
http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.58






(1) uk100K (2) uk100K (3) cnr2000 (4) cnr2000 (5) eu2005 (6) eu2005

(7) uk100K (8) uk100K (9) cnr2000 (10) cnr2000 (11) eu2005 (12) eu2005

(13) uk100K (14) uk100K (15) cnr2000 (16) cnr2000 (17) eu2005 (18) eu2005

(19) uk100K (20) uk100K (21) cnr2000 (22) cnr2000 (23) eu2005 (24) eu2005

(25) uk100K (26) uk100K (27) cnr2000 (28) cnr2000 (29) eu2005 (30) eu2005

Figure 2: Total time (sec), and seeds time (sec). Per row, k = 5, 10, 25, 50, 100

processed by CS-FA (subsection 3.4). It took CS-FA one hour six

minutes, including �ve minutes for calculating 100 seeds. We do

not know another algorithm that can process such a hypergraph

on a comparable machine.

Finally, in both Fig. 1 and 2, we observe that the time for

calculating seeds is only a small part of the total time, which

in�uenced our decision to not show separately experiments for

IE (due to space constraints).

5 CONCLUSIONS AND FUTURE RESEARCH
We presented several implementations for computing in�uence

estimation and in�uence maximization on graphs with multimil-

lion edges. Our algorithms use di�erent data structures. We tested

the performance of these data structures on larger graphs, and

provided a comparative analysis of test results. We substantially

reduce the running time and required memory, without a�ecting

the theoretical guarantees, to the point that multimillion-edge

graphs could be processed on a consumer-grade laptop. Future

research will involve further compression and parallelism aim-

ing at scaling the computation of in�uence to bigger networks.

The source code for this paper can be found at:

https://github.com/dianapopova/In�uenceMax
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