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ABSTRACT
Despite many research efforts, similarity queries are still poorly
supported by current systems. We analyze the main stream re-
search in processing similarity queries and argue that a general-
purpose query processor for similarity queries is required. We
identify three goals for the evaluation of similarity queries (declar-
ative, efficient, combinable) and identify the main research chal-
lenges that must be solved to achieve these goals.

1 INTRODUCTION
In a similarity query, two data objects “match” if they are similar.
Similarity queries are required in scenarios where equality and
exact matches are not effective, for example, when dealing with
noisy data (e.g., in data analytics, ETL processes, data cleaning,
and entity resolution), for detecting small differences between
data objects (e.g., finding similar molecular structures in computa-
tional biology), for comparing complex objects (e.g., trees, graphs,
or multimedia content), and for querying physical measurement
data (e.g., time series, spatial objects, sensor data).

Similarity queries involve a similarity function defined on a
specific data type and an operator. The similarity function as-
sesses the similarity (or dissimilarity) between pairs of objects,
e.g., the edit distance between strings or trees, Cosine similarity
between sets, or Euclidean distance between vectors. The opera-
tor defines the input signature (e.g., lookup vs. join) and the pairs
that qualify for the result set (e.g., top-k , range, or skyline query).

Database management systems (DBMS) for exact queries (i.e.,
predicates based on equality, less-than, or greater-than) have
evolved into powerful and mature systems, which transparently
and efficiently deal with data storage and querying. Unfortu-
nately, this development has not happened for similarity queries.
Applications that require advanced similarity features cannot
rely on general-purpose systems that transparently handle data
storage and querying. Instead, similarity queries must be dealt
with in custom, ad hoc code. Writing custom code for similarity
queries is expensive, requires advanced query processing skills,
and often results in inflexible, hard-coded query plans. Changing
the query beyond simple parameter settings requires additional
programming efforts.

In this paper we argue that the integration of similarity queries
into declarative DBMS (relational or non-relational) and the ef-
ficient processing in a systems context are the next challenges
to be solved for similarity queries. In the past, the main research
focus was on physical operators and access methods: new evalu-
ation algorithms and index structures for specific combinations
of operators, data types, and similarity functions were proposed.
The evaluation of similarity queries in a larger systems context,
however, has received little attention.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Developing a general-purpose query processor for similarity
queries is challenging, both from a conceptual and a technical
point of view. From a conceptual point of view, similarity queries
pose a particular challenge. While the meaning of similarity
is highly application dependent, the query interface should be
general and serve a wide range of application needs. Note that
application dependency is much less pronounced in equality
queries: for most data types, the notion of equality is well defined
and application independent.

From a technical point of view, many techniques that are effec-
tive for equality queries are not applicable to similarity queries.
Techniques for equality queries often rely on exact matches or
some ordering, which cannot be assumed between similar objects.
An example is hashing, which leverages the fact that identical
data values are hashed to the same bucket. This does not hold for
similar values: they will typically be hashed to different buckets.
Another example is sorting, which is not reliable for similar data
items since even a small change may have a large impact on the
position of the data item in the sort order. Further, little is known
about the interaction of physical similarity operators with other,
equality-based operators in the query context. This involves all
aspects of query processing, including modeling similarity op-
erators at the logical level (e.g., extending relational algebra),
rewriting query plans, estimating the cost of similarity operators,
and gracefully adapting to limited memory resources.

This paper suggests to depart from the main stream in sim-
ilarity research with its narrow focus on individual physical
operators and studies similarity queries from a broader systems
perspective. The overall goal is to develop a deep understanding
of all aspects of similarity queries that are required to build a
general-purpose query processor for these queries.

2 DEC – DESIDERATA FOR SIMILARITY
QUERIES

We identify three core requirements for a similarity query pro-
cessing system: declarative, efficient, combinable (DEC), i.e., declar-
ative queries that combine equality and similarity predicates
should be processed efficiently. We believe that all DEC require-
ments must be satisfied in a useful end-to-end system for similar-
ity queries. We next discuss each of the three DEC requirements,
which are orthogonal aspects of a query answering system.

Declarative. The queries should be declarative, i.e., the query
describes what the answer to the query should look like rather
than how the answer should be computed. A declarative approach
allows flexible queries and a clearer separation between logical
and physical layer. While the users express their queries at the
logical level, the system must translate the query into a phys-
ical execution plan. Declarative data query languages are the
predominant approach in the traditional relational model [9]
with SQL (Structured Query Language) as a practical query lan-
guage, but have also been applied to non-relational data models
(e.g., XPath1 for semi-structured data) and to cluster computing
1http://www.w3.org/TR/xpath-30/
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systems with flexible data types (e.g., HiveQL [25] for analytic
queries on large data clusters). Effective techniques for translat-
ing declarative queries to physical operators are required, and
the resulting query plans must be optimized.

Efficient. The queries should be executed efficiently, i.e., effi-
cient query plans that consider appropriate techniques for similar-
ity operators should be constructed. Similarity predicates [13, 27]
often involve complex and expensive functions, and a straight-
forward evaluation of the similarity predicate on each tuple is not
feasible. A rich set of algorithms and access methods have been
proposed to allow similarity queries to be processed efficiently.
Such techniques are often based on an index or a filter/verify
approach to reduce the number of expensive predicate evalua-
tions [6, 11, 23]. Filters produce a set of candidates which contains
false positives; in the verification step the false positives are re-
moved. A widespread approach avoids the evaluation of the cross
product in similarity joins by rewriting the join into an equal-
ity join on tokens, e.g., q-grams in a string similarity join [13].
When the similarity function is a metric, the triangle inequality
and metric index structures can be leveraged [26]. A system for
similarity queries should be able to effectively apply the efficient
evaluation strategies that have been developed.

Combinable. Similarity and equality predicates should be arbi-
trarily combinable into complex queries. In useful queries, simi-
larity predicates are embedded into a larger query context which
includes a mix of equality and similarity predicates. In order to
evaluate such a complex query efficiently, the query must be
considered as a whole. It is not enough to process the similarity
part independently from the equality part and then intersect (or
union) the results. This may lead to very poor evaluation strate-
gies since large intermediate results are produced. An example
are conjunctive queries in which each individual predicate has
weak selectivity (i.e., produces a large intermediate result set),
but the conjunction of all predicates is strongly selective (i.e.,
the final result is small). A query processor for similarity queries
should not be limited to the evaluation of the similarity predicate
of the query, but should be able to evaluate both similarity and
exact predicates alike.

3 SIMILARITY SUPPORT IN CURRENT
SYSTEMS

Database Management Systems. DBMS typically offer basic sup-
port for similarity queries on strings, e.g., Soundex, a phonetic
transcription of English surnames. More advanced similarity
predicates are supported in the form of user defined functions
(UDF). The UDF is used to evaluate the similarity predicate on
a pair of attribute values. Unfortunately, the DBMS cannot pro-
duce efficient evaluation plans for queries with UDFs since they
are a black box for the optimizer. UDFs are typically applied in
a naive way (e.g., on each pair of tuples in a join [13]). Since
the DBMS does not understand the properties of the similarity
join, efficient filter/verify techniques (which have been proposed
for similarity joins) or other optimizations cannot be leveraged.
Overall, DBMS offer declarative, combinable similarity queries,
but fail to process them efficiently.

Custom Software. Applications that require more sophisticated
algorithms rely on custom software, e.g., as part of an entity
resolution tool [10], at the back-end of a search form [18], or in
some scientific application [7]. Due to the narrow focus and the
predictable nature of the queries, the query plan is generated by

hand and hard-coded, and appropriate algorithms and indexes are
implemented. Hard-coded query plans are problematic since the
quality of a query plan depends on the query parameters and the
data distribution. Good query plans are particularly important for
similarity queries, which often involve expensive predicates [14,
16, 27]. Extending custom software with new queries requires
substantial programming efforts.

Integrating Similarity into DBMS. There have been several at-
tempts to extend DBMS with similarity features. Barioni et al. [2]
propose the SIREN system and an SQL extension to deal with
similarity queries over multimedia and relational data. SIREN
processes the similarity part outside the DBMS in a separate sys-
tem and integrates the results in a second step. This separation
substantially limits the options for efficient query plans since the
similarity predicate cannot be freely moved in the query plan.
Guliato et al. [15] propose an extension for PostgreSQL (an open
source DBMS) for image retrieval. Similarly, the pg_similarity
extension of PostgreSQL defines a set of similarity functions (e.g.,
edit and q-gram distance for strings). These approaches do not
change the query processor, but are UDF-based and cannot lever-
age advanced algorithms, indexes, and optimization techniques.
Silva et al. [21] integrate physical operators for similarity join
and group-by into the core of PostgreSQL; the similarity opera-
tors are limited to numeric values. The Metric Similarity Search
Implementation Framework (MESSIF) [3] is a library for object
retrieval in metric space; it supports metric indexes and algo-
rithms for range queries and top-k selection, but no declarative
query interface or a query optimizer. An attempt to define an
SQL-based query language for MESSIF has been reported, but
query processing is not discussed.

Silva et al. [22] study the conceptual evaluation and query
transformation rules for various types of similarity queries based
on metric distances. In addition to the well-known ϵ-join (range
distance join), the kNN-join (k nearest neighbor join), and kD-
join (k-distance join) they also discuss join-around, a combination
of range and nearest neighbor join. In terms of select queries, ϵ-
and kNN -selection are discussed. Carey and Kossmann [5] and
Bruno et al. [4] discuss the optimization of top-k queries.

The system closest to our vision is DIMA [24], which ex-
tends SQL with range queries over strings and sets. DIMA builds
on Spark, supports distributed query evaluation, and uses a
signature-based approach to distribute the query load and fil-
ter candidate matches. Compared to our vision discussed in the
next section, the high-level similarity operators are not split into
algebraic primitives, there is no metadata to select filters and
transform the queries accordingly, and a high-level similarity op-
erator is mapped one-to-one to the respective physical operator.

Other Systems. Entity resolution systems like NADEEF [10, 12]
use similarity functions between individual attribute values to
deal with noise in the data. Digital libraries deal with mixed ob-
jects (multimedia, text, 3D structures) with the goal of preserving
digital objects, allowing users to enter new items, and accessing
content. In both cases, the query patterns are hard-coded in the
application, i.e., declarative queries are not supported.

Information retrieval systems like INDRI2 or Lucene3 store
collections of documents (e.g, plain text, HTML, PDF) in files,
build indexes over these files, and deal with stemming and stop
word removal. Queries are phrases, possibly with wildcards, that

2http://www.lemurproject.org/indri
3http://lucene.apache.org
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can be combined with boolean operators; the search can be lim-
ited to individual fields of a document (e.g., the title field). The
query result is a list of documents, which is ranked by relevance.
Similarity queries are supported at a very basic level. Lucene, for
instance, supports the phonetic encodings Soundex and Meta-
phone, and edit distance selection. The queries in these systems
are limited to selection and ranking; more complex query patterns
(e.g., joins) are not supported.

4 ROADMAP
Challenges.We identify three challenges that must be addressed
to build similarity queries into declarative database management
systems: (1) A new, minimal set of algebraic operators for simi-
larity queries must be defined. (2) Dynamic rewriting: metadata
about eligible filters, indexes, and data transformations must be
made available to the query optimizer. (3) A uniform cost model
for physical similarity operators must be developed.

Minimal algebra. The goal is to develop a new algebra for sim-
ilarity queries which extends relational algebra with a minimal
set of operator primitives that is able to express a wide range of
similarity operators.

Similarity (unlike equality) is not a binary predicate, and data
items can be ranked by their “degree” of similarity w.r.t. some
query. This gives rise to a large variety of new matching princi-
ples, for example, k-closest neighbor selection, similarity group-
by, or join-around (k closest neighbors within a maximum dis-
tance range). Previous work, e.g., Silva et al. [22], defines an
algebraic operator for each of these matching principles. We be-
lieve that this approach will not scale: (a) Each new operator
requires deep changes in the system. (b) Query rewriting rules
for each pair of operators must be defined, leading to a quadratic
number of such rules. The key to success will be to establish a
minimal, non-redundant set of primitives that are composed to
express high-level operators. This will provide great flexibility
in reordering queries, and introducing new high-level operators
will not require changes in the algebra.

The new algebra should satisfy the following requirements.
(a) Minimal: the new operators should be small, non-redundant
primitives; the new algebra should cleanly separate two orthog-
onal concepts, which have often been mixed in previous work:
the similarity function between two objects (e.g., edit distance)
and the matching principle (e.g., top-k join). (b) Expressive: a
wide range of similarity queries should be expressible in the new
algebra; complex similarity operators (e.g., top-k join with edit
distance), for which efficient implementations exist at the phys-
ical level, may be expressed by composing several of the new
primitives at the logical level. (c) Extendable: Introducing new
physical operators or query flavors at the user level should not
require changes in the algebra. (d) Transformable: The new alge-
bra should provide equivalence rules which allow the optimizer
to reorder the logical operators in a flexible way. This is partic-
ularly important for small primitives since multiple primitives
may compose a single physical operator.

Dynamic Rewriting. In order to expand queries with filters,
metadata about similarity functions (e.g., edit distance), their
relationship and properties (e.g., upper and lower bounds, metric
properties), and applicable filters (e.g., q-grams for range joins)
must be available. This metadata will be leveraged to dynamically
produce query transformation rules. New filters can easily be
introduced by updating the filter ontology: no changes in the
optimizer are required.

The metadata stores properties of (a) similarity functions, (b)
matching principles, and (c) filters, and their relationships. Sim-
ilarity functions may satisfy metric properties (e.g., string edit
distance) or even some Li -norm (e.g., cardinality of set intersec-
tion, geographic distances). The relationships between similarity
functions are guarantees like lower and upper bounds (e.g., the
q-gram distance provides a lower bound for the more expensive
edit distance). The filter ontology must further relate similarity
function / matching principle pairs to eligible filter techniques.
Some filters require data transformations, e.g., the computation
of tokens [1], which should be specified in the metadata. The fil-
ter ontology must also provide information about the selectivity
of filters, which will be used to model the query cost. Given a sim-
ilarity predicate, the ontology should be able to derive all eligible
filters (including necessary transformations and selectivity).

Expanding queries with filters leads to very different physical
plans for a single logical query. The physical plans may involve
techniques that have been developed by different communities,
e.g., metric and token-based techniques. A uniform cost model is
required to evaluate the plans. The cost model must consider the
cost of similarity functions, which may be very expensive, filter
selectivity, and the effect of filters on the data distribution.

Uniform cost model. A new cost model for physical similarity
operators must be developed. The cost model should quantify the
cost of different physical query plans, which result among oth-
ers from introducing filters into the query plan or transforming
data to the appropriate representation (e.g., string data may be
transformed into tokens or signatures for filtering purposes). In
the past, cost models for some individual operations (e.g., M-tree
lookups [8]) have been developed. For other operations (e.g.,
set similarity joins [19]) experimental studies provide qualita-
tive insights, but lack a model to predict the cost. Selectivity
estimates [17, 20] are an important input for cost models, but
selectivities are independent of physical operators. A quantitative
assessment of the costs of all physical operators in the query is
required. Computing comparable cost estimations is particularly
challenging for approaches that have evolved in different com-
munities, for example, edit similarity, token-based approaches,
and metric techniques. The cost estimation will need to take into
account the data distribution, any query parameters, the available
resources, and the filter selectivities. The cost model should fur-
ther integrate well with existing cost models for non-similarity
operators since the overall query cost must be assessed.

Query processing. We envision the evaluation of a query
that includes similarity predicates as illustrated in Figure 1: The
parser generates a query tree that involves both standard re-
lational operators and the new algebraic similarity primitives.
Thereby, a high-level similarity operator like a top-k join or a sky-
line query will be represented by a number of low-level algebra
operators. The query planner consults the similarity metadata
to learn about eligible filter techniques like lower and upper
bounds for the given similarity function and operator. Thereby,
the query planner is not limited to the high-level operators in the
original query. For example, there may only be filter information
for nearest neighbor queries in the metadata, but the query is
join-around [22] (which combines nearest neighbor and range
join). The planner decomposes join around into algebraic primi-
tives and tries to rearrange and match the primitives to known
combinations in the metadata.

The query plans with filters will typically include additional al-
gebra operators (representing the filter). Some filters will require
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Figure 1: Interaction of system components.

on-the-fly index construction (e.g., prefix index for set similarity
joins) or data transformations (e.g., tokens or signatures). The
transformation rules for expanding the query plan with filters
will be dynamically derived from the metadata. When new filters
are registered in the metadata, they will trigger new query plans
that apply these filters.

Finally, the cost of the query plans must be assessed. To this
end, the algebraic operators must be arranged such that they
match existing physical operators. Note that the logical query
level (e.g., a query expressed in an SQL-like language) and the
physical level are independent. There is no one-to-one match
between the operators visible to the users and the physical oper-
ators actually implemented in the system. Rather, the operators
in the user query are disassembled into algebra, and subtrees of
the query plans are matched against existing physical operators.

5 CONCLUSION
This paper suggests to depart from the main stream in similarity
research with its narrow focus on individual physical operators
and studies similarity queries from a broader systems perspective.
The overall goal is to develop a deep understanding of all aspects
of similarity queries that are required to build a general-purpose
query processor for these queries. The systems aspects discussed
in this paper must be solved to enable wide applicability and
impact of similarity queries in real systems. The main research
challenges are the development of aminimal algebra for similarity
queries, the design and querying of metadata regarding filter
techniques for similarity queries, and the cost estimation for
physical similarity operators.

A declarative interface will have a fundamental impact on the
user interaction with similarity queries. Database users will no
longer need to write ad-hoc code for evaluating similarity predi-
cates. Instead, similarity predicates are expressed in a declarative
way and are processed efficiently. Application developers will
not need to bother about the details of similarity query process-
ing. We expect a general-purpose query processor to trigger a
wide adoption of similarity queries also in applications that so
far could not afford the overhead of writing custom code.

Finally, a declarative similarity query processor will set new
standards in the research community. New algorithms for physi-
cal operators must be evaluated against the query plans produced
by the similarity-enabled optimizer, which can leverage a wide
range of techniques, and dynamically adapts to query parameters
and data distribution. Further, new algorithm proposals will not
only be measured by their performance in an isolated setting,
but also by their usefulness in a systems context.
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