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b) Linear probing. c) Second iteration (partial).

Figure 2: Vectorized operations on a linear probing hash table.

4 We compare the original probe keys (k) with the keys we
retrieved from the hash table (k ′). This comparison results
in a collision mask (c). Light green boxes in the mask
indicate matches and dark red boxes indicate collisions.

In our example, we find three expected keys: k1, k3, and k4. How-
ever, the hash table contains the key k5 at position h2 instead
of k2, which indicates a collision (i.e., k2 and k5 have the same
hash). In general, there are three possible cases per probe key:
(1) The bucket contains the key. (2) The hash bucket is empty.
(3) The key in the hash bucket and the probe key are different.

In cases one and two, we replace the matched probe key in
k with a new probe key. In case three, we keep the probe key
ki , but increment its hash value hi in h to probe the next bucket
(Figure 2b, step 5 ). We now continue with the next iteration.

6 We use the collision mask to load new keys into the SIMD
lanes for which there was no collision in the previous
iteration, leaving key k2 unchanged as described above.

7 We compute hashes for the new keys in k , leaving the
value h2+1 unchanged. Steps 3 to 7 repeat until all
probe keys are processed.

Note that we need to write the payload (matched keys) into an
output buffer with Selective Store between steps 4 and 5 , e.g., to
perform a hash join. For simplicity, we ignore empty hash buckets
in the illustration in Figure 2. To handle empty hash buckets, we
need to compute three bitmasks. The first bitmap (c ′) indicates
found keys, the second bitmap (c ′′) indicates empty buckets, and
the third bitmap (c) indicates collisions (c = ¬c ′ ∧ ¬c ′′).

If we are building a hash table, instead of using a Gather oper-
ation to load payloads, we use a Scatter operation to store keys.
Since multiple SIMD lanes can point to the same hash bucket, we
need to verify afterwards if the hash table contains the expected
keys using steps 3 and 4 . For successfully stored keys, we
store the payload in the hash table using a scatter operation. For
conflicting keys we need to probe the next bucket using step 5 .

Note that the hash table is unaware of being accessed with
vectorized operations. We can use the described scheme to access
hash tables built with scalar operations and vice versa.

2.3 Related Work
Heimel et al. showed that OpenCL is a viable way to run database
systems on heterogeneous processors [4]. Ourwork complements
this research by porting vectorization optimizations to OpenCL.
Pirk et al. introduced Voodoo – a vector algebra that abstracts
from the underlying processor and generates OpenCL code [7].
Breß et al. introduced Hawk – a hardware-tailored code generator
which produces custom code for heterogeneous processors [3].
Our work complements Voodoo and Hawk with templates for
efficient vectorized hash tables in OpenCL.

Richter et al. showed a seven-dimensional analysis of hash
tables [9]. Balkesen et al. [1] and Blanas et al. [2] studied efficient
hash joins focusing on radix joins. Jha et al. optimized hash joins
for Xeon Phis, but with limited use of SIMD instructions [6].

Zhou and Ross introduced vectorizations for major database
operators (selections, joins, aggregations, etc.) [13]. They pointed
out opportunities of SIMD in databases but did not apply SIMD to
hash tables. Complementary to ourwork, Ye et al. evaluated differ-
ent strategies for efficient aggregations on multi core CPUs [12].

3 PORTABLE VECTORIZED HASHING
In this section, we review vectorization support in OpenCL and
present the internals of our OpenCL-based primitives Selective
Load, Selective Store, Gather, and Scatter.

3.1 Vectorization Support in OpenCL
To implement data movement primitives, we use several built-in
functions. OpenCL natively supports vector data types which
represent SIMD registers. OpenCL also provides arithmetic and
logical operations on vector types. For example, we compare two
vectors containing four values in Listing 1. We can also access
individual vector components by their indices which increase
from left to right. For example, probeKeys.s0 selects the left-
most component containing the value k1.

1 u i n t 4 probeKeys = {k1 , k2 , k3 , k4 } ;
2 u i n t 4 foundKeys = {k1 , k5 , k3 , k4 } ;
3 u i n t 4 mask = probeKeys == foundKeys ; / / { - 1 , 0 , - 1 , - 1 }

Listing 1: Vectorized data types and operations inOpenCL.

The function shuffle(input, mask) returns a vector in
which each component si contains the value of input.sj that
is specified by the corresponding component si in mask, i.e.,
j = mask.si . The function select(a, b, mask) returns a vec-
tor in which each component si contains the value of a.si if
mask.si ≥ 0 and b.si otherwise.

3.2 Implementation of Primitives
Selective Load. Listing 2 shows the internals of the Selective

Load primitive which we introduce with the other primitives
in Section 2.1 (Figure 2a). The algorithm has four parameters:
(1) input: source memory buffer, (2) offset: read offset on input.
(3) vector: target vector, and (4) mask: indicates the components
in vector which will be overwritten. The algorithm uses the
parameters as follows: (1) It moves components which will be
overwritten to the left of the target vector and adjusts the mask
accordingly (Lines 3–6). (2) The algorithm loads the input data
into a temporary vector (Line 7). (3) It copies the left-most values
from the temporary vector into the target vector according to
the mask (Line 8). (4) The algorithm moves the components of
the target vector back to their original positions (Lines 11–12).

The shuffle functions used in steps 1 and 4 of the algorithm
require permutation masks (left and back) to reorder the target
vector. To speed up execution, we precompute these masks and
store them in two lookup tables (one per step).
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