
RQL: Retrospective Computations over Snapshot Sets
Nikos Tsikoudis
Brandeis University

tsikudis@cs.brandeis.edu

Liuba Shrira
Brandeis University

liuba@cs.brandeis.edu

Sara Cohen
Hebrew University, Jerusalem

sara@cs.huji.ac.il

ABSTRACT
Applications need to analyze the past state of their data to provide
auditing and other forms of fact checking. Retrospective snapshot
systems that support computations over data store snapshots,
allow applications using simple data stores like Berkeley DB or
SQLite, to provide past state analysis in a convenient way. Cur-
rent snapshot systems however, offer no satisfactory support for
computations that analyze multiple snapshots. We have devel-
oped a Retrospective Query Language (RQL), a simple declarative
extension to SQL that allows to specify and run multi-snapshot
computations conveniently in a snapshot system, using a small
number of simple mechanisms defined in terms of relational con-
structs familiar to programmers. We describe RQL mechanisms,
explain how they translate into SQL computations in a snapshot
system, and show how to express a number of common analysis
patterns with illustrative examples. We also describe how we im-
plemented RQL in a simple way utilizing SQLite UDF framework
in a Berkeley DB data store using Retro page-level incremen-
tal snapshot system. Multi-snapshot computations running over
page-level incremental snapshots bring up interesting perfor-
mance issues that have not been studied before. We present the
first study defining a performance envelope for multi-snapshot
computations over page-level incremental snapshots.

1 INTRODUCTION
To provide auditing and other forms of claim checking more and
more applications need to answer questions, often formulated
after the fact, about the past states of their data. To free applica-
tions from the burden of managing past states on their own, data
management systems need to run ad-hoc computations over past
states of the objects they store.

Computations over past states have been long supported by
temporal databases, used by applications in specialized domains
but not used by general applications because of cost and perfor-
mance penalty for in-production operation. More recently, cheap
storage and interest in using past state analytics for in-production
operation led to development of systems that integrate past state
analytics in a database [7, 11, 13], and all major vendors today
offer products providing OLTP and OLAP processing in a single
system [16]. These products however are not a good match for In-
ternet applications that store their data in simple key value stores
such as Berkeley DB (BDB) [15] or SQLite [8] and need past state
analysis for on-line historical claim checking or auditing. Today
however, even applications using key value stores can support
past state analysis using snapshot systems that support retro-
spection, the ability of a data store to run queries over consistent
snapshots of application past state as if they were the current
state [22]. Retrospection makes it easy for programmers to pro-
vide expressive past state analysis since it allows to implement
ad-hoc queries as general programs in the application language

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

using the application code base and then run these programs on
the snapshots of interest. For example, Retro [21], a snapshot
system of BDB, allows to analyze the state of BDB SQLite appli-
cations at a particular point in time simply by running SQLite
queries over the corresponding BDB snapshot.

As convenient as it is to analyze a single point in time using a
snapshot system, many analyses concern multiple data points.
Retro and other snapshot systems come short when it comes to
analyzing multiple snapshots. A programmer needs to write a
C script that manually identifies snapshots of interest, queries
each snapshot separately, manually collects the results, and then
processes the results. This approach is cumbersome, error prone
and onerous for a SQL programmer who needs to learn a new
language. The programmer would much prefer to specify the
computation in a declarative manner using the language of the
application.

To help with programming the desired computation logic for
multiple snapshot analysis, we have developed a Retrospective
Query Language (RQL), a simple declarative extension to SQL
that allows to specify and run multi-snapshot computations with-
out the need to use a low-level script. RQL mechanisms combine
in a modular way high-level relational constructs to express gen-
eral SQL computations over arbitrary sets of past BDB SQLite
application snapshots. The constructs specify in SQL the set of
snapshots that identify the past states of interest, the computa-
tions over each snapshot, and the computations that process the
results.

We describe RQL mechanisms and explain how each high-
level mechanism translates into a SQL computation over multiple
snapshots in the Retro snapshot system. We also show how to
express a number of common analysis patterns with illustrative
examples. We then describe how we implemented RQL in a simple
way using SQLite UDF.

RQL programs bring to light important performance considera-
tions that arise when programs compute over multiple snapshots.
For one, RQL mechanisms allow to specify computations over
arbitrary size sets of snapshots. The number of snapshots stored
by a snapshot system such as Retro, only limited by available
storage, can be very high given today’s low storage costs. Each
snapshot includes the entire state of the database. RQL program
therefore can compute over potentially very large amounts of
data. A programmer needs to know how much CPU, memory
and I�O resources his program requires, especially in today’s
utility computing environments. Furthermore, an important per-
formance consideration in the design of snapshot systems like
Retro is to avoid interfering with the data store performance
so that snapshots can be created at required frequency without
blocking or disrupting in-production application performance.
Retro snapshot system achieves this by using a low-cost copy-on-
write technique that creates an incremental page-level snapshot
representation with a compact snapshot index [22, 23]. Such rep-
resentation is known to be slower to compute with but the slow-
down is considered to be an acceptable trade-off to preserve in-
production performance. The reason a computation runs slower
over a snapshot and incurs higher resource costs compared to

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.70























	RQL: Retrospective Computations over Snapshot SetsNikos Tsikoudis, Liuba Shrira, Sara Cohen

