
Dynamic Resource Routing using Real-Time Information
Sebastian Schmoll

Ludwig-Maximilians-Universität

Munich, Germany

schmoll@dbs.ifi.lmu.de

Matthias Schubert

Ludwig-Maximilians-Universität

Munich, Germany

schubert@dbs.ifi.lmu.de

ABSTRACT
Searching the nearest available resource is an important query

with many applications in spatial database systems. Examples

are searching free parking spots or charging stations in a road

network. Information about the availability is usually approxi-

mated as long-term statistics. Recently, online systems and sensor

networks become more and more common providing access to

real-time information about resource availability. In this paper,

we consider searching the next available resource in a road net-

work considering real-time information about all resources in

a target area. To make the best use of this information, it is not

enough to predict a static result route. Instead we propose to

model the problem as a Markov decision process (MDP) and

compute a routing policy which allows flexible reaction to newly

observed developments. In our experiments, we demonstrate that

our new approach is capable to exploit the additional informa-

tion and outperforms previous approaches built on long-term

distributions on a real-world parking data set.

1 INTRODUCTION
In modern location based services, queries often aim at finding a

spatial resource of a specific type. In contrast to a point of interest

(POI), a spatial resource is not generally available but might be

occupied at a certain point in time. Correspondingly, an occupied

resource might become available during search time. Examples

for spatial resources are parking spots, charging stations, rental

vehicles or drop-off locations for rental vehicles. To handle the

availability of spatial resources, online systems can provide real-

time information about currently available resources. However,

there is no guarantee that a currently available resource will

be available at the arrival time of our user. One might argue

that a reservation service might solve any such problem, but

reservation services often add additional complexity which of-

ten makes them impractical. Reserved resources might be used

without authorization and generally available resources might

remain unused due to just-in-case reservations. For example, a

parking spot might be occupied even if it was reserved before

because the previously parked vehicle was not removed in time.

Correspondingly, inner-city parking spots might remain unused

due to rich people having a permanent reservation just in case

they want to go into town. To conclude, for many applications

reservation systems might be unreliable and expensive to enforce.

Thus, we focus on the case that a resource is claimed by the first

user to arrive.

We investigate the task of finding an available resource spend-

ing minimal travel time or any other type of cost. Furthermore,

we assume real-time information on all available and occupied

resrouces in a specified target area. To properly exploit the avail-

able real-time information, a simple route is not enough. Since

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: Example for a parking search using our new al-
gorithm. The car symbol denotes the car whose driver is
looking for a parking spot. The blue circles denote at least
one free available parking slot at the corresponding loca-
tion.

the availability of resources might be constantly changing, a

fixed route cannot include reactions to developments during the

search. Thus, we need to compute a policy which indicates the

most promising action for each situation during the search. For

example, when looking for a parking spot a natural behavior

is to take any parking spot getting available along the way. A

resource route as proposed in [5] would follow its fixed search

order which is based on the information provided at search time.

Thus, a resource route would only consider the vacant spot if

it is scheduled in the route. In contrast, a policy driven system

would recognize the improved situation and propose to take the

available parking spot if it is a suitable location.

In this paper, we propose to employ the statistical model of

Markov decision processes (MDP) to learn such a policy. A policy

is a mapping of any possible situation to the most promising

actionwhich an agent should perform tomaximize the probability

of success. Thus, our proposed solution allows that resources

might get occupied or available during the search. The availability

of each resource is modeled as a time-continuous Markov chain.

Based on these probabilities, we define anMDP to model resource

search with real-time information. A drawback of this model is

that the state space grows exponentially with the number of

acceptable resources. Since in many cases resources are stacked

at particular areas, we propose resource aggregation to limit

the number of considered states. Additionally, we propose to

precompute policies for relevant target areas and store them in a

data structure for efficient retrieval of the proposed action. To

conclude, the contributions of this paper are as follows:

• A model to compute a search policy for resource search

considering real-time information.

• A method for precomptung policies and apply the learned

policy for guiding a user.

Short Paper

Series ISSN: 2367-2005 501 10.5441/002/edbt.2018.57

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.57

• Experiments on real-world parking data demonstrating

the advantage of using real-time information.

The rest of the paper is organized as follows: Section 2 surveys

previous works on resource search and MDPs. In Section 3, we

give a brief introduction to MDPs and introduce our model for

resource search. Section 4 outlines the use of policies for routing

services. In our experimental evaluation in Section 5, we demon-

strate the advantages of our new approach. Section 6 concludes

the paper with a short summary and directions for future work.

2 RELATEDWORK
The methods being closest to our approach are [5] and [3]. [5]

describes a method for computing a route minimizing the ex-

pected search time in a setting where resources can get occupied

and available during the search. However, real-time information

is only considered to be available at query time. Thus, the re-

sulting resource route cannot react to updates during the search.

In [3], the authors compute a policy for resource search. The

solution is basically an MDP and the proposed method resem-

bles the basic value iteration algorithm for computation. The

major difference to our work is that the method does not con-

sider the availability of real-time information during the search.

However, there are already several prototypes and testbeds pro-

viding this type of information for urban areas such as the city

of Melbourne in our evaluation. Our method employs Markov

decision processes (MDP) as described in [7]. Though there is a

plethora of more sophisticated solution methods for computing

MPDs like [1, 2, 4, 6, 8, 9], we employ the basic value iteration

algorithm since the approach in this paper precomputes policies

and afterwards queries these policies to guide a user.

3 PROBLEM SETTING
3.1 Markov Decision Processes
A Markov Decision Process consists of a set of states S , sets of
actions ∀s ∈ S : A(s), the probability distribution for each state

action pair P (s ′ |s,a) and a cost (or reward) function c (s,a). It is
important to note that P (s ′ |s,a) indicates that the result of the
action (s,a) is uncertain and that any state transition s → s ′ with
P (s ′ |s,a) > 0 for any a ∈ A(s) is potentially possible.

A policy π is a set of state action pairs (s,a) that determines

for any state s ∈ S exactly one action a ∈ A(s). In our usage of

MDPs, we assume terminal states S∗ which indicate the targets

of the search. Thus, the goal of a policy π is to reach any terminal

state s∗ ∈ S∗ and a proper policy guarantees that we will reach a

terminal state s∗ at some point in time. To compare policies, we

now define the expected cost U (s) which is also referred to as

utility or value function in literature.

In general, U π (s) of policy π represents the expected cost

which is aggregated over all possible state sequences starting

with state s . We define the optimal policy π∗ for any state s as:

π∗ (s) = argmin

a∈A(s)

∑
s ′

P (s ′ |s,a) ·U ∗ (s ′)

WhereasU (s) can be computed by the following equation also

known as Bellman equation:

U (s) = min

a∈A(s)
c (s,a) + γ ∗

∑
s ′

P (s ′ |s,a) ·U (s ′)

In other words, the minimal expected cost for state s are achieved
by taking the action a where the sum of direct costs c (s,a) and
the expected future cost are minimal. The parameter γ is used to

weight direct costs against future costs which is often beneficial

for the convergence of computation.

3.2 Modelling Resource Search
After giving a brief general introduction to MDPs, we will now

turn to modelling resource queries as an MDP problem. In our

setting an agent, e.g., a driver or a personmoves in a road network.

A road network G = (N ,E) consists of a set of nodes N and a

set of edges E ⊆ N × N . Each edge e ∈ E yields traversing costs

ce , e.g., travel time or distance. Additionally, we model resource

locations as nodes P ∈ N . For each resource p ∈ P , the boolean
function a(p) denotes 0 if p is occupied and 1 if p is available.

The state space of our MDP is a concatenation of the agent

position l ∈ N and the value of a(p) for each p ∈ P . Thus, the

number of all possible states is |N | · 2 |P | . All states where l ∈ P
and a(l) = 1 are considered as terminal states because the agent

arrives at the location of a currently available resource. The

actions in our model consists of the possible routing directions

at each crossing, e.g., turn left, turn right, go straight or turn.

After defining states and actions, we now have to provide

the likelihoods P (s ′ |s,a). In our setting, the next location of the

agent l ′ is determined by the selected action a. However, the
change of the available resources depends on the status changes

of the resources P . Thus, we need to compute the likelihood that

a resource p changes its current status from occupied to available

or vice versa. Given that we assume exact information at the

current point of time, we only need to estimate the distribution

of a state change for the required time to travel from l to l ′.
To do so, we rely on the continous time Markov model being

proposed in [5]. The model predicts the likelihood P (p (t) = 0)
that resource p is available at time t based on two parameters,

the average occupation time and the average vacancy time. Both

parameters can be easily derived from empirical data.

Finally, the cost of each action (s,a) is considered as the travel
cost c (l,l ′) for the edge (l , l

′) where l is the agent location in state

s and l ′ is the node after taking action a. Obviously, the given
model allows to compute proper policies as long as any resource

does not converge to a state of being constantly occupied. In

this case, returning infinitely often to the resource will result in

finding the resource available at some point in time.

After defining all components to model resource search as

an MDP, we now want to briefly describe the employed value

iteration algorithm for computing the minimal expected cost

U ∗ (s) for each state s ∈ S . The idea of value iteration is to employ

the Bellman equation to each state in each iteration until the

utility for any state does not improve significantly anymore.

The pseudcode of value iteration is presented in algorithm 1.

After computingU ∗ (s) processing the optimal policy is straight

forward by applying the arдmin function instead of the min
function in the Bellman equation. Note that we employed value

iteration due to its simplicity and for comparability with previous

approaches. For a more detailed introduction to value iteration

please refer to [7].

4 USING MDPS FOR RESOURCE SEARCH
A general problem of the method proposed above is the exponen-

tial increase of the state space with the considered resources P .
Obviously, computing the basic value iteration method for large

numbers on resources in not feasible. Thus, in order to make the

approach applicable for real systems, we need to make sure that

502

Algorithm 1 Value iteration algorithm for computing the ex-

pected costU of an optimal policy.

1: procedure Value Iteration(mdp, ϵ)
2: initU ′

3: repeat
4: U ← U ′

5: δ ← 0

6: for all s ∈ S do
7: U ′[s] = mina∈A(s) c (s,a) + γ ∗

∑
s ′ P (s

′ |s,a) ·U [s ′]
8: if |U ′[s] −U [s]| > δ then
9: δ ← |U ′[s] −U [s]|

10: until δ < ϵ (1 − γ)/γ
11: returnU

the number of potential resources is as small as possible. Fortu-

nately, in many cases the region where resources are acceptable

is usually limited to a certain spatial region being specified by a

user. For example, parking spots should be in walking distance to

the actual target of the user. Similarly, charging stations should

be close to planned route and in the region where the battery

is already empty to make charging feasible. Similar statements

hold for rental vehicles such as bikes and drop off stations. Thus,

a first approach to limit the considered resources would be to

compute isochrones around the actual target of the user and

only consider resources within the tolerable walking distance.

However, this approach would not work if the user would not

specify an exact target location but only a rough area where he

needs the resource. Additionally, in many cases the amount of

acceptable resources would still push the computational effort

beyond interactive query times. Thus, we propose another ap-

proach where MDPs are precomputed for typical target regions.

For example, parking MDPs might be precomputed for typical

shopping areas and MDPs for bike sharing make sense around

universities. Let us note that precomputation can be done even

for overlapping areas. Finally, the selection of the most suitable

area can be easily performed by the user based on map interface

displaying the available areas.

However, limiting the spatial area might not yield a successful

reduction of available resources because many types of resources

are spatially stacked on close-by locations. Examples are parking

spots and rental bikes. For these type of resources, we propose

to aggregate close-by resources and model them as a single ag-

gregate resource in the MDP. For example, instead of modeling

a road segment with ten parking spots as ten nodes having one

resource, we aggregate all spots on the segment into a single

aggregate resource. Of course, we have to adapt the probabilities

for computing the likelihood P (p (t) = 0) to mirror the fact that it

is enough that any of the underlying resources is available. Thus,

the probability P (p̂ (t) = 0) of the aggregate resource p̂ for being

available corresponds to the likelihood that not all of the under-

lying resources are occupied at time t . Formally, given a set of

close-by resources P̂ = {p1, . . . ,pk } which are aggregated to the

aggregate resource p̂ then P (p̂ (t) = 0) = 1 −
∏

pi ∈P̂
P (pi (t) = 1).

However, P (p̂ (t) = 1) =
∏

pi ∈P̂
P (pi (t) = 1) because p̂ can only

be considered as occupied if none of the underlying resources is

available. A drawback of resource aggregation is that it removes

the time for traveling between the aggregated resources. Thus,

the learned policy might not be able to handle searches within

the combined resources. However, we argue that with a proper

selection of resources, the user should be able to solve the prob-

lem by himself, e.g. finding a free resource among the combined

resources. A heuristic, we employed to find sets of resources

that can be aggregated is to make sure that all heuristic can be

reached by making the same routing decision. In other words,

all resources are placed on the same edge of the underlying road

network.

A final aspect of our proposed method is the use of the learned

policy in systems for guiding users to an available resource. As

mentioned before, we precompute policies and let the user de-

cide on the best suitable precomputed query region in order to

find a suitable policy. Afterwards the system can combine the

current user location and the online information about available

resources to determine the current state and propose the direction

aka action being stored in the policy. If the user wants to have an

outlook on the following actions, the system could compute the

most likely states for the current situation. However, in a volatile

environment it is likely that these directions will change during

travel to the next waypoint. A remaining task in this solution

is to efficiently retrieve the optimal action for the current state

for a given policy. Though we can identify the current state by

combing location and resource information, we still have to find

the state in the precomputed policy. Given the exponential size

of the state space finding the entry for a particular state has to

be done in an efficient way. Thus, we propose to store policies

in a two dimensional array. We index the set of locations N by

enumeration which indicates the first dimension. For the index

of the second dimension, we encode the status information of the

considered resources. This is done by mapping each resource to a

particular bit in a bit vector of length |P | and set the bit according
to the availability of the resource. The resulting bit vector is then

interpreted as an integer which indicates the second index in the

array. Thus, the proposed action is retrieved in constant time.

5 EVALUATION
In order to evaluate our approach on a realistic scenario, we sim-

ulate the states of the parking spots for the city of Melbourne.

The simulation samples for a given time-stamp and time interval

the next states of any given parking spot. We have developed

two different simulation models. The first model is based on

the continuous-time Markov chain (similar to our MDP model)

which enables us to do experiments based on the same condi-

tions that our MDP assumes. However, continuous-time Markov

chains might not provide a suitable model for real-world data.

Thus, we implemented a simulator that is based on a real-world

parking dataset, namely the freely available Melbourne “Parking

bay arrivals and departures 2014” dataset
1
. The dataset that con-

tains arrival and departure times of most central business district

parking bays. When we take the arrival and departure time into

consideration, we can decide for every contained time-stamp,

whether the parking bay is available or occupied. This simula-

tion can be equated to a realistic real-time information system

because it retrieves events that actually happened at the given

time-stamp.

We compare our new approach denoted as D3RI to the UGCM

algorithm that was proposed in [3] which also computes a policy

but does not consider real-time information.

In figure 2, we can observe that the average time of finding

a parking spot in the simulator is two to four times shorter

1
https://data.melbourne.vic.gov.au/Transport-Movement/

Parking-bay-arrivals-and-departures-2014/mq3i-cbxd

503

2 3 4 5 6 7

2

4

6

8

Number of parking spots

A
v
e
r
a
g
e
S
e
e
k
-
t
i
m
e
[
m
i
n
]

D3RI

UGCM

Figure 2: This figure shows the average search time of
the agent in the time-continuous Markov chain simulator.
Therefore we ran 1000 simulations and computed the av-
erage parking search time.

2 3 4 5 6 7

0

5

10

Number of parking spots

A
v
e
r
a
g
e
S
e
e
k
-
t
i
m
e
[
m
i
n
]

D3RI

UGCM

Figure 3: This figure shows the average search time of the
agent in the Melbourne simulator. Therefore we ran 10

simulations on different days and computed the average
parking search time.

with the approach proposed in this paper D3RI than the UGCM

approach[3].

This is mainly because D3RI considers the real-time infor-

mation of the parking spots while UGCM does not know if the

parking spot, the agent is currently heading to, is available. This

property can be observed in the real-world (Melbourne parking

bays) simulation as well (c.f. figure 3). By knowing the exact

states of the parking spots, D3RI can guide the driver directly to

a freely available parking bay. However, if the information is not

available, the driver may head to a nearby currently occupied

parking spot. Because there are more possibilities for occupied

parking spots, the approach of [3] becomes even worse when

there are more spots available, since UGCM does not knowwhich

of the parking slots are free right now and usually with increasing

amount of parking spots the amount of occupied spots increases

as well. As expected, the use of real-time information yields a

strong advantage which can be exploited by the D3RI model

presented in this paper.

Figure 4 illustrates the runtime of our approach regarding

the number of parking spots. In this experiment, we have used

an error acceptance rate ϵ of 0.001 and a γ -value of 0.99. Obvi-
ously, the runtime increases exponentially with the amount of

2 3 4 5 6 7 8

1,000

10,000

100,000

Number of parking spots

R
u
n
t
i
m
e
[
s
]

Value Iteration

Figure 4: This figure shows the runtime of our approach
depending on the number of spots. Onemay pay attention
to the logarithmic y-axis.

considered parking spots. This suggests how essential resource

aggregation is to reduce the computational overhead and the

size of the policy. To conclude, without resource aggregation

modeling realistic scenarios quickly get infeasible.

6 CONCLUSION
In this paper, we propose a novel approach for dynamic resource

search in spatial networks considering real-time information

on resource availability. To exploit valuable real-time informa-

tion, solutions must react to recent developments in a flexible

way. Therefore, we propose to learn a routing policy which pro-

vides the most promising action for any potentially occuring

situation. To compute such a policy, we model resource search

using real-time information as a Markov Decision Process (MDP).

Furthermore, we discuss the design of a query system using pre-

computed policies for guiding a user to an available resource. In

our experiments, we compare our new approach using real-time

information to a previous approach which computes policies

based on historical data only. The results indicate that our new

approach can exploit the real-time information to clearly out-

perform the comparison partner. For future work, we plan to

examine techniques to mine areas for which building an MDP

is most valuable. Furthermore, we will examine techniques to

improve resource aggregation in order to compute MDPs for

larger areas. Finally, we plan to examine database technology for

storing and querying policies with very large state spaces.

REFERENCES
[1] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. 1995. Learning to

act using real-time dynamic programming. Artificial Intelligence 72, 1 (1995),
81–138.

[2] Blai Bonet andHector Geffner. 2003. Labeled RTDP: Improving the Convergence

of Real-Time Dynamic Programming.. In ICAPS, Vol. 3. 12–21.
[3] Qing Guo and Ouri Wolfson. 2016. Probabilistic spatio-temporal resource

search. GeoInformatica (2016), 1–29.
[4] Eric AHansen and Shlomo Zilberstein. 2001. LAO*: A heuristic search algorithm

that finds solutions with loops. Artificial Intelligence 129, 1-2 (2001), 35–62.
[5] G. Jossé, K. A. Schmid, and M. Schubert. 2015. Probabilistic Resource Route

Queries with Reappearance. In Proceedings of the 18th International Conference
on Extending Database Technology (EDBT15).

[6] H BrendanMcMahan, Maxim Likhachev, and Geoffrey J Gordon. 2005. Bounded

real-time dynamic programming: RTDP with monotone upper bounds and

performance guarantees. In Proceedings of the 22nd international conference on
Machine learning. ACM, 569–576.

[7] Stuart J. Russell and Peter Norvig. 2003. Artificial Intelligence: A Modern Ap-
proach (2 ed.). Pearson Education.

[8] Scott Sanner, Robby Goetschalckx, Kurt Driessens, Guy Shani, et al. 2009.

Bayesian Real-Time Dynamic Programming.. In IJCAI. Citeseer, 1784–1789.
[9] Trey Smith and Reid Simmons. 2006. Focused real-time dynamic programming

for MDPs: Squeezing more out of a heuristic. In AAAI. 1227–1232.

504

	Dynamic Resource Routing using Real-Time InformationSebastian Schmoll, Matthias Schubert

