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ABSTRACT

Machine learning techniques for data stream analysis suffer
from concept drifts such as changed user preferences, varying
weather conditions, or economic changes. These concept drifts
cause wrong predictions and lead to incorrect business decisions.
Concept drift detection methods such as adaptive windowing
(Adwin) allow for adapting to concept drifts on the fly.

In this paper, we examine Adwin in detail and point out its
throughput bottlenecks.We then introduce several parallelization
alternatives to address these bottlenecks. Our optimizations lead
to a speedup of two orders of magnitude over the original Adwin
implementation. Thus, we explore parallel adaptive windowing to
provide scalable concept detection for high-velocity data streams
with millions of tuples per second.

1 INTRODUCTION

Machine learning (ML) techniques gain more and more adop-
tion in stream analysis. They enable various use-cases such as
theft detection, event classification, and failure prediction. In a
nutshell, ML techniques train a ML model and apply that model
when they process stream tuples (e.g., to classify them). Concept
drifts cause a discrepancy between ML models and reality, which
makes concept drifts a crucial challenge for machine learning on
data streams. High discrepancies lead to incorrect predictions and
wrong results. As a consequence, we need to continuously mon-
itor concept drifts and retrain ML models accordingly. Stream
processing engines require scalable solutions for concept drift de-
tection and adaptation to execute ML techniques on high-velocity
data streams with millions of tuples per second.

A naive approach to cope with concept drifts is to retrain
the ML model periodically on a fixed size batch of recent data.
This periodic re-computation is in conflict with the real-time
requirement of stream processing applications for two reasons:
(i) Models do not yet cover the most recent data when they are
applied although the most recent data might indicate a concept
drift. (ii) The data, which is reflected in the model, indicates
concept drifts leading to deviations between model and reality.

In contrast to the naive solution, a wide range of approaches
detects concept drifts on the fly [8]. Some monitor the evolution
of different performance indicators [10, 12], while others observe
the distributions on two different time-windows [9].

We study the scalability limitations of such approaches on the
example of adaptive windowing (Adwin) [2]. In general, Adwin
maintains a global window of adaptive size which is the data basis
for the model computation. It trades off the variance in the global
window (i.e., the data variance reflected in the model) against the
size of the global window (i.e., the amount of data reflected by the
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model).We choseAdwin because it has proven its capabilities in a
wide range of real-world applications:Adwinwas combined with
Kalman Filters and demonstrated with Naìve Bayes and k-means
clustering [1]. Furthermore, Adwin is used for an online version
of the Bagging method by Oza and Rusell [5] and in a parameter-
free variant of the Space Saving algorithm [4]. Moreover, Adwin
is available in the open source MOA framework [3].

In this paper, we present the following contributions:
(1) We analyze the original Adwin approach, point out its

scalability limitations, and identify its bottlenecks.
(2) We parallelize Adwin to overcome its bottlenecks and to

provide scalable concept drift adaptation in real-time.
(3) We evaluate the latency and throughput of our solution.

It achieves two orders of magnitude speedup over the
original Adwin implementation and 54 times speedup in
comparison to an optimized sequential implementation.

The source code of our implementation is available on GitHub1.
In the remainder of this paper, we discuss Adwin and its

bottlenecks in Section 2, present our parallel adaptive windowing
approaches in Section 3, and evaluate them in Section 4.

2 CONCEPT DRIFT DETECTIONWITH

ADAPTIVE WINDOWING

In this section, we present the original Adwin algorithm [2]
(Section 2.1), discuss an optimization based on exponential his-
tograms (Section 2.2) and analyze the performance of the open
source Adwin implementation (Section 2.3).

2.1 The ADWIN Algorithm

Adwin is an algorithm which detects concept drifts on the fly
and adapts ML models accordingly. The algorithm maintains an
adaptive window which is the basis for computing the ML model.
Adwin grows the window (i.e., adds the most recent tuples) as
long as there is no concept drift detected. As a result, the model
can rely on growing training data. Adwin shrinks the window
by removing old tuples when it detects a concept drift.

The algorithm does not require users to configure minimum
or maximum times between concept drifts in advance because
it identifies concept drifts on a per-tuple basis. This removes an
important drawback of approaches which use fixed-size windows
(i.e., batches) of data to recompute models periodically. InAdwin,
users configure only the confidence value δ ∈ (0, 1) to adjust the
sensitivity of the concept drift detection.

When processing a stream tuple, Adwin first adds the tuple
to the adaptive window. Then, the algorithm analyzes the con-
tent of the adaptive window to identify concept drifts. To that
end, Adwin iterates over all possible combinations of two large

enough sliding subwindows, as shown in Figure 1. If the value
distributions of the two subwindows are different enough, Adwin
detects a concept drift and removes the oldest tuple from the
1Source Code: https://github.com/TU-Berlin-DIMA/parallel-ADWIN
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Figure 1: Iterations of the cut check procedure in Adwin

Figure 2: Exponential histogram: We first assign tuples to

buckets of exponential size. We then compress buckets

and store sums and variances only.

adaptive window. We call this cut detection because it determines
when to cut the adaptive window in order to remove old data.
The cut detection repeats removing old tuples until the content of
the adaptive window does not indicate a concept drift anymore.

2.2 Exponential Histograms

A naive Adwin implementation is computationally expensive
because it performs a cut check for all possible combinations
of subwindows for each tuple of the input stream. To address
this problem, Adwin uses an exponential histogram as underly-
ing data structure of the adaptive window [7]. The exponential
histogram assigns input tuples to buckets (Step 1 in Figure 2).
Buckets of recent data contain just a few tuples. Buckets of older
data contain an exponentially growing number of tuples. Each
bucket stores the sum and variance of its tuples only. This reduces
the memory consumption of the histogram (Step 2 in Figure 2).
In summary, the number of buckets and the respective memory
consumption grow logarithmically when the adaptive window
grows. The cut check procedure now compares buckets instead
of per-tuple subwindows which leads to anO(loд(n)) complexity
for the cut-check procedure. Thereby, n is the number of tuples
in the adaptive window and loд(n) the number of buckets.

Figure 3 shows an overview of the Adwin algorithm including
exponential histograms. The algorithm performs two tasks:

(1) Adwin inserts arriving tuples to the adaptive window, i.e.,
the exponential histogram (Step 1.1 in Figure 3). This occa-
sionally causes bucket compression and fusion of smaller
buckets to larger buckets (Step 1.2 in Figure 3).

(2) Adwin detects concept drifts with its cut detection proce-
dure and potentially removes old data from the histogram.

In the following subsection, we analyze the runtimes of the
different tasks and thereby identify the bottlenecks.

2.3 Initial Performance Analysis

As a starting point of our work, we study the original Adwin
implementation, which is also part of the MOA framework [3].
This implementation is not parallel, i.e., it runs in a single thread.
As we will show in detail in our experiments in Section 4, the
single thread version has a low throughput compared to our
parallel approaches which we present in Section 3.

Figure 3:Adwin overview: New tuples are added to the his-

togram (1.1), buckets are compressed (1.2), and the cut de-

tection procedure identifies concept drifts (2).
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Figure 4: Runtime distribution among Adwin tasks

In order to identify the bottlenecks of the existing implemen-
tation, we use JProfiler2 and Java VisualVM3 for performance
profiling. In Figure 4, we show the processing time distribution
among the tasks performed by Adwin. A single thread imple-
mentation spends about 98% of its runtime with cut checks. In
comparison, the time spent on maintaining the exponential his-
togram is almost negligible as it contributes only 2.2% to the
total processing time of a tuple. Although the number of buckets
grows logarithmically with the number of tuples contained in
the histogram, bucket comparisons dominate the execution effort
since they are performed for each tuple. Based on the observa-
tions above, we focus our optimizations on parallelizing the cut
check procedure because it exhibits the largest saving potential.

In our code analysis, we identifiedways to improve the original
Adwin implementation. We did a logically equivalent reimple-
mentation to speedup the execution. The major improvement of
our reimplementation is the use of circular array buffers as an un-
derlying data structure for the histogram. This reduces memory
copy operations compared to the original implementation.

3 PARALLEL ADAPTIVE WINDOWING

In this section, we introduce several approaches to parallelize
Adwin in order to improve its throughput. We focus on paral-
lelizing the cut detection because we identified it as bottleneck in
Section 2.3. We discuss single-node parallelization in Section 3.1
and multi-node parallelization in Section 3.2.

3.1 Single-Node Parallelization

In Figure 5, we show in pseudo code how Adwin processes an
input tuple and point out possible single-node parallelizations.
We present each parallelization in detail in the following subsec-
tions. First, we decouple histogram updates and cut-checks from
each other such that cut-checks cannot delay processing input
tuples (Section 3.1.1). This decoupling is generally applicable to
algorithms that store stream statistics in a separate data structure.
Then, we parallelize the cut-check procedure itself which we call
Intra Cut-Check Parallelization (Section 3.1.2). Finally, we discuss
how to perform multiple cut-check procedures in parallel in case
Adwin detects cuts. We call this Inter Cut-Check Parallelization
(Section 3.1.3). Both parallelizations are generally applicable to
all algorithms which use multidirectional iterable datastructures.
2JProfiler: https://www.ej-technologies.com/products/jprofiler/overview.html
3VisualVM: http://visualvm.java.net
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Figure 5: Scope of Adwin parallelizations.

Figure 6: Optimistic Adwin Decoupling histogram main-

tenance and the cut detection procedure.

3.1.1 Cut-Check Decoupling. We introduce an optimistic par-
allelization of Adwin which assumes that most input tuples do
not indicate a concept drift (i.e., a cut). This assumption regularly
holds for big data streams, because real-world data follows laws
of nature and causes few cuts compared to the number of tuples.

As explained in Section 2,Adwin performs two tasks: updating
the histogramwith new tuples and detecting concept drifts with a
cut detection procedure. Originally, Adwin performs these tasks
in succession for each tuple. This limits the throughput because
the cut detection blocks the processing of the input stream.

In Optimistic Adwin, we decouple histogram updates and cut
checks from each other to overcome throughput limitations. The
algorithm performs cut checks on a separated snapshot histogram
and adds new tuples to a primary histogram concurrently. We
synchronize histograms after each run of the cut check procedure.

We illustrate Optimistic Adwin in Figure 6. One thread adds
new input tuples to the primary histogram and a redo log. An-
other thread creates a deep copy of the primary histogram (step
1) and performs the cut check procedure on this copy (step 2).
In case of a concept drift, we initiate a rollback which replaces
the primary histogram with the snapshot manipulated by the cut
detection procedure (step 3). Finally, we use the redo log to add
missing input tuples to the primary histogram again. The overall
process repeats continuously. Thereby, the majority of runs does
not detect a cut and requires no rollback.

The main benefit of Optimistic Adwin is that the cut detection
procedure cannot block the input stream anymore. During one
execution of the cut check procedure, new tuples are processed
already. It is important to notice thatOptimisticAdwin introduces
a latency between the insertion of a new tuple in the primary
histogram and the notification about a cut. We discuss this effect
in detail in Section 4. Our experiments show that we achieve
detection latencies below 15µs with Optimistic Adwin.

3.1.2 Intra-Cut-Check Parallelization. A single thread execu-
tion of the cut-check procedure starts to check for cuts at the
ending of the histogram and moves towards the beginning (top
of Figure 7). Thereby, the algorithm compares sliding subwin-
dows as described in Section 2.1. This comparison requires sums
and variances of subwindows, which are aggregates of sums and
variances of buckets covered by the subwindows. The algorithm
updates the aggregates of subwindow (i.e., the aggregation of
buckets) incrementally when moving from one iteration to the
next. As initialization for the cut-check iteration, the histogram
stores and maintains its overall aggregate.

Figure 7:Half-Cut Adwin: Parallelisation of the cut check

procedure with two threads. Both threads iterate till the

middle of the histogram.

We change the cut-check iteration such that two cut checks
run in parallel. To that end, we introduce Half-Cut Adwin in
Figure 7 (bottom). Since the cut check in each iteration step is
independent of cut checks of previous iteration steps, two threads
can iterate over the histogram concurrently. Thereby, each thread
covers half of the cut-check positions. One thread starts at the
beginning and moves towards the end of the histogram and the
other thread moves in the opposite direction. Both threads still
update subwindow aggregates incrementally in each iteration
step. Half-Cut Adwin terminates the cut check procedure when
both threads reach the middle of the histogram or when it finds
a cut. This leads to a maximal speedup factor of two and halves
the latency of the cut detection. It is also easy to add on top of
existing histogram implementations.

In general, the concept of Half-Cut Adwin extends to more
than two threads. Therefore, the histogram needs to maintain
additional aggregates of subwindows as initialization for addi-
tional threads. This overhead pays off for large histograms only.
Since the number of buckets grows logarithmically, a high degree
of Intra-Cut-Check Parallelism pays off seldom considering the
overhead for aggregate maintenance in the histogram. Half-Cut
Adwin does not have this overhead because it uses the same
aggregate as initialization for both threads.

3.1.3 Inter-Cut-Check Parallelization. If Adwin finds a cut, it
removes the oldest bucket from the histogram and repeats the
cut check procedure till no further cuts are detected. This enables
a pessimistic parallelization which assumes that we detect further
cuts after removing old buckets from the histogram.While thread
1 performs cut checks on all buckets 1..n, thread 2 could already
check if there will be another cut after removing an old bucket
and perform cut detection on buckets 2..n. This extends to n − 1
parallel cut check procedures each of which could also apply
Half-Cut Adwin. However, the detection of cuts is usually rare
compared to the total number of cut check procedures. Inter-Cut-
Check Parallelization is not beneficial when we detect no cut.
Respectively, we expect a minimal speedup from this approach.
Still, it can reduce the latency of the cut detection, which is
valuable for situations with frequent concept drifts.

3.2 Multi-Node parallelization

It is desirable to distribute stream processing applications over
multiple nodes in a cluster in order to achieve linear speedup.
Common distributed streaming engines such as Apache Flink [6]
and Storm [11] achieve data parallelism on multiple nodes with
data partitioning. Thus, each node is responsible for processing
tuples of certain keys (e.g., user ids, regions, or event classes).
Half-Cut Adwin and Optimistic Adwin are complementary to
this approach and increase the throughput per partition.

It is also possible to distribute the cut detection procedure on
multiple nodes. However, this requires a central shared histogram
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or histogram copies with multi-version concurrency control. The
coordination and network overhead for these histograms would
dominate the processing in our network-bounded cluster and
prevent a speedup. However, multi-node parallelization of cut
checks can be beneficial if we overcome the network bottleneck
with technologies such as InfiniBand.

4 EVALUATION

In this section, we provide an experimental evaluation ofHalf-Cut
Adwin, Optimistic Adwin , and the state-of-the-art. We discuss
our setup in Section 4.1 and present our results in Section 4.2.

4.1 Experiment Design

Throughput. The throughput of Adwin depends on the size of
the histogram. Large histograms contain more buckets and, thus,
require more cut checks. More concept drifts (i.e., cuts) increase
the throughput by reducing the histogram size. Our experiment
measures the throughput for different histogram sizes.
Latency.We analyze the latency between adding a tuple to the
histogram and the completion of the cut check procedure. This
corresponds to the detection latency of cuts. We show the worst-
case execution time of the cut check procedure which corre-
sponds to finding a cut at the last cut check position. In addition,
the latency of Optimistic Adwin includes the waiting time of a
tuple in the primary histogram before the decoupled cut check
procedure starts. We show a range of latencies which reflects the
shortest and longest possible waiting time.
Data. Since the overhead of Optimistic Adwin is negligible, the
performance depends on the histogram size only. Therefore, we
generate batches of constant values and measure their insertion
times. The insertion times include performing cut detections.
Execution Environment.We measure runtimes and latencies
with JMH

4 which enables reliable and reproducible microbench-
marks on a Java Virtual Machine. We run all experiments on a
machine with 8GB RAM and an Intel Core i5-4210U processor.
Algorithms. We compare four versions of Adwin. The open
source version5, our optimized sequential version (Section 2.3),
Optimistic Adwin (Section 3.1.1), Half-Cut Adwin (Section 3.1.2).

4.2 Results

Throughput. The left plot in Figure 8 shows that our sequential
reimplementation is on average 5 times faster than the original
implementation. Half-Cut Adwin is 10 times faster than the orig-
inal implementation. As expected, Half-Cut Adwin is almost 2
times faster than our optimized sequential reimplementation be-
cause it reduces the execution time of cut checks by almost 50%.
Optimistic Adwin improves upon Half-Cut Adwin by a factor
of 27 and is 54 times faster than our optimized reimplementa-
tion. This leads to a 274 times speedup compared to the original
Adwin implementation. Moreover, Optimistic Adwin decouples
the insertion of tuples into the histogram from the cut check
procedure. Therefore, its throughput is not directly correlated to
the histogram size, which leads to a better scalability.
Latency. In the right plot in Figure 8, we show the latencies of
different Adwin versions depending on the histogram size. Our
new Adwin versions reduce latencies compared to the original
implementation by up to 90% and at least by 50%.Half-CutAdwin

has the lowest latency because it distributes the cut detection
procedure on two threads without any snapshot and concurrency
4JHM - http://openjdk.java.net/projects/code-tools/jmh/
5Adwin open source repository: https://github.com/abifet/adwin
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control overhead. Optimistic Adwin exhibits the largest variance
(10µs) among the latencies of different tuples. This is because of
the additional waiting time between adding a tuple to the primary
histogram and the start of the next cut check procedure. In the
worst case, a snapshot of the histogram was taken directly before
inserting the tuple. This roughly doubles the latency because
we first finish the cut check procedure on the recent snapshot
before we do a cut check which includes the new tuple. While
Half-Cut Adwin decreases the latency compared to Optimistic

Adwin by 70% on average, Optimistic Adwin show a 27 times
higher throughput. In general, all latencies are in the range of
microseconds which enables fast reactions on concept drifts.

5 CONCLUSIONS

Concept drift detection, with algorithms such as Adwin, is a cru-
cial component of stream analysis. We analyzed the bottlenecks
of the Adwin algorithm and discussed several approaches for its
parallelization. Our Optimistic Adwin algorithm decouples the
concept drift detection and the window maintenance. Its evalua-
tion shows that it has two orders of magnitude higher throughput
and an at least 50% lower latency than state-of-the-art solutions.
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