interestingly, the throughput achieved by the EC

protocol is approximately equal to the system throughput under

2PC protocol.

Figure 14b depicts the system throughput on executing TPC-C

NewOrder transactions. The performance bottleneck is reduced

for these transactions as there only 10 districts per warehouse,

and hence, the commit protocols achieve comparatively higher

throughput. Also, as there are only 10% multi-partition transac-

tions, so all the protocols achieve nearly the same performance.
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Figure 16:Comparison of throughput achieved by the system ex-
ecuting Calvin versus the system implementing the combination
of No-Wait+EC protocol. In this experiment we use the TPC-C
Neworder transaction, and vary the number of server nodes to 16.
The number of warehouses per server are set to 128.

6.7 Concurrency Control
The presence of read/write data conflicts between transactional

accesses necessitates the use of concurrency control algorithms

by the database management system. The ExpoDB framework

implements multiple state-of-the-art concurrency control algo-

rithms. Although, in this work, we use NO_WAIT concurrency

control algorithm, but EC protocol can be easily integrated to

work alongside other concurrency control algorithms.

Figure 15 measures the system throughput for three different

concurrency control algorithms. We use TPC-C Payment trans-
actions for these experiments, and increase the number of server

nodes upto 16. We also set the number of warehouses per server

to 128. We compare the performance of EC protocol against the

2PC protocol, when the underlying concurrency control algo-

rithm is WAIT-DIE [4], TIMESTAMP [4] and MVCC [5]. It is evident

from these experiments that the EC protocol is able to achieve as

high efficiency as the 2PC protocol, irrespective of themechanism

used for ensuring concurrency control.

We also analyze our commit protocol against an interesting

deterministic concurrency control algorithm –Calvin [56].Calvin
is a deterministic algorithm that requires the prior knowledge of

the read/write sets of the transaction before its execution. When

the transaction’s read/write sets are not known, at prior, then

Calvin causes some transactions to execute twice. Interestingly,

in the second pass, if some records modify then the transaction is

aborted and restarted again. Hence, prior works [28] have shown

Calvin to perform poorly in such settings. Another strong critic

against Calvin is that in case of failures, it requires a replica node

that executes the same set of operations as the node responding

to client query. This implies that Calvin is not suitable under

failures for use with partitioned databases. Also, the requirement

for replica node, reduces the system throughput.

Figure 16 presents a comparison of NO_WAIT algorithm (em-

ploying EC protocol) and Calvin. For this experiment we use the

TPC-C Neworder transactions, and vary the number of server

nodes from 2 to 16. These transactions are required to update the

order number in their districts. Hence, the deterministic protocols

such as Calvin suffer performance degradation.

7 OPTIMIZATIONS
In earlier sections, we presented a theoretical proof and an eval-

uation of Easy Commit protocol, which proved its relevance in

the space of existing commit protocols. We now discuss some

optimizations for the EC protocol.

An optimized version of the EC protocol would allow achiev-

ing further gains in comparison to both the 2PC and 3PC pro-

tocols. A simple approach is to reduce the number of messages

transmitted in the second phase. In the optimized protocol, each

node only forwards messages to those nodes from which it has

not received a Global-Commit or Global-Abort message. Another

simple optimization is to ensure early cleanup, that is reduction

of implementation enforced wait (refer Section 5.3). To achieve

this, each node would maintain a lookup table, where an entry for

each transaction is added, on receiving the first Global-Commit
or Global-Abort message. The remaining messages, addressed to

the same transaction, would be matched in the table and deleted.

We would also need to periodically, flush some of the entries of

the table, to reclaim memory. Interestingly, such an optimiza-

tion would allow implementing a variant of EC protocol that

does not require any “implicit” acknowledgments. Note a similar

limited variant for 3PC protocol can be constructed where the

coordinator does not wait for acknowledgments after sending

the Prepare-to-Commit messages, and directly transmits Global-
Commit message to all the cohorts. Our proposed optimized

version is comparable to this 3PC variant.

8 RELATEDWORK
The literature presents several interesting works [1, 23, 53] that

suggest the use of one phase commit protocol. These works are
strictly targeted at achieving performance, rather than consis-

tency. Clearly, none of these works satisfy the non-blocking

requirement, expected of a commit protocol.

Several variants to the 2PC protocol [20, 25, 29, 31, 33, 36, 40,

44, 49] have been proposed that aim at improving its performance.

Presumed-commit and presumed-abort [36] work by reducing a

single round of message transmission between the coordinator

and the participants, when the transaction is to be committed or

aborted, respectively. Gray and Reuter [25] present a series of op-

timizations for enhancing the 2PC protocol such as lazy commit,

read-only commit and balancing the load by coordinator transfer.

Group commit [20, 40] helps to reduce the commit overhead by

committing a batch of transactions together. Samaras et al. [49]

design several interesting optimizations to improve the perfor-

mance of 2PC protocol. They present heuristics to reduce the

overhead of logging, network contention and resource conflicts.

Compared to all of these works, we present EC protocol, which

is not only efficient, but also satisfies the non-blocking property.

Levy et al. [33] present an optimistic 2PC protocol that releases

the locks held by a transaction once all the nodes agree to commit.

In case a node decides to abort the transaction then to prevent

violation of database atomicity, compensating transactions are

issued to rollback the changes. Although their approach does

not guarantee non-blocking behavior, but we believe the idea of

optimistic resource release can be integrated with Easy Commit

protocol to achieve further performance.

Boutros andDesai [44] present another variant to 2PC protocol

which forces each node to send an additional message in case

of a communication failure between the coordinator and the

participant. Their approach is only susceptible to the cases where

there is a message loss. However, their work does not resolve

blocking under site failures and can be integrated with our work

to achieve further resilience during message loss.

Haritsa [29] et al. improve the performance of the 2PC protocol,

in the context of real-time distributed systems. Their protocol

permits a conflicting transaction to access the non-committed

data. This can lead to cascading aborts, and is not suitable for

use with the traditional distributed databases. Our technique, on

the other hand, is independent of the underlying concurrency

control mechanism, and does not cause any special aborts.
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Jiménez-Peris et al. [31] also allow their system to optimisti-

cally fetch the uncommitted data, thereby rendering the 2PC

performance. However, their protocol is tailored for usage along-

side strict two-phase locking, and assumes existence of an addi-

tional replica of each process. Our technique is not tailored to any

specific concurrency control mechanism, and neither assumes

existence of any extra process. Also, we believe these heuristics

can be used alongside EC protocol, to render further benefits.

Reddy and Kitsuregawa [58] modify the 3PC protocol by in-

troducing the notion of backup sites. With the help of backup

sites they are able to achieve better performance than 3PC, but

their approach blocks in case of multiple failures. Easy Commit

is non-blocking and does not require any backup sites.

There also have been works [13, 27] that provide better per-

formance bounds than the 3PC protocol if the number of failures

are sufficiently less than the participants. Easy Commit does not

bound the number of failures, and is nearly as efficient as 2PC.

Gray and Lamport [24] developed an interesting non-blocking

version of 2PC protocol using Paxos [32]. Their approach shows

that 2PC protocol is a variant of general consensus protocol.

However, to ensure non-blocking property they require use of an

extra set of acceptor nodes and in the worst case it can be shown

that the number of messages transmitted in their approach is

O(n2). Easy Commit is a hybrid between 2PC and 3PC protocol,

which is nearly as efficient as former and non-blocking as latter.

It also does not require the paxos consensus algorithm, and hence,

no additional requirement of acceptor nodes.

9 CONCLUSIONS
We present a novel commit protocol – Easy Commit. Our design

of Easy Commit, leverages the best of twin worlds (2PC and

3PC), it is non-blocking (like 3PC) and requires two phases (like

2PC). Easy Commit achieves these goals by ensuring two key

observations: (i) first transmit and then commit, and (ii) message

redundancy. We present the design of the Easy Commit protocol

and prove that it guarantees both safety and liveness. We also

present the associated termination protocol and state cases where

Easy Commit can perform independent recovery. We perform a

detailed evaluation of EC protocol on a 64 node cloud, and show

that it is nearly as efficient as the 2PC protocol.
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