
Optimizing Selection Processing for Encrypted Database
using Past Result Knowledge Base

Wai Kit Wong

Hang Seng Management College

wongwk@hsmc.edu.hk

Kwok Wai Wong

Hang Seng Management College

mkwai2016@gmail.com

Ho-Yin Yue

Hang Seng Management College

willyyue@hsmc.edu.hk

ABSTRACT
Data confidentiality is concerned in database-as-a-service (DBaaS)

model. The cloud server should not have access to user’s plain

data. Data is encrypted before they are stored in cloud database.

Query computation over encrypted data by the server is not

straight-forward. Many research works have been done on this

problem. A common goal is to let the server obtain the selection

result without leaking information about plain data. In existing

solutions, the selection result is simply dumped by the server af-

ter the query answer is returned. Our idea is to make use of such

past results of selections to improve processing speed for new

queries. We developed an indexing mechanism called past result
knowledge base (PRKB) to improve processing speed of selection

with comparison predicate(s) in EDBMS. All operations related to

PRKB are done by the server only. In our empirical studies, PRKB

can reduce processing cost by orders of magnitudes compared to

the case PRKB is not used.

1 INTRODUCTION
In database-as-a-service (DBaaS) model, a data owner (DO) up-

loads its data to a database managed by a third party service

provider (SP) who is responsible to answer DO’s queries and

provides administrative services, e.g., backup recovery and ac-

cess control. Data confidentiality is concerned when SP is com-

promised, e.g., by a malicious DBA administrating the database

server. For instance, a rogue DBA has stolen 2.3 millions customer

records of a Fortune 500 company
1
, including bank account and

credit card information. Encrypted database management sys-

tems (EDBMSs), such as Cipherbase [2–4] and SDB [19, 35], are

recently developed to address data confidentiality concerns in

case SP is compromised. The idea in EDBMS is to use application
level encryption where data is encrypted and decrypted by DO

and the private keys are only known to DO. Even if an attacker

somehow gets access to the database at SP, the attacker can only

obtain encrypted information without the keys to decrypt the

data.

A challenge in EDBMS is to allow SP to compute selection

over encrypted data, without knowing any other information

about plain data (so that minimal number of encrypted tuples are

processed in the next operations, e.g., join and/or aggregation).

Many solutions were proposed, e.g., [12, 25] for range query and

[13] for keyword search. In this paper, we address optimization

of computing selection with comparison predicate(s) in EDBMS.

Fig. 1 shows an overview of our method, past result knowledge
base (PKRB). The results of past selections are consolidated and

stored in PRKB at SP. SP can use PRKB to reduce processing cost

1
http://www.computerworld.com/article/2542360/security0/database-admin-

steals-2-3m-consumer-records-at-fidelity-national-subsidiary.html

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Data
owner

Query
Processing

Query
Result

Past Result
Knowledge

Base
(PRKB)Update

Knowledge

Provide
Knowledge

Service
Provider

Figure 1: Overview of PRKB for query processing

Encrypted Selection

tuples σ1 σ2 σ3
t1 X X X

t2 X X X

t3 X X ?

t4 X X ?

Table 1: Example scenario. If an encrypted tuple satisfies
(or does not satisfies resp.) a selection, a ‘X’ (or ‘X’ resp.) is
shown. ‘?’ denotes that the result for the encrypted tuple
is not known yet.

of a new selection. We use the following example to illustrate

the cost reduction idea.

Suppose there are 4 encrypted tuples ti for i = 1 to 4. Each

tuple has one attribute X only. There are 3 selections σ1, σ2, and
σ3, each with a simple comparison predicate in the form of ‘X < c’
or ‘X > c’ where c is a user-defined parameter unknown to SP.

σ1 and σ2 are computed already. σ3 is partially computed. The

scenario is shown in Table 1.

SP can reason as following to determine the values of ‘?’ in

Table 1. The result of σ1 partitions the encrypted tuples into two

groups, P1 = {t1, t3, t4} and P2 = {t2}. We use Pi > Pj to denote

that all tuples in Pi have a larger plain value than all tuples in

Pj . Since σ1 is a simple comparison predicate, there are only

two possible scenarios: either (i) P1 > P2 or (ii) P2 > P1. We

assume it is the case of scenario (i), i.e., t2 has the smallest plain

value. Similarly, from the result of σ2, SP obtains two partitions

P3 = {t1} and P4 = {t2, t3, t4}. It must be either P3 > P4 or

P4 > P3. Since t2 ∈ P4 and t2 has the the smallest value, it must

be the case P3 > P4. As a result, SP obtains the order of (plain

values of) all encrypted tuples in this scenario as ‘t2 < t3, t4 < t1’.
This order information is partial only as SP cannot determine

which encrypted tuple is larger for t3 and t4. For σ3, t1 and t2
are found to satisfy the selection condition. t3 and t4 are ordered
between t1 and t2, so t3 and t4 must also satisfy the selection

condition, i.e., both ‘?’ must be ‘X’ in Table 1. SP can perform the

same analysis for scenario (ii) and obtains the same conclusion.

In the above example, SP can determine whether t3 and t4
satisfy a new selection σ3 without accessing them and thus saves

the processing cost on these two encrypted tuples. Such saving

is significant because the process to check whether an encrypted

Series ISSN: 2367-2005 97 10.5441/002/edbt.2018.10

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.10

tuple satisfies a comparison predicate is usually expensive. For

example, in Cipherbase [2], the encrypted tuple is decrypted

(within a trusted hardware) before the predicate is tested. The

additional decryption cost is significant compared to the cost of a

simple comparison. As demonstrated in our empirical evaluation,

only a small portion of encrypted tuples cannot be determined

using PRKB and only this group of tuples require to be processed

by SP using the usual cryptographic way. The overall processing

cost is greatly reduced.

We highlight the distinguished features of PRKB as follows:

• DO is not involved in any part (e.g., building or using) of

PRKB. No information is required to be sent from DO to

SP for PRKB. All information in PRKB is solely based on

what SP has observed in past query computation. It can be

realized easily that PRKB does not leak more information

than the underlying EDBMS.

• PRKB is compatible to any encryption scheme that tells SP
which encrypted tuples satisfy the selection. As long as

the encryption scheme provides such trapdoor, PRKB can

be used on top of it. This allows PRKB to be deployed on

top of many existing systems, e.g., Cipherbase and SDB.

• Information in PRKB is in plain. Unlike encrypted index,

PRKB consists of information about past selection results.

All operations related to PRKB are efficient and the size of

PRKB is compact.

The rest of this paper is organized as follows. We discuss re-

lated work in Sec. 2. In Sec. 3, we define the models used in our

problem. We describe what PRKB is and how SP builds PRKB in

Sec. 4. In Sec. 5 and Sec. 6, we describe our algorithms for process-

ing a single comparison predicate and multi-dimensional range

query respectively. We describe how to handle database update

in Sec. 7. We empirically evaluate PRKB and related algorithms

in Sec 8. We conclude this paper in Sec. 9.

2 RELATEDWORK
Different solutions were developed for computing individual

database operations over encrypted data, e.g., range query [6, 12,

25, 28], keyword search [7, 13] and join [26]. A potential problem

of these solutions is that integration of the above solutions is

not trivial. Encrypted database management system (EDBMS)

[2, 4, 5, 19, 29, 33, 35] offers an integrated solution that supports a

wide range of SQL operations. We aim to deploy our optimization

technique for selection with comparison predicate(s) in EDBMS.

We first review existing EDBMSs in Sec. 2.1. Then, we review

indexing options for EDBMS in Sec. 2.2. Lastly, we review tech-

niques that hide selection results from SP in Sec. 2.3.

2.1 EDBMS
There are several approaches to implementing EDBMS.

The first approach, e.g., TrustedDB [5] and Cipherbase [2, 4],

makes use of a trusted hardware. There is a trusted machine (TM)

at SP. For instance, TrustedDB uses Cryptographic Coprocessor

and Cipherbase uses FPGA. Such hardware devices are (physi-

cally) tamper-resistant. An attacker is assumed not to be able to

see the data or process inside TM. TM is given the decryption

key of DO. Any computation related to encrypted data can be

handled by TM. For instance, to process a comparison predicate,

the encrypted value of each tuple and the instructions (with en-

crypted user parameters) are passed to TM. TM decrypts the data,

makes the comparison, and returns the comparison result to SP.

The second approach uses secret sharing methods, e.g., SDB

[19, 35]. Secret sharing splits each data item into shares. Some

shares are stored at DO
2
while some are stored at SP. Without

collecting all the shares of a data item, SP cannot recover its plain

value. Multi-party computation (MPC) operators are developed to

execute database operations by DO and SP communicating with

each other in multiple rounds. An advantage of MPC approach is

that any computation can be computed [15]. However, it incurs

a high communication cost in query processing.

Another approach is to use multiple encryption schemes, each

to support a different set of operations. Example system is CryptDB

[29] / MONOMI [33]. (MONOMI is an extension of CryptDB to

further support aggregation.) Specifically, CryptDB uses order

preserving encryption (OPE), e.g., [1, 28], to process comparison

predicates. OPE preserves the numerical order of plain data un-

der encryption, i.e., if x > y, E(x) > E(y) for any x , y where E
denotes the encryption function. Comparison predicates can be

computed efficiently and indexing over OPE-encrypted data is

just like indexing over plain data. A downside of this approach is

that it leaks the total order of plain data to SP. Recent studies show

that inference attack [22, 27] can recover accurately the plain

data of OPE-encrypted data using the total order information.

2.2 Indexing on encrypted data
Our method, PRKB, is similar to indexing, because SP uses ad-

ditional space to remember past results in order to boost the

performance in query computation. PRKB has a significant dif-

ference to mainstream indexing methods for encrypted data:

PRKB is solely done by SP, while existing indexing mechanisms

for encrypted data require DO’s involvement, e.g., to build the

encrypted index, or requires DO to encrypt data using specific

algorithms. In the following, we briefly discuss existing indexing

methods for encrypted data.

In [11, 14, 31], an encrypted index tree is built by DO and

stored at SP. SP simply serves as a storage without processing

capabilities. DO retrieves parts of the index from SP iteratively

to traverse the index. Data confidentially can be proven as SP

never see any data in plain. Access pattern of the index can

also be protected from SP, e.g., in [14], at the cost of increased

processing and communication cost. DO has a significant amount

of workload. We do not prefer this approach in DBaaS where DO

may not be as powerful as SP.

[12, 23, 25] developed new encryption methods for computing

comparison predicate or range query with indexing support. In

[23], data is encrypted using a special vector encryption method

[34]. An index can be built over these encrypted values. A prob-

lem is there is information leaked in the encryption scheme, as

shown in [17], and plain data can be recovered in some scenarios.

In [25], a security notion of index indistinguishable is introduced

and an index is developed that achieves the proposed security

notion. However, such security notion is proven to be weak [10].

In [12], it transforms the problem of range query into keyword

search and uses existing searchable symmetric encryption (SSE)

[7, 8] to compute the result. A series of schemes with different

indexing options, each offers different security strength, is devel-

oped. In all methods above, SP see the selection results as this is

the objective of the problem. Our method PRKB can also be im-

plemented on top of these encryption methods. In our empirical

studies, we will compare our method to [12].

2
In SDB, the shares at DO can be generated using an RSA-like share-generating
function. This reduces storage cost at DO.

98

Some EDBMSs we discussed in Sec. 2.1 also use indexing.

Cipherbase uses an encrypted B+-tree. The index reveals the

total order of plain data to SP and is thus also vulnerable to

inference attack. SDB uses domain-partitioning index [18, 21].

The data domain is divided into partitions by DO. SP is informed

by DO the partition each data item falls into. Due to additional

information leak, we do not consider these methods suitable for

our problem.

2.3 Hiding selection result from SP
Our problem assumes the selection result is known by SP. The se-

lection result can potentially be hidden by access pattern hiding

technique, e.g., oblivious RAM (ORAM) [16, 32] and/or private

information retrial [9]. For instance, [4] discussed an option to

integrate ORAM in Cipherbase. The trade-off is that each data ac-

cess has a polylog cost. Due to high overhead, ORAMwas not im-

plemented in Cipherbase. Similar to Cipherbase, other EDBMSs

we reviewed in Sec. 2.1 do not use any access pattern hiding

technique. Our method can be deployed on existing EDBMSs,

including TrustedDB, CipherBase and SDB.

3 MODELS
3.1 Preliminary: EDBMS
Our problem is based on an underlying encrypted database man-

agement system (EDBMS). In this section, we describe the EDBMS

model, that is compatible to EDBMSs that we discussed in Sec.

2.1.

Parties. There are two parties: data owner (DO) and service

provider (SP). DO has a set of relational tables in the database.

Each table T is a set of tuples, i.e., T = {ti } where ti denotes the

i-th tuple. DO encrypts T to be T such that T = {ti | ti = E(ti)
for every ti ∈ T } where E denotes the encryption function. (We

use X to represent the encrypted version of X in the rest of the

paper.) T is sent to SP for storage and DO does not store T . The
private keys are only known by DO.

Selection processing. EDBMS allows selection to be computed

over encrypted data by SP. The selection contains one or more

comparison predicates, e.g., ‘X > 10’. SQL supports a wide range

of comparison predicates, e.g., comparison operators (>, <, ≥,

and ≤), and BETWEEN operator etc. In general, for existing

EDBMSs that employ attributed-based encryption, SP can tell

(i) which type of operator is used because the algorithms to

process them are different
3
; and (ii) which encrypted attribute

is concerned so that other encrypted values of other attributes

are not accessed during selection processing. In our problem,

we focus on comparison predicate in the form of ‘X op c’ where
op is a comparison operator. In Appendix A, we briefly discuss

how BETWEEN operator can be handled. As we discussed in Sec.

2.1, there are different ways to implement EDBMS to support

selection processing. An ideal method allows SP to observe the

selection result without seeing any information about plain data.

We use the following model (based on the model in [24]) to

capture the selection processing mechanism of EDBMS.

QPF model. Let pi , pi be the plain and encrypted version of a

comparison predicate. There is a query processing function (QPF)

Θ such that

Θ(pi , tj) =

{
1, if tj satisfies pi

0, otherwise

3
Comparison operators (>, <, ≥, and ≤) are handled by the same algorithm and

hence SP cannot distinguish them.

pi is generated by DO and acts as a trapdoor that allows SP to

observe the selection result of pi . SP cannot observe the selection

result of any predicate without such trapdoor, i.e., SP’s knowledge

of selection results is limited by number of comparison predicates
issued by DO.

Applications. The above QPF model is generic [24] such that

the selection processing mechanisms of majority of related work

can be captured. For instance, among the EDBMSs that we have

studied in Sec. 2.1, TrustedDB [5], Cipherbase [2, 4], and SDB [19,

35] satisfy this model, i.e., our method can be implemented on top

of these systems. CryptDB [29] andMONOMI [33] also satisfy our

EDBMSmodel, but they also reveal the total order of plain data (in

addition to selection results) to SP. With total order known, there

are simpler options to optimize query processing and security

strength is significantly lowered. CryptDB and MONOMI are not

our target applications and our underlying EDBMS should not

reveal the total order information.

Our method can also be integrated to many other standalone

methods for selection processing on encrypted database, e.g., [12,

20, 25, 30]. As long as these methods reveal the selection results

to SP, our method can be applied. Methods that do not reveal the

selection results to SP (see Sec. 2.3) are not our target applications.

In our empirical studies, we will compare our method to the

indexing method in [12], the state-of-the-art method for range

query processing on encrypted data.

3.2 Problem in this paper: optimizing
selection with comparison predicate

Our objective is to reduce the processing cost of selection at SP.

A baseline method for SP is to test all encrypted tuples using the

QPF one by one. The bottleneck of performance is QPF evaluation.

Note that a comparison can be done extremely fast, e.g., in one

cycle. QPF evaluation is relatively more expensive in general. For

example, in Cipherbase, the encrypted tuple is decrypted within

a trusted machine before the comparison is done. The decryption

cost is significant compared to the simple comparison. Our goal

is to reduce number of QPF uses.
Our problem is similar to an indexing problem, which trades

(SP’s) storage for speed. However, unlike traditional indexing

problem for encrypted data, our method (i) does not rely on

specific encryption method; and (ii) does not require DO’s in-

volvement
4
in building and using “our index”.

Our indexing mechanism, namely past result knowledge base

(PRKB), composes of the following 4 algorithms.

I ← initPRKB(T): is run by SP to initialize the index I.

I ← updatePRKB(I,pi): is run by SP to update the index I with

an encrypted predicate pi .

⟨TW,TNS⟩ ← QFilter(T ,I,pi): is run by SP to find two exclusive

subsets of T using the index: (i) TW represents the ‘Win-

ner’ group. All encrypted tuples in this group must satisfy

the plain predicate pi ; and (ii) TNS represents the ‘Not sure’
group. Encrypted tuples in this group may satisfy pi but
some may be false positives. This group of encrypted tu-

ples requires further processing by SP to confirm the exact

selection result.

4
DO may still be involved in QPF evaluation, e.g., in SDB [19, 35], and our method

does invoke QPF. We do not count this as DO’s involvement for the index because

such involvement exists in EDBMS without our index.

99

TWNS ← QScan(TNS,I,pi): is run by SP to confirm the exact

selection result by examining each encrypted tuple one by

one. QScan is similar to a linear scan but with optimization

using information from PRKB.

SP can initiate PRKB (for an attribute) by initPRKB to create an

‘empty’ knowledge base as there is no past result observed by SP

yet. As SP receives queries from DO, SP observes new selection

results and can use them to extend PRKB using updatePRKB.
After executing QFilter and QScan, the selection result is then

TW ∪TWNS. Fig.2b shows the procedure and messages in com-

munication of EDBMS using PRKB. In contrast, Fig.2a shows the

same procedure of EDBMS without using PRKB. As we will show

in the paper, QFilter is cheap andTNS is significantly smaller than

T . Only TNS is processed by QScan. The overall cost can be thus

reduced.

3.3 Security discussions
In the security model of EDBMS, an attacker has compromised

SP and is able to observe anything SP can see. Or in simpler

interpretation, SP is the attacker. An ideal situation is that SP

observes no information about plain data. Unfortunately, there is

some inherit information leak that we cannot avoid. The selection

results and any information derived from them can be seen by SP

because it is the objective of selection processing over encrypted

data. The security goal of EDBMS is then to minimize leakage of

any other information about plain data.

In our problem, we use the same attack model as EDBMS

that the attacker has compromised SP. The security goal is to

minimize additional leakage to SP caused by our method. As we

will show in the paper, our indexing method PRKB is built and
used solely by SP using existing selection results. No (encrypted or

plain) information is ever sent from DO to SP for our index. For

instance, readers can compare Fig.2b and Fig.2a which show the

communication between DO and SP in EDBMS with or without

using PRKB. The messages in the two cases are identical. Any

information that can be derived by SP from PRKB can also be

obtained by SP in EDBMS without PRKB. There is no additional

leakage caused by PRKB.

Another important issue is that selection results are assumed

to be observed by SP. We remark that this assumption is held

in many existing methods. As discussed in [24] that selection

results allow SP to eventually recover a total order of encrypted

data on their plain values. The total order information can then

be used in inference attack [22, 27] to recover accurate plain

values. Data confidentiality is completely lost. The technique

in [24] requires SP to observe O(D4) queries, where D is the

domain size of an attribute, so as to let SP recover the total order

information. Experiments in [24] showed that the total order

can be recovered in a short time for a small data domain (e.g.,

D ≤ 365). On the other hand, when the domain size D is large, it

becomes impractical for SP to collectO(D4) queries for the attack.

Yet, SP is able to observe certain number of queries. This allows

SP to observe partial ordering information. We thus performed

empirical evaluation to see how much ordering information SP

can recover when SP observes limited number of queries. The

details are presented in Sec. 8.1.

4 BUILDING PAST RESULT KNOWLEDGE
BASE (PRKB)

In this section, we present what information SP can observe in

query processing of EDBMS and how SP can use the observed

information to build a past result knowledge base (PRKB). PRKB

can then be used by SP to reduce query processing cost for new

range queries.

Consider a comparison predicate pC in the form of ‘C op x ’
where x is a user-defined query parameter and op is one of the

following: >, <, ≥, and ≤. pC is a trapdoor generated by DO

that allows SP to observe, using QPF Θ, whether an encrypted

tuple satisfies the predicate without seeing the plain data and

plain predicate. Note that SP does not know which comparison

operator op is used in pC . SP can divide the encrypted tuples in

T into two partitions: (i) PT : the partition of encrypted tuples

where QPF outputs 1, i.e.,

PT = {ti | ti ∈ T and Θ(pC , ti) = 1}

and (ii) PF : the partition of encrypted tuples PF where QPF out-

puts 0, i.e.,

PF = {ti | ti ∈ T and Θ(pC , ti) = 0}

We can easily prove that either all encrypted tuples in PT have

a larger plain value on C than all encryped tuples in PF or it is

the reverse case. For example, consider a comparison predicate

‘C < 9’. PT contains all encrypted tuples with plain values on C
less than 9. PF contains all encrypted tuples with plain values

on C greater than or equal to 9. All encrypted tuples in PF have

a larger plain value on C than any encrypted tuple in PT . Note
that if the comparison predicate is ‘C > 9’, all encrypted tuples in

PT have a larger plain value on C . SP cannot distinguish which

set of encrypted tuples, PT or PF , is having larger plain values

than the other. To capture the above special ordering relationship

between two sets of encrypted tuples, we define two symbols

below.

Definition 4.1. (Relationship between partitions.) Let P1 = {ti }
and P2 = {tj } be two sets of encrypted tuples, ti [C] be the plain

value of ti on attribute C . We write P1
C
< P2 if ∀ti ∈ P1,∀tj ∈

P2, ti [C] < tj [C]. We write P1
C
7→ P2

C
7→ ...

C
7→ Pn if either (i)

P1
C
< P2

C
< ...

C
< Pn or (ii) P1

C
> P2

C
> ...

C
> Pn .

If the comparison predicate is ‘C < 9’, PT
C
< PF . However, SP

does not observe the plain comparison predicate. SP can only

conclude that PT
C
7→ PF . The ordering information SP can learn

from pC is partial only because (i) SP does not know the ordering

relationship between individual tuples in a partition; and (ii) SP

cannot conclude which partition of PT and PF is actually larger.

Definition 4.2. (Partial order partitions of a relational table.) Let
T be a set of encrypted tuples. We define partial order partitions

of T , denoted as POPCk , as a set of k partitions Pi ⊂ T s.t. (i)

Pi
⋂

Pj = ∅ for i , j; (ii)
⋃k
i=1 Pi = T ; and (iii) P1

C
7→ P2

C
7→ ...

C
7→

Pk .

From a single encrypted predicate pC in the above example,

SP finds POPC
2

: PT
C
7→ PF . With more encrypted predicates

observed, SP can enhance its past result knowledge by extending

POPC
2
. Before we discuss how SP extends its knowledge, we

define two concepts related to a new encrypted predicate on

existing partition order partitions POPCk for k ≥ 2.

Definition 4.3. (Trapdoor equivalence.) Let p1 and p2 be two
encrypted comparison predicates on the same attribute C of an

encrypted table T . Let Pab = {ti | ti ∈ T and Θ(pa , ti) = b} for

100

Initialization

Query

DO SP

𝑝𝑖

𝑅𝑖

𝑅𝑖 = {𝑡𝑗 | 𝑡𝑗 ∈ 𝑇 and Θ 𝑝𝑖, 𝑡𝑗 = 1}

𝑇

(a) EDBMS without PRKB

Initialization

Query

DO SP

𝑝𝑖

𝑅𝑖

𝑇𝑊 , 𝑇𝑁𝑆 = 𝐐𝐅𝐢𝐥𝐭𝐞𝐫 , 𝑇 𝐼, 𝑝𝑖

𝑇𝑊𝑁𝑆 = 𝐐𝐒𝐜𝐚𝐧(𝑇𝑁𝑆, 𝐼, 𝑝𝑖)
𝐼 = 𝐮𝐩𝐝𝐚𝐭𝐞𝐏𝐑𝐊𝐁(𝐼, 𝑝𝑖)

𝑅𝑖 = 𝑇𝑊 ∪ 𝑇𝑊𝑁𝑆

𝑇

𝐼 = 𝐢𝐧𝐢𝐭𝐏𝐑𝐊𝐁(𝑇)

(b) EDBMS with PRKB

Figure 2: Communication protocol of EDBMS between DO and SP

a = 1 or 2, b = 0 or 1. p1 is said to be equivalent to p2 if either (i)
P10 = P20 and P11 = P21; or (ii) P10 = P21 and P11 = P20.

Definition 4.4. (Homogeneous partition & output-isomorphic

partitions.) Given POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk and an en-

crypted predicate p on attribute C . A partition Pa is said to

be homogeneous w.r.t. p if ∀ti , tj ∈ Pa ,Θ(p, ti) = Θ(p, tj). Pa
is said to be T-homogeneous (F-homogeneous resp.) w.r.t. p if

∀ti ∈ Pa ,Θ(p, ti) = 1 (0 resp.). Two partitions Pa , Pb are said

to be output-isomorphic w.r.t. p if either (i) both partitions are

T-homogeneous or (ii) both partitions are F-homogeneous.

We explain the intuition of the above two definitions below.

Two equivalent encrypted predicates divide the encrypted table

T into the same two partitions. All encrypted tuples in a homo-

geneous partition have the same QPF output. A homogeneous

partition is further labeled T-homogeneous (or F-homogeneous)

if the QPF output is 1 (or 0) for all encrypted tuples in the parti-

tion. A non-homogenoeus partition contains tuples with mixed

QPF outputs, i.e., some gives 1 and some gives 0. Two output-

isomorphic partitions means that all encrypted tuples in the

partitions have the same QPF output. Two encrypted predicates

are equivalent if they divide the encrypted tuples into the same

two partitions. Note that two equivalent encrypted predicates

do not necessary mean their plain comparison predicates are

the same. For example, if two comparison predicates are ‘C < 9’

and ‘C > 8’ and there is no tuple with value 8-9, the two cor-

responding encrypted predicates give the same two partitions,

i.e., they are equivalent. Since equivalent encrypted predicates

give the same partitions, only inequivalent encrypted predicates

provide different partitioning information which can enhance

SP’s knowledge.

Now, we consider what SP observes when there is a new en-

crypted predicate with an existing POPCk . We summarize the

scenario in the following lemma.

Lemma 4.5. Given POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let P be

the set of encrypted predicates for deriving POPCk . Let p be a new
encrypted predicate on attribute C . The following two cases must
hold.

Case 1: p is equivalent to some encrypted predicate in P if and
only if there is a separating point s s.t. (i) all partitions Pi for i = 1

to s are output-isomorphic, (ii) all partitions Pj for j = s +1 to k are
output-isomorphic; and (iii) Pi and Pj are not output-isomorphic
for i = 1 to s and j = s + 1 to k .

Case 2: p is inequivalent to all encrypted predicates in P if and
only if there is a separating point s s.t. (i) all partitions Pi for i = 1

to s − 1 are output-isomorphic, (ii) all partitions Pj for j = s + 1 to

Figure 3: Example instance of Case 1 in Lemma 4.5.

Figure 4: Example instance of Case 2 in Lemma 4.5.

k are output-isomorphic; (iii) Pi and Pj are not output-isomorphic
for i = 1 to s − 1 and j = s + 1 to k ; and (iv) Ps is non-homogeneous.

Fig. 3 and Fig. 4 show the examples of Case 1 and Case 2.

Now, SP obtain POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk , generated

based on a set of encrypted predicates P. Note that when SP is

given a new encrypted predicate p′, SP does not know whether

p′ is equivalent to some encrypted predicate in P. According to
Lemma 4.5, SP observes a non-homogeneous partition only in

case 2. Reversely, if SP observes a non-homogeneous partition, SP

can conclude that p′ is inequivalent, i.e., p′ allows SP to extend

POPCk .
Assume now SP receives a new inequivalent encrypted predi-

cate p′. Let Ps be the non-homogeneous partition in POPCk . Since
Ps is non-homogeneous, SP can divide Ps into two smaller parti-

tions based on the outputs of Θ:

PsT = {ti | ti ∈ Ps | Θ(p
′, ti) = 1} and

PsF = {ti | ti ∈ Ps | Θ(p
′, ti) = 0}

For example, in Fig. 4, the encrypted predicate divides Ps into
PsT on the right and PsF on the left. PsT and PsF are now ho-

mogeneous. Either one of them must be output-isomorphic to

Ps−1 and the other partition must be output-isomorphic to Ps+1.
Without loss of generality, assume PsF is output-isomorphic to

Ps−1 and PsT is output-isomorphic to Ps+1 (like the scernaio in

Fig. 4). SP can conclude that P1
C
7→ P2

C
7→ ...

C
7→ Ps−1

C
7→ PsF

C
7→

PsT
C
7→ Ps+1

C
7→ Pk . As a result, SP extends POPCk to POPCk+1 with

one more inequivalent encrypted predicate. By mathematical in-

duction, SP can compute POPCk with k−1 inequivalent encrypted
predicates.

The above discussion only shows that SP can observe POPCk
with k − 1 inequivalent encrypted predicates. We will describe

how SP can efficiently update POPCk to POPCk+1 with an addi-

tional encrypted predicate in Sec. 5.3 after we discuss how we

101

make use of POPCk to optimize selection processing of compari-

son predicates. POPCk represents the knowledge extracted from

past queries. Technically, PRKB contains only one item: POPCk .
When SP decides to build PRKB on attribute C , the algorithm

initPRKB(T) initiates PRKB as POPC
1
where all encrypted tuples

in T residue in one big partition. As SP receives an inequivalent

encrypted predicate, SP extends its PRKB from POPCk to POPCk+1.

5 SINGLE COMPARISON PREDICATE
PROCESSING

In this section, we describe our method of SP processing com-

parison predicate using PRKB. As discussed in Sec. 4, PRKB con-

tains one single item POPCk , which is a set of k partitions of

encrypted tuples. Let Pi be a partition in POPCk for i = 1 to k

s.t. P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let p be an encrypted predicate SP

receives from DO. From lemma 4.5, there is a separating point s
such that it divides the partitions (except the non-homogeneous

partition in Case 2) into two groups where all partitions in the

same group are output-isomorphic to each other w.r.t. p, i.e., Θ
outputs the same for all encrypted tuples in all partitions within

the same group. If SP knows the value of s , SP can determine the

QPF outputs of all encrypted tuples in the above two groups with

2 QPF uses only. This can significantly save the computational

cost at SP. However, SP does not know s in the beginning. So,

the first task of SP in processing a comparison predicate is to

find out the separating point s . This is done by the algorithm

QFilter . QFilter can narrow the possible candidates of s down
to just two candidates, i.e., only two out of k partitions could

be non-homogeneous. Since there are always two candidates of

partitions, we call them Not-sure pair (NS-pair). The QPF outputs
of encrypted tuples in all the other k − 2 partitions can be de-

termined right away. Then, the algorithm QScan will scan every

encrypted tuple in NS-Pair to confirm the value of s , with early

stop strategy applied.

In the following, we first present how QFilter helps SP find

out the separating point efficiently in Sec. 5.1. Then, we present

QScan in Sec. 5.2. Finally, we discuss how SP updates PRKB from

POPCk to POPCk+1 efficiently in Sec. 5.3.

5.1 QFilter: searching for NS-Pair
Before we talk about the algorithm QFilter , we present the fol-
lowing lemma about searching for separating point s .

Lemma 5.1. Given partial order partitions POPCk of an encrypted
table t and an encrypted predicate p on C . Let Pi be a partition

in POPCk for i = 1 to k s.t. P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let s be the

separating pointmentioned in lemma 4.5. Let tx , ty be 2 encrypted
tuples in Pa , Pb respectively s.t. a < b. We have if Θ(p, tx) =
Θ(p, ty), then s ≤ a or s ≥ b.

In the beginning, the separating point s may be any value from

1 to k . Lemma 5.1 helps to prune the candidates of s . There are
two important observations from Lemma 5.1: (i) SP just needs to

test on one sample encrypted tuple in Pa and Pb ; and (ii) Lemma

5.1 does not prune the case of s = a and s = b.
Following observation (i), SP adopts a sampling strategy to

make use of the pruning shown in lemma 5.1. In the rest of the

paper, we use ‘Pi .sample’ to denote the random encrypted tuple

drawn from a partition Pi . Then, in observation (ii), since the

pruning always leave at least two candidates, SP cannot confirm

the actual separating point using only sampled encrypted tuples.

The sampling technique will always reduce the number of candi-

dates to exactly 2. Thus, we call the two partitions corresponding

to these 2 candidates Not-sure pair (NS-pair). After SP finds NS-

Pair using the sampling technique, SP scans the two partitions

and confirm the separating point using QScan.
Algorithm 1 shows the pseudo code of QFilter.

Algorithm 1: QFilter

Input :Encrypted table T

Input :PRKB I = POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk

Input :Encrypted predicate pi
Output :<TW,TNS>

1 label1 = Θ(pi , P1.sample) ;
2 labelk = Θ(pi , Pk .sample) ;
3 if label1 = labelk then
4 // boundary case

5 if label1 = 1 then
6 TW =

⋃k−1
j=2 Pj ;

7 else
8 TW = ϕ ; // TW is empty

9 end
10 TNS = ⟨P1, Pk ⟩ ;

11 else
12 // use binary search to locate NS-Pair

13 a = 1 ; // first partition (head)

14 b = k ; // last partition (tail)

15 do
16 m = ⌊ a+b

2
⌋;

17 labelm = Θ(pi , Pm .sample) ;
18 if labela = labelm then
19 a =m ;

20 else
21 b =m ;

22 end
23 while b − a > 1;

24 TNS = ⟨Pa, Pb⟩ ;

25 if label1 = 1 then
26 TW =

⋃a−1
j=1 Pj ;

27 else
28 TW =

⋃k
j=b+1 Pj ;

29 end
30 end
31 return <TW,TNS>;

SP starts the search by applyingΘ on P1.sample and Pk .sample
(line 1-2). There are two possible scenarios.

Scenario (i): if Θ(pi , P1.sample) = Θ(pi , Pk .sample), we call

this the boundary case (line 5-10). Following Lemma 5.1, s ≤ 1

or s ≥ k , i.e., s = 1 or k . In this scenario, ⟨P1, Pk ⟩ is the NS-Pair
returned by this phase (line 10). Any two partitions Pu and Pv
for u,v = 2 to k − 1 must be output-isomorphic and have the

same QPF output as the samples of P1 and Pk . The Winner group

TW can be found accordingly (line 5-8).

Scenario (ii): if Θ(pi , P1.sample) , Θ(pi , Pk .sample), we call
this the recursive case (line 13-28). SP uses binary search to lo-

cate NS-Pair. SP applies Θ to the sample in the middle partition

102

Pm .samplewherem = ⌊ 1+k
2
⌋. IfΘ(pi , P1.sample) = Θ(pi , Pm .sample),

following lemma 5.1, s ≤ 1 or s ≥ m. If s = 1, all partitions

Pi for i > 1 should be output-isomorphic to each other. Since

Θ(pi , Pm .sample) , σ (Pk .sample), s cannot be 1. Thus, s must lie

in [m,k]. SP recursively repeats the above procedure to find the

separating point s in [m,k]. The search ends when there are two

candidates left, x and x + 1. ⟨Px , Px+1⟩ is the NS-Pair returned.
The rest of the partitions can be divided into two groups: the

first group is P1 to Px−1 and the second group is Px+1 to Pk . Any
two partitions in the same group must be output-isomorphic and

partitions in either one of the groups must be T-homogeneous.

By looking at the QPF output of a sample encrypted tuple from

the two groups, the Winner group TW can be set (line 25-28).

5.2 QScan: finding exact selection result
Let ⟨Pa , Pb ⟩ be the NS-Pair SP obtained from QFilter . Encrypted
tuples in these two partitions are tested using QPFΘ to see which

one is actual answer in the selection result. Note that there are

two cases in lemma 4.5. Case 1: pi is equivalent to an encrpyted

predicate in P; or Case 2: pi is inequivalent to all encrypted

predicates in P. The difference between the two cases is that

the separating partition in Case 2 is non-homogeneous while

all partitions are homogeneous in Case 1. SP can make use of

the above difference and adopts an early stop strategy: SP first

applies Θ on every encrypted tuples in Pa . If Pa is found to be

non-homogeneous, it must be Case 2 and s = a. SP does not

need to apply Θ on any encrypted tuples in Pb . In the other case

where Pa is found to be homogeneous, SP continues to apply Θ
on every encrypted tuples in Pb . If Pb is non-homogeneous, it is

Case 2 and s = b. Otherwise, it is Case 1. In either case, QScan
finds the set of encrypted tuplesTWNS ⊆ Pa ∪ Pb that satisfy the

predicate, i.e.,

TWNS = {tj | tj ∈ Pa ∪ Pb and Θ(pi , tj) = 1}

Algorithm 2 shows the pseudo code of QScan.

Algorithm 2: QScan

Input :TNS = ⟨Pa , Pb ⟩ where a < b

Input :PRKB I = POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk

Input :Encrypted predicate pi
Output :TWNS = {tj | tj ∈ Pa ∪ Pb and Θ(pi , tj) = 1}

1 // First scan Pa
2 PaT = {tj | tj ∈ Pa and Θ(pi , tj) = 1}; PaF = Pa − PT ;

3 TWNS = PaT ;

4 if PaT = ∅ or PaF = ∅ then
5 // Pa is homogeneous, SP scans Pb as well

6 PbT = {tj | tj ∈ Pb and Θ(pi , tj) = 1}; PbF = Pb − PT ;

7 TWNS = TWNS

⋃
PbT ;

8 else
9 // Pa is non-homogeneous, early stop is applied

10 if labelb = 1 ; // labelb is found in QFilter

11 then
12 TWNS = TWNS

⋃
Pb ; // Pb is T-homogeneous

13 end
14 end
15 return TWNS

The complexity of the entire selection processing isO(nk +lgn)

where n is number of encrypted tuples in T and k is number of

partitions in PRKB.

5.3 updatePRKB: update procedure of PRKB
Recall that only inequivalent encrypted predicate can help SP

to extend PRKB (see Sec. 4). During the execution of QScan,
SP already knows whether the new encrypted predicate pi is
equivalent to some encrypted predicate in P, which generates

SP’s current PRKB, POPCk . Only when either Pa or Pb is non-

homogeneous (found in QScan), pi is inequivalent (see Lemma

4.5). In such case, QScan (line 2 or line 6) has divided an existing

partition Ps into two smaller partitions PsT and PsF where s = a
(line 2) or b (line 6). Without further QPF uses, SP can easily up-

date POPCk to POPCk+1 by replacing Ps with PsT and PsF in POPCk .
The order of PsT and PsF in POPCk+1 is determined by whether

Ps−1 is T-homogeneous or F-homogeneous. Like Fig. 4, if Ps−1

is F-homogeneous, we have POPCk+1 : P1
C
7→ P2

C
7→ ...Ps−1

C
7→

PsF
C
7→ PsT

C
7→ Ps+1

C
7→ ...

C
7→ Pk .

updatePRKB is efficient since it does not require additional

QPF uses.

6 MULTI-DIMENSIONAL RANGE QUERY
In this section, we will introduce the method to optimize pro-

cessing of a d-dimensional range query for d ≥ 2. We address

the most common form of d-dimensional range: the query is

to retrieve all encrypted tuples with plain values falling into a

d-dimensional hyper-rectangle defined by DO. The query can

be described in SQL in the following form: SELECT * FROM R
WHERE c1a < C1 < c

1b AND c2a < C2 < c
2b AND ... AND

cda < Cd < cdb , whereCi is an attribute in the relational table R
and cia < cib are query parameters defined by DO for i = 1 to d .

Recall that SP is not able to see the plain query parameters and

the plain values of encrypted tuples. In EDBMS, thed-dimensional

range query is processed as 2d comparison predicates (two com-

parisons for each dimension: cia < Ci and Ci < cib). DO gener-

ates and gives 2d encrypted predicates to SP for processing the

query. In existing EDBMS, SP has to apply up to 2d encrypted

predicates on all tuples
5
, i.e., the total number of QPF uses can be

2dn where n is number of encrypted tuples in T . A better alter-

native now is to use the single comparison predicate processing

technique in Sec. 5. SP finds out the satisfying tuples of each

comparison predicate. Then, SP intersects the set of satisfying

tuples to find out the final selection result. Number of QPF uses

can be greatly reduced compared to existing processing mech-

anism of EDBMS. This is our baseline method for processing

multi-dimensional range query. In this section, we will describe

our solution for multi-dimensional range query that is more effi-

cient than the baseline method. In our discussion below, we will

focus on 2D case for easier illustration.

6.1 Visualization of partitions on a grid
For a 2D range query, two attributes, say X and Y , are concerned.
SP has maintained two partial order partitions, say POPXkx and

POPYky of the encrypted table T . POPXkx and POPYky are two par-

titioning ways of T , i.e., every encrypted tuple t in T will be

located in one and only one partition of POPXkx and one and

5
EDBMS can stop processing for a tuple when one of the predicates is not satisfied.

Actual number of QPF uses varies.

103

Figure 5: Visualization of the grid in 2D space

(a) Baseline

(b) Our solution

Figure 6: Illustration of partitions scanned in processing
2D range query by different methods. Encrypted tuples in
the central T-region must be part of answer set.

only one partition in POPYky . Let P
X
i be a partition in POPXkx for

i = 1 to kx and PYj be a partition in POPYky for j = 1 to ky . Let

Gi, j = PXi
⋂

PYj . We prepare a kx × ky grid. Gi, j is represented

as a cell at location (i, j) in the grid. Each encrypted tuple falls
into one and only one grid cell Gi, j for some i , j. The grid then

represents the visualization of partitions of encrypted tuples in

the 2D space. Fig. 5 shows the generated 2D grid. We remark that

SP does not know the plain values of boundaries of partitions

or the plain values of encrypted tuples in Gi, j , and the complete

grid is not actually computed in query processing.

Now, we use the grid to visualize the processing mechanism of

existing methods and identify redundancy in them. A linear scan

on all encrypted tuples is equivalent to scanning all the grid cells.

A better baseline solution using our single comparison predicate

processing method can narrow the search on each dimension to

just NS-Pairs. Only the partitions of NS-Pairs require full scan on

all encrypted tuples, thus saving a significant amount of QPF uses

by SP. For a 2-dimensional range query, there are two comparison

predicates on each dimension. Thus, we have 4 NS-Pairs, two on

each dimension to be scanned. Fig. 6a shows the illustration of

scanning only the NS-Pairs in the grid. Scanning for each NS-

Pair is done independently and thus a full column or row in the

grid is scanned. In multi-dimensional range query, an encrypted

tuple has to satisfy the comparison predicates in all dimensions.

In the process of finding NS-Pairs, some of the partitions are

also known to be F-homogeneous. For example, in Fig. 6a, there

are 2 NS-Pairs on X . Let (PXa , P
X
a+1) and (P

X
b , P

X
b+1) be these two

NS-Pairs, where a < b. Partitions from PX
1

to PXa−1 must be F-

homogeneous. Thus,Gi, j for i = 1 to a−1 are not necessary to be
scanned and SP can safely conclude that all encrypted tuples in

these cells will not be part of the result set. Similarly, SP can apply

the same pruning in other dimensions. The remaining partitions

to be scanned is shown in Fig. 6b. Number of QPF uses of SP is

thus reduced.

Use 𝑝𝑌1

Use 𝑝𝑌2

Use 𝑝𝑋1 Use 𝑝𝑋2

{{

{

{

NS-Pair X1 NS-Pair X2

N
S-

Pa
ir

Y1
N

S-
Pa

ir
Y2

Figure 7: SP tests different encrypted predicates on en-
crypted tuples in different regions. NS-Pair X1, X2, Y1
and Y2 are generated according to encrypted predicates
pX 1,pX 2,pY 1 and pY 2 respectively

6.2 Systematic scanning procedure for
multi-dimensional range query

In this section, we present how SP can systematically and effi-

ciently perform the scan. There are two major issues we need to

address to achieve efficiency.

First, note that SP does not test all the encrypted predicates on

the encrypted tuples in the area shown in Fig.6b. Recall that there

are 2d encrypted predicates where d is the number of dimension

of the query. Each encrypted predicate gives an NS-Pair. Let

p be the encrypted predicate giving the NS-Pair (Pa , Pb). Only
grid cells that are computed by intersecting Pa or Pb with other

partitions require testing by p. For example, Fig. 7 shows the

encrypted predicates needed for different cells in Fig. 6b.

Second, as we presented in Sec. 5.2, an early stop strategy

can be used to further reduce the number of QPF uses by SP in

comparison predicate processing. SP can use the same strategy in

processing multi-dimensional range query as well. Each dimen-

sion has two comparison predicates resulting in two NS-Pairs.

Let (Pa , Pa+1) and (Pb , Pb+1) be the two NS-Pairs, where a < b.
We call Pa+1 and Pb the inner NS-partition; and Pa and Pb+1 the
outer NS-partition. If SP first scans the outer NS-partition and

finds that it is non-homogeneous, SP can further conclude that

the inner NS-partition is T-homogeneous. On the other hand, if

SP scans the inner NS-partition first and finds out that it is non-

homogeneous, SP can conclude that the outer NS-partition of

the same NS-Pair is F-homogeneous. Besides, once an encrypted

tuple is found to have QPF ouput 0 for an encrypted predicate,

it can never be in the selection result. SP does not need to test

other encrypted predicates on this encrypted tuple.

In summary, the procedure to process multi-dimensional range

query is done by the following steps:

(1) Use QFilter to find the NS-Pair for each encrypted predicate.

(2) Compute the required grid cells, e.g., in Fig. 6b, by intersecting

the partitions in different POPCikCi
for different attributes Ci .

(3) Test encrypted predicates using QPF on encrypted tuples in

different regions of the grid, e.g., according to Fig. 7, and apply

early stop strategy when possible. (Details are described above

in this section.)

(4) Return as selection result those encrypted tuples with QPF

output 1 for all encrypted predicates in step (3) and the encrypted

tuples in the central T-region, e.g., in Fig. 6b.

The entire process takesO(d(nα
d−1

k + lgk))where n is number

of encrypted tuples in T , k is number of partitions in PRKB, d is

104

number of dimensions of the query andα is the selectivity on each

dimension. Assume α remains the same, the query cost decreases

as d increases. Our selection processing technique for multi-

dimensional range query is scalable to number of dimensions.

7 DATABASE UPDATE HANDLING
The selection processing techniques we presented in Sec. 5 and

Sec. 6 are designed for a static database where the contents of

encrypted tuples do not change. In this section, we discuss how

we can support update operations in a database.

There are 3 kinds of update operations in SQL: (1) INSERT

statements; (2) DELETE statements; and (3) UPDATE statements.

UPDATE statements can be considered as insertion of a new

tuple after deletion of an existing tuple. We just need to cater for

insertion and deletion.

7.1 Insertion Handling
When there is a new encrypted tuple to be inserted to EDBMS,

SP needs to update PRKB, POPCk , to assign the new encrypted

tuple to the correct partition. To facilitate the update, SP needs

to remember the set of past k − 1 encrypted predicates P that

generates POPCk . SP can order the encrypted predicates in P ac-

cording to POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk because the encrypted

predicates are the separators that form the partitions. Let px
be the encrypted predicate s.t. partitions Pi for i = 1 to x are

output-isomorphic and partitions Pj for j = x + 1 to k are output-

isomorphic but Pi and Pj are not output-isomorphic, e.g., the

encrypted predicate in Fig. 3 is refereed as ps . A binary search

can be used by SP to find out the partition the new encrypted

tuple belongs to: SP first uses the encrypted predicate in the

middle pm , wherem = ⌊ k
2
⌋, to determine whether the encrypted

tuple belongs to the first half or the second half of POPCk ; then re-

cursively reduces the list by half until only one partition remains

and this partition is where the new encrypted tuple belongs to.

It takes O(lgk) time to update PRKB for the new encrypted

tuple. Let β be number of attributes with indexing. The total

update cost is then O(β lgk).

7.2 Deletion Handling
Deletion handling is easy as SP simply removes the correspond-

ing encrypted tuple from the corresponding partitions. When

there is no tuple remained in a partition of POPCk , the partition
is removed from POPCk , i.e., the knowledge of partial order parti-
tions becomes POPCk−1.

8 EMPIRICAL STUDIES
There are two purposes in our experiments. First, as we men-

tioned in Sec. 3.3, SP can observe partial order information in

existing EDBMS (even without implementing PRKB). We want to

evaluate whether existing EDBMSmodel is acceptable in practice.

Second, we empirically evaluate the performance of our indexing

method, PRKB.

The experiment settings and its result for the first purpose is

presented in Sec. 8.1. Information of experiments for the second

purpose is presented in Sec. 8.2.

Number of queries

Victims Size 250 1K 10K 100K 1M

Hospital 2,426,516 0.007 0.020 0.115 0.605 2.846

Labor 6,156,470 0.042 0.117 0.484 1.673 5.807

Latitude 1,122,932 0.008 0.025 0.212 1.650 11.167

Longitude 1,122,932 0.011 0.038 0.331 2.440 13.592

Table 2: Recovered portion of ordering information
(RPOI) (%) on real datasets varying number of queries ob-
served by attacker

8.1 Experiment on security of EDBMS model
revealing selection result

As discussed in Sec. 3.3, we want to see how much partial order

information can be derived by SP/attacker in existing EDBMS

model in practice. To quantify how close the recovered partial

order is to total order, we define recovered portion of ordering
information (RPOI) as

Recovered partial order length

Total order length
. (Partial order

length is the size of the longest chain, e.g., the length of total

order is n for a dataset of n distinct numbers.)

We follow the scenario used in [24] to perform the experi-

ment. SP is able to receive certain number of queries, randomly

generated by DO. Unlike [24], SP in our case receives limited

number of queries only and we pick attributes with large domain

sizes as victims. Each query has has one encrypted predicate. We

vary number of queries from 250 to 1M and measure RPOI in

these cases. We tested on 4 victim attritubes from 3 different real

datasets:

(1) Hospital Charges: Hospital Inpatient Discharges 2013
dataset

6

(2) Labor Salary: US Labor Statistic 20177

(3) Latitude: US Buildings dataset8

(4) Longitude: US Buildings dataset
The result is presented in Table 2.

The result shows that the partial order information observed

by SP is still far from complete as the total order. RPOI increases

at decreasing speed as SP observes more queries. It is because

it gets harder for SP to observe a useful query to enhance the

partial order knowledge. According to Quantcast
9
, it could take

weeks for a top-1000 website to get a million of traffic, which is

still far away from recovering the total order in an attack attempt.

We consider our current model of EDBMS revealing selection

result as practically secure for large domain data. In contrast, if

OPE is used, e.g., in CryptDB [29], RPOI is 100% even SP has not

yet processed any query.

8.2 Performance evaluation of PRKB
8.2.1 Algorithm implementation. We separately evaluate single-

dimensional (SD) query and multi-dimensional (MD) range query.

Note that there are different processing techniques in using PRKB.

To differentiate them, we use (i) ‘PRKB(SD)’ to denote the process-

ing method for single-dimensional query (Sec. 5), (ii) ‘PRKB(SD+)’

to denote the naive extension of PRKB(SD) for multi-dimensional

range query (see Sec. 6), and (iii) ‘PRKB(MD)’ to denote the al-

gorithm designed for multi-dimensional range query (see Sec.

6.2).

6
https://health.data.ny.gov/

7
https://catalog.data.gov/

8
http://www.geonames.org/

9
https://www.quantcast.com/top-sites

105

As a competitor, we implemented the indexingmethod ‘Logarithmic-

SRC-i’ in [12]. Note that Logarithmic-SRC-i may return false

positives to DO. DO needs to decrypt them to confirm whether

they are actual answer in the selection result. This may require a

significant amount of DO’s involvement to process the query. In

our implementation, we deployed a trusted machine (TM), like

Cipherbase [2], to perform this confirmation process on behalf of

DO. In PRKB, we use the same confirmation process as QPF, i.e.,

SP sends the encrypted data to TM; TM decrypts and returns the

QPF output of the encrypted tuple. Besides, Logarithmic-SRC-i

is an encrypted index computed and maintained by DO. This is

also done by TM in our implementation. In our experiment, both

TM and SP equip with a machine with the same power. We also

compare with the case where no indexing is used, denoted as

Baseline.

PRKB replies on past queries to operate effectively. In all ex-

periments, number of queries is limited to small values (at most

600) so as to show that PRKB is effective even without a lot of

past result knowledge.

All algorithms were implemented in C/C++. All machines in

the experiment equip with 2GHz CPU and 4GB RAM running

Linux platform.

8.2.2 Datasets and Tests. We performed our experiments on

both synthetic and real datasets. We performed most of the exper-

iments on synthetic datasets to evaluate the performance varying

different parameters, e.g., number of tuples and selectivity. In the

synthetic datasets, the data domain of all attributes is set to be

integers in [1, 30M]. The plain value on each attribute of each

tuple is randomly generated
10
.

We simulated a use case on a real dataset. The US buildings

dataset contains 1,122,932 records about information of buildings

in US, including location (latitude and longitude). A tourist (user)

is interested to know what buildings are around the location he

will visit. The user issues a range query to retrieve all buildings

within a 1km × 1km region in the dataset, i.e., it is a 2D range

query.

We measure the average number of QPF uses
11

(# QPF use)

and average execution time out of 20 runs for each experiment.

8.2.3 Experiment on Building PRKB. This experiment simu-

lates SP building PRKB from scratch on a synthetic dataset with

10M tuples. We assume SP receives 600 distinct queries, each with

one comparison predicate, and we monitor the performance of

query processing cost. For reference, the performance of Baseline

and Logarithmic-SRC-i is also shown. Fig. 8 shows the result of

query cost and Table 3 shows the space consumption of PRKB.

We make the following observations from the result:

(1) In the beginning, PRKB has no knowledge. Query pro-

cessing is as slow as Baseline. However, when SP receives

queries, the cost drops fast. At 50-th query, the cost has

already dropped by an order of magnitude and PRKB has

almost the same performance as Logarithmic-SRC-i. At

600-th query, the query time of PRKB is one order ofmagni-

tude smaller than Logarithmic-SRC-i. It shows that PRKB

is practical, reducing the query processing cost signifi-

cantly with a small amount of past result knowledge.

10
We have tested on data generated with different distributions, including uniform,

normal, correlated and anti-correlated. The results are similar and so we just present

the results for uniform distribution in this paper.

11
Since majority of actions in Logarithmic-SRC-i are related to its index structure,

we do not show # QPF use for Logarithmic-SRC-i.

104

105

106

107

108

1 100 200 300 400 500 600

Q

P
F

us
e

i-th Distinct Query

PRKB(SD)
Baseline

102

103

104

105

106

1 100 200 300 400 500 600

Ti
m

e(
m

s)

i-th Distinct Query

PRKB(SD)
Logarithmic-SRC-i

Baseline

Figure 8: Performance of Query with growing PRKB on
10M tuples (1% Selectivity)

Dataset size (in millions)

Method 10 12 14 16 18 20

PRKB-250 38.2 45.8 53.4 61.0 68.7 76.3

PRKB-600 38.2 45.9 53.5 61.1 68.8 76.4

Logarithmic-SRC-i 3589 4050 4493 4918 6356 6758

Table 3: Storage size of the index (in MB)

104

105

106

107

108

 8 10 12 14 16 18 20 22
Dataset size (in millions)

PRKB(SD)
Baseline

#
Q

PF
 u

se
s

102

103

104

105

106

 8 10 12 14 16 18 20 22

Ti
m

e(
m

s)

Dataset size (in millions)

PRKB(SD)
Logarithmic-SRC-i

Baseline

Figure 9: Performance on single-dimensional query vary-
ing dataset size (1% selectivity)

(2) PRKB occupies a small space, as PRKB is simply parti-

tion information of encrypted tuples. There is a slight

increase in space consumption (from 76.3MB to 76.4MB

for 20M dataset) of PRKB. It is because SP needs to keep

more encrypted predicates to handle database update (see

Sec. 7). The increase in space consumption is negligible.

Logarithmic-SRC-i requires much more space due to its

more complex index structure.

(3) The query processing cost is consistent with number of

QPF uses. This shows that QPF computation is the domi-

nant cost in EDBMS. Reducing number of QPF uses can

help to reduce the overall query cost.

8.2.4 Experiment for Single-dimensional Query. We tested

the performance of algorithms in handling a single-dimensional

query under different settings. The query is in the form of “SE-

LECT * FROM Dataset WHERE lb < X < ub”. X is an attribute

on synthetic dataset. lb and ub are two parameters generated

randomly according to selectivity. We use a static PRKB with

250 partitions for the experiment. There are 2 parameters in the

experiment: (i) dataset size, varying from 10M to 20M tuples; (ii)

selectivity, varying from 1% to 10%.

Fig. 9 and Fig. 10 show the results of experiments in varying

dataset size and selectivity respectively.

We make the following observations from the results.

(1) All algorithms scale well with increasing number of tuples.

Cost reduction of PRKB(SD) over Baseline and Logarithmic-

SRC-i is consistent, at about two orders of magnitude and

a factor of 4, respectively.

(2) PRKB(SD) shows a steady performance no matter how

selectivity increases. It is because PRKB simply requires

SP to examine two NS-Pairs defining the boundary of the

106

105

106

107

108

 0 2 4 6 8 10
Selectivity (%)

PRKB(SD)
Baseline

#
Q

PF
 u

se
s

103

104

105

106

 0 2 4 6 8 10

Ti
m

e(
m

s)

Selectivity (%)

PRKB(SD)
Logarithmic-SRC-i

Baseline

Figure 10: Performance on single-dimensional query vary-
ing selectivity (dataset of 10M tuples)

102

103

104

105

106

 0 2 4 6 8 10
Dataset size (in millions)

PRKB(SD+)
PRKB(MD)

#
Q

PF
 u

se
s

1

10

102

103

104

105

106

 0 2 4 6 8 10

Ti
m

e(
m

s)

Dataset size (in millions)

PRKB(SD+)
PRKB(MD)

Logarithmic-SRC-i

Figure 11: Performance onmulti-dimensional query vary-
ing dataset size (Dimensionality of 3, 2% selectivity per di-
mension)

10

102

103

104

105

106

 1 2 3 4 5 6 7
Dimensionality

PRKB(SD+)
PRKB(MD)

#
Q

PF
 u

se
s

1

10

102

103

104

105

106

 1 2 3 4 5 6 7

Ti
m

e(
m

s)

Dimensionality

PRKB(SD+)
PRKB(MD)

Logarithmic-SRC-i

Figure 12: Performance onmulti-dimensional query vary-
ing dimensionality (Dataset of 5M tuples, 2% selectivity
per dimension)

answer set. All encrypted tuples in partitions between the

two NS-Pairs can be returned as answer without applying

QPF on them. The cost of PRKB is independent to size of

answer set.

8.2.5 Experiment for Multi-dimensional Range Query. In this

experiment, we study the difference in performance between

PRKB(SD+), PRKB(MD) and Logarithmic-SRC-i under different

settings to validate the importance of our optimization method

for handling multi-dimensional range query. The range query

tested is in the form of “SELECT * FROM Dataset WHERE lb1 <
X1 < ub1 AND ... AND lbd < Xd < ubd ”. Xi is an attribute

in the synthetic dataset. lbi and ubi are generated randomly

according to selectivity (per dimension), which is set to be 2%.

Both algorithms use a static PRKB with 250 partitions. There are

2 parameters in the experiment: (i) dimensionality d , varying
from 2 to 6, and (ii) dataset size, varying from 1M to 10M tuples.

Figure 11 and 12 show the results. Improvement of PRKB(MD)

over PRKB(SD+) and Logarithmic-SRC-i is consistent with in-

creasing dataset size. The cost of PRKB(SD+) increases as num-

ber of dimensions increases because PRKB(SD+) processes each

dimension separately. However, number of results actually de-

creases with more comparison predicates. Logarithmic-SRC-i

sent a set of hashed values for keyword search for each di-

mensions. The cost of Logarithmic-SRC-i is getting closer to

PRKB(SD+) in Figure 12. PRKB(MD), on the other hand, can

make use of the fact that more comparison predicates filter more

candidate tuples. Thus, the cost of PRKB(MD) decreases with

102

103

104

105

106

107

108

1 100 200 300 400 500 600

Q

P
F

us
e

i-th Distinct Query

PRKB(MD)

1

10

102

103

104

105

106

1 100 200 300 400 500 600

Ti
m

e(
m

s)

i-th Distinct Query

PRKB(MD)
Logarithmic-SRC-i

Figure 13: Performance of Query with growing PRKB on
US buildings dataset (2% selectivity)

Batch

Method 1 2 3 4 5

PRKB 32,356 32,104 32,117 32,167 32,168

Logarithmic-SRC-i 2,936 2,967 2,967 2,935 2,937

Table 4: Average throughput (Tuples / Second) of inserting
5 batches (each with 2M tuples) of data to PRKB with 10M
tuples

increasing number of dimensions. PRKB(MD) can perform well

even for higher dimensional range queries.

8.2.6 Experiment on Real Dataset. We tested PRKB and Logarithmic-

SRC-i in a simulated use case (described in Sec. 8.2.2) on real

dataset to validate its practicality.

In this dataset, the space consumed by PRKB is less than 1% of

the size of encrypted dataset (
8.81MB

1.04GB) while Logarithmic-SRC-i

consumed more than 43% space (
441.346MB

1.04GB).

Similar to the experiments on synthetic datasets, the query

processing time is high in the beginning. Initially, the query time

of Logarithmic-SRC-i is smaller than that of PRKB. After answer-

ing 50 queries, the query time of PRKB is already below 100ms

and performs better than Logarithmic-SRC-i. After answering

600 queries, the query time of PRKB is further reduced to 9ms.

In contrast, if EBDMS does not use any index, it takes 15.9s to

process a query, which is impractical in reality. Besides, if DO

wants to avoid the poor performance of EBBMS using PRKB in

the beginning, DO can arbitrarily generates queries (as few as 50

queries in this case) to help SP to build an initiate PRKB.

8.2.7 Experiment for Handling Database Update. In this ex-

periment, we evaluate the cost of SP updating PRKB in handling

database update. Since deletion is simple, we only show the re-

sults for insertion here. PRKB has 250 partitions. The experiment

is done on a synthetic dataset with 10M tuples. We inserted 5

batches, each with 2M new tuples, to the database, i.e., the data-

base contains 20M tuples in the end. We measure the average

throughput (number of tuples inserted per second) achieved by

PRKB in each batch. For comparison, we measure the through-

put of Logarithmic-SRC-i in the same setting. Table 4 shows the

result.

The throughput of PRKB remains almost the same. The obser-

vation can be explained in our analysis in Sec. 7.1, as the update

cost is independent to database size. SP can easily bear the update

cost to maintain PRKB for optimizing query processing.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a novel indexing method - past result

knowledge base (PRKB) for EDBMS. Unlike traditional indexing

problem for encrypted data, PRKB is built solely by SP based on

results of past queries. None of existing indexing methods work

without DO’s involvement or customized encryption method.

107

We showed that PRKB is effective in reducing the processing

cost of new queries. Our experiments showed that PRKB consis-

tently outperforms a state-of-the-art competitor in [12] and PRKB

achieves a speed-up of at least an order of magnitude compared

to EDBMS without implementing PRKB. Since SP is just making

use the information that is already available to SP to build PRKB,

security of PRKB is ensured. In the future, we plan to extend

PRKB to incorporate different query result and to support more

query types. The partial order information in PRKB can also be

used in optimizing queries like Min, Max or Skyline queries.

ACKNOWLEDGEMENTS
The research is supported by FDS grant (UGC/FDS14/E05/14).

A SUPPORTING BETWEEN OPERATOR
Somemethods, e.g., [12], support specifically BETWEEN operator.

BETWEEN operator returns the overall result of whether the

encrypted tuple falls into the range instead of two results of two

comparisons, i.e., SP observes less information for BETWEEN.

In fact, as we will show below, BETWEEN is equivalent to two

separate comparisons, w.r.t. building PRKB, in most cases.

Say SP has POPC
5
: P1

C
7→ P2

C
7→ P3

C
7→ P4

C
7→ P5. Let p be an

encrypted predicate that computes ‘X BETWEEN a and b’. We

can derive a similar observation like lemma 4.5 that, in general,

Θ returns 1 for encrypted tuples in partitions in the middle and

0 for encrypted tuples in partitions in the two ends. Say (i) P3 is
T-homogeneous, (ii) P1, P5 are F-homogenous, and (iii) P2 and
P4 are non-homogeneous. Each of P2 and P4 is divided into two

partitions and we have P2T , P2F , P4T , and P4F where PiT (PiF
resp.) denotes the set of tuples in Pi that get 1 (0 resp.) from Θ. SP

obtains POPC
7
: P1

C
7→ P2F

C
7→ P2T

C
7→ P3

C
7→ P4T

C
7→ P4F

C
7→ P5. SP

obtains the same POPC
7
as if SP obtains two encrypted predicates

for ‘X ≥ a’ and ‘X ≤ b’. The BETWEEN predicate reveals the

same partial order information to SP as two separate comparison

predicates in this scenario.

Only when the range in the BETWEEN operator is very small

such that only some encrypted tuples in one partition get 1 from

Θ, SP cannot determine the order information of other tuples in

this partition.

Computing a BETWEEN operator using PRKB is similar to

comparison handling. SP looks for two separating points using

the samples of partitions, like QFilter . When a sample encrypted

tuple with QPF output 1 is found, two binary searches are per-

formed to find two NS-pairs, each containing a separating point

on the two ends of the range of BETWEEN predicate. The process

after that is the same as comparison handling. However, when no

sample with QPF output 1 is found, SP cannot conclude whether

other tuples will return 1 or 0 from QPF due to the existence

of the above exceptional case. SP needs to draw more samples

from partitions. The worst case is that SP finds that there is no

satisfying tuple after scanning all encrypted tuples.

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order-Preserving Encryption for Numeric Data. In SIGMOD.
[2] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik,

Donald Kossmann, Ravishankar Ramamurthy, Prasang Upadhyaya, and Ra-

marathnam Venkatesan. 2013. Secure database-as-a-service with Cipherbase.

In SIGMOD.
[3] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,

Ravi Ramamurthy, and Ramaratnam Venkatesan. 2013. Orthogonal Security

With Cipherbase. In CIDR.

[4] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,

and Ravi Ramamurthy. 2015. Transaction processing on confidential data

using cipherbase. In ICDE.
[5] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based

database with privacy and data confidentiality. In SIGMOD.
[6] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative

Solutions. In CRYPTO.
[7] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Search-

able Encryption in Very-Large Databases: Data Structures and Implementation.

In NDSS.
[8] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-

Catalin Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmet-

ric Encryption with Support for Boolean Queries. In CRYPTO.
[9] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Pri-

vate Information Retrieval. JACM 45, 6 (1998).

[10] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006.

Searchable symmetric encryption: improved definitions and efficient construc-

tions. In CCS.
[11] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano

Paraboschi, and Pierangela Samarati. 2003. Balancing confidentiality and

efficiency in untrusted relational DBMSs. In CCS.
[12] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios

Deligiannakis, and Minos N. Garofalakis. 2016. Practical Private Range Search

Revisited. In SIGMOD.
[13] Ioannis Demertzis and Charalampos Papamanthou. 2017. Fast Searchable

Encryption with Optimal Locality. In SIGMOD.
[14] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo

Pelosi, and Pierangela Samarati. 2015. Shuffle Index: Efficient and Private

Access to Outsourced Data. TOS 11, 4 (2015).
[15] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play any Mental

Game. In STOC.
[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simula-

tion on Oblivious RAMs. J. ACM 43, 3 (1996).

[17] Chunsheng Gu and Jixing Gu. 2014. Known-plaintext attack on secure kNN

computation on encrypted databases. Security and Communication Networks
7, 12 (2014).

[18] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. 2002.

Executing SQL over encrypted data in the database-service-provider model.

In SIGMOD.
[19] Zhian He, Wai Kit Wong, Ben Kao, David Wai-Lok Cheung, Rongbin Li, Siu-

Ming Yiu, and Eric Lo. 2015. SDB: A Secure Query Processing System with

Data Interoperability. PVLDB 8, 12 (2015).

[20] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012.

Secure Multidimensional Range Queries over Outsourced Data. The VLDB
Journal (2012).

[21] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. 2004. A Privacy-Preserving

Index for Range Queries. In VLDB.
[22] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. In-

ference attack against encrypted range queries on outsourced databases. In

CODASPY.
[23] Panagiotis Karras, Artyom Nikitin, Muhammad Saad, Rudrika Bhatt, Denis

Antyukhov, and Stratos Idreos. 2016. Adaptive Indexing over Encrypted

Numeric Data. In SIGMOD.
[24] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016.

Generic Attacks on Secure Outsourced Databases. In CCS.
[25] Rui Li, Alex X. Liu, Ann L. Wang, and Bezawada Bruhadeshwar. 2014. Fast

Range Query Processing with Strong Privacy Protection for Cloud Computing.

PVLDB 7, 14 (2014).

[26] Sha Ma, Bo Yang, Kangshun Li, and Feng Xia. 2011. A Privacy-Preserving Join

on Outsourced Database. In ISC.
[27] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In SIGSAC.
[28] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. 2013. An Ideal-Security

Protocol for Order-Preserving Encoding. In SP.
[29] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: protecting confidentiality with encrypted query

processing. In SOSP.
[30] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-

rig. 2007. Multi-Dimensional Range Query over Encrypted Data. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy (SP ’07).

[31] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and Ehud Gudes. 2005. De-

signing Secure Indexes for Encrypted Databases. In DBSec.
[32] E. Stefanov and E. Shi. 2013. ObliviStore: High Performance Oblivious Cloud

Storage. In SP.
[33] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich.

2013. Processing Analytical Queries over Encrypted Data. PVLDB 6, 5 (2013).

[34] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, and Nikos Mamoulis. 2009.

Secure kNN computation on encrypted databases. In SIGMOD.
[35] Wai KitWong, Ben Kao, DavidWai-Lok Cheung, Rongbin Li, and Siu-Ming Yiu.

2014. Secure query processing with data interoperability in a cloud database

environment. In SIGMOD.

108

	Optimizing Selection Processing for Encrypted Database using Past Result Knowledge BaseWai Kit Wong, Kwok Wai Wong, Ho-Yin Yue

