
Spatio-Temporal-Keyword Pattern Queries over Semantic
Trajectories with Hermes@Neo4j

Fragkiskos Gryllakis
Dept. of Informatics
University of Piraeus
Piraeus, Greece

fgryllakis@unipi.gr

Nikos Pelekis
Dept. of Statistics and Ins. Science

University of Piraeus
Piraeus, Greece
npelekis@unipi.gr

Christos Doulkeridis
Dept. of Digital Systems
University of Piraeus
Piraeus, Greece
cdoulk@unipi.gr

 Stylianos Sideridis
Dept. of Informatics
University of Piraeus
Piraeus, Greece
ssider@unipi.gr

Yannis Theodoridis
Dept. of Informatics
University of Piraeus
Piraeus, Greece
ytheod@unipi.gr

ABSTRACT

In this paper, we demonstrate Hermes@Neo4j1, an extension of

Neo4j graph DMBS for semantic trajectories of moving objects,

on the so-called Spatio-Temporal-Keyword Pattern queries. For

this purpose, our engine exploits on hybrid Spatio-Temporal-

Keyword (STK) index structures, also boosted by an appropriate

selectivity estimation model. Hermes@Neo4j functionality is

demonstrated over synthetic and real semantic trajectory

datasets.

1 INTRODUCTION

The efficient management and analysis of the spatio-temporal

evolution of a moving object (the so-called object’s trajectory)

has led to the development of plenty of appropriate index

structures and algorithms, and even extensions over DBMS

during the last two decades [1-5]. Recently, the research

community has turned its interest to semantic trajectories [6],

where spatio-temporal information is enriched with related

annotations about the what, how, and why of movement [6-8].

The paradigm of Location-based Social Networking (LBSN)

services, such as Twitter, Instagram and Foursquare, is indicative

of this shift: the management and analytics over large amounts

of spatio-temporal-textual data may result in useful conclusions

about the users’ behaviour.

Our motivation in this work is to demonstrate how a

1More information regarding Hermes@Oracle and Hermes@Postgres are available
at www.datastories.org/hermes.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Semantic Trajectory Database (STD), built on top of an

extensible DBMS, can efficiently support queries where

constraints are set over the triple (spatial, temporal, textual)

nature of semantic trajectories. In particular, we aim to

demonstrate the functionality of our Hermes@Neo4j STD engine

over Spatio-Temporal-Keyword Pattern (STKP) queries [9].

According to [9], an STKP query is defined as follows: Let Ei

be a semantic trajectory episode abstraction, which is defined as

a partially or completely defined episode. An episode abstraction

therefore is an episode where some of its properties – spatial,

temporal, textual information – may be missing. An STKP query

over a STD takes as input a sequence Q of episode abstractions

or the * wildchar (more formally, Q := <p* | p is either an episode

abstraction Ei or the * wildchar>) and gives as output the

semantic trajectories in STD that are compatible with Q.

An example of STKP query follows in Fig. 1 [9].

Figure 1: Graph representation of an STD consisting of 3
trajectories along with a STKP query.

In Fig. 1, we depict a STD consisting of 3 semantic

trajectories; each trajectory consists of four episodes. An

example STKP query Q is also illustrated at the bottom right

corner. In particular, Q consists of a number of episode

abstractions; with notation Ei* corresponding to a number of

Demonstration

Series ISSN: 2367-2005 678 10.5441/002/edbt.2018.83

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.83

zero or more episode abstractions of the form Ei. For clarity of

presentation the episode abstractions in Q distinguish the

temporal from the spatial information, which is not the case in

reality where both are organized together in a Minimum

Bounding Box (MBB). Actually, Q searches for trajectories

starting with zero or more episodes of any kind (see notation (*,

*, *)* in Q), followed by an episode in a spatial [35, 35, 50, 50] and

temporal [t18, t20] range with keyword ‘RESTAURANT’ and

ending with an episode in a spatial [40, 40, 55, 55] and temporal

[t21, t23] range with keyword ‘DESSERT’. The output set includes

semantic trajectory 1, which fulfills the above constraints.

The practical contribution of this work is that we present a

framework that utilizes recently introduced (a) state-of-the-art

hybrid indexes and (b) query processing algorithms on (c) a new

STD engine, coined Hermes@Neo4j STD engine.

Hermes@Neo4j STD engine provides efficient and effective

storage, indexing mechanisms and a library of utilities that

facilitate spatio-temporal and textual operations on data, able to

support STDs. More specifically, the merits and contributions of

Hermes@Neo4j STD engine are summarized below:

1. Following the successful MOD engine paradigm of

Hermes@Oracle [7,8], we designed a new datatype

system for the representation and management of

Semantic Trajectories into the extensible DBMS

architecture of Neo4j [10], an ACID-compliant

transactional NoSQL DBMS with native graph storage

and processing, implemented in Java. The datatype

system is formulated in the context of the graph

database, that provides an intuitive model in our case.

2. Neo4j Spatial library [11], which is a library of utilities

for Neo4j that facilitates spatial operations on data, is

extended for processing the spatio-temporal and

textual information of semantic trajectories.

3. We designed efficient access methods for semantic

trajectories, called TSR-tree and TSR-tree indexes, for

the hybrid indexing of both the spatio-temporal and

the textual component. The hybrid indexes combine a

spatiotemporal and text index tightly, such that both

types of information can be used to prune the search

space simultaneously during the spatiotemporal

keyword query algorithm processing in STDs.

4. We developed efficient query processing algorithms

upon the proposed indices in order to support a useful

query type at the STD level, called STKP, as well as

algorithms for efficiently importing semantic

trajectories into STDs.

Employing separate indexes is weaker in comparison with

the tightly integrated proposed state-of-the-art approach, since

an efficient resolution of the STKP requires repetitive invocation

of spatio-temporal-keyword matching queries.

The paper is organized as follows: in Section 2 we provide a

brief presentation of the system architecture, the underlying

indexes, etc. (the interested reader is referred to [9] for more

details). Section 3 provides more information about system

implementation details. Finally, Section 4 outlines the flow of the

demonstration.

2 SYSTEM ARCHITECTURE

In this section, we present the core information about the

architecture of our framework, illustrated in Fig. 2.

Figure 2: Hermes@Neo4j STD engine architecture.

2.1 Hybrid indexes

Neo4j Spatial R-tree index is extended to support spatio-

temporal and classical trajectory-based queries (3D R-Tree) and

is also used in order to enable effective spatiotemporal-keyword

operations on semantic trajectories. There are two alternative

indexing structures to support efficient STKP query processing.

The proposed hybrid indices combine tightly a spatial and a text

index (i.e. a 3D-Rtree and inverted file, respectively), so that both

types of information can be used simultaneously for pruning the

search space.

TSR-tree index. In this index, a semantic trajectory is

considered as an individual unit for the tree construction. More

specifically, for each semantic trajectory we compute its MBB

and a list of tags related to the semantics of the episodes, sorted

by time. MBB is the minimum bounding box that encloses a

specific sub-trajectory of a moving object, along with the start

and end times of the movement. At the end, the tags in the list

are concatenated to a single string. Specifically, a pseudo-word

for each semantic trajectory is created with all the concatenated

tags of each trajectory’s episode to a single string in order to use

it for the keyword query search criteria. The leaves of the TSR-

tree index are the above-described approximation of the whole

semantic trajectories. For the exploitation of the graph database

where our index resides, these leaf nodes are the starting nodes

679

of the sequence of the episodes of the approximated semantic

trajectory. Moreover, inverted files (IFs) are created for all the

internal nodes of the tree.

ESR-tree index. As an alternative, we build a tree using as

its structural unit the episodes of the semantic trajectories rather

than the semantic trajectories themselves. In other words, ESR-

tree index takes into account as structural unit for the creation

of the 3D-Rtree the episodes of the semantic trajectories. The

leaves of the ESR-tree index are the base for the creation of the

episode MBBs. Accordingly, the MBBs of the entries of the

internal nodes represent the spatio-temporal union of the MBBs

of the children nodes. Additionally, for each internal node there

exists a pointer to an IF that organizes all the tags of its children

nodes. The IFs for each internal node of the tree contain the

keywords of the episodes of its child nodes.

2.2 STKP query processing

STKP queries can be processed in Hermes@Neo4j using either

TSR-tree or ESR-tree index. In the former (latter) approach,

STKP search algorithm takes into account that TSR-tree (ESR-

tree, respectively) is built using entire semantic trajectories

(episodes of semantic trajectories, respectively) as building

blocks [9]. It is noteworthy that STKP search is boosted by an

optimization method.

STKP query optimizer. Given a STKP query Q := <E1, …, Ek>,

where E1, …, Ek is a sequence of spatio-temporal-textual

constraints over episode abstractions, the STKP query optimizer

identifies the most selective episode abstraction E* in Q, in order

to start the execution of the ESR-tree search algorithm from

there, thereby pruning candidate results the earliest possible.

The cost model that the query optimizer implements decomposes

the computation of selectivity of an episode abstraction in two

parts, one for the spatio-temporal and another for the textual

component of the episode abstraction [9].

Regardless of the query length, it turns out that the search

based on the ESR-tree and boosted by the query optimizer, is

considerably faster, with the penalty of the higher index creation

time and size compared with the TSR-tree approach.

3 SYSTEM IMPLEMENTATION

Our framework provides a robust API with the necessary tools

for STD creation, querying, etc. Toward the realization of the

concepts of semantic trajectories and STDs presented in the

previous section, we followed the object relational (OR)

approach for the datatype system of Hermes@Neo4j STD

engine. In detail, we follow the abstract datatype (ADT)

paradigm and define the episodes and semantic trajectory

datatypes that support the definitions in [9]. Upon these

datatypes, we register a rich palette of object methods; some

indicative examples appear in Table 1. More details are available

at Hermes@Neo4j web page2.

Table 1: Methods over episodes and semantic trajectories

2 http://infolab.cs.unipi.gr/HermesNeo4j/

Object Method Definition
Episode duration() Returns the episode

duration.
Semantic
Trajectory

num_of_
episodes
(String tag,

String distinct),
where “tag” is a
set of substrings
and a boolean

string.

Returns the number
of episodes (distinct
or not, depending
on distinct string)
that includes tags
LIKE the given ones
(pattern-matching
per input tag).

LayerST
(object with
the episodes

and
semantic
trajectories
of an STD)

confined_in
(LayerST layer,
MBB envelope,
String tag),
where tag is a
concatenated

set of
substrings.

Returns semantic
trajectories, whose

episodes are
overlapping

spatiotemporally
with the MBB and
textually with the
“tag” parameter.

STD creation. STD construction includes two phases (3D R-

tree and IFs), along with segmental options for creating a graph

database in steps (separate 3D R-tree and IFs creation routines)

in case of size and memory concerns.

Semantic Trajectory Synthesizer. In case of trajectory

datasets lacking textual annotations, our synthesizer is able to

augment raw trajectories with textual annotations using a

customized text generator that chooses terms from a lexicon of V

keywords. The number of keywords for each episode follows a

Zipfian distribution, in order to simulate the skewness present in

real-life textual datasets.

STD search. Several functions are available for a wide range

of queries like intersection, overlapping or union, with the

emphasis, of course, in STKP queries (details for the appropriate

search methods appear in Table 2).

Table 2: STKP query methods

Method Parameters Index
SpatialTemporalKeyword

TrajectoryQuery
LayerST,
list of
MBBs,

TSR-tree
index

SpatialTemporalKeyword
TrajectoryEpisodesQuery

list of String
tags

ESR-tree
index

Hermes@Neo4j STD engine utilizes Apache Lucene [12]

indexes that use inverted indexes for search and retrieval from

text collections. For the implementation of interactive

visualizations of the semantic trajectories over a 3D model of the

globe and different types of 2D maps, the NASA WorldWind API

[13] is utilized. The library has been extended in order to display

the spatio-temporal and textual information of a semantic

trajectory. Visual representation of search results is performed

through different 3D / 2D map services, such as Open Street

Map, Bing, MS Virtual Earth, NASA Blue Marble and i-cubed

Landsat (Fig. 3).

The interface has the required parameters for spatio-temporal

680

and textual constraints that are used as query arguments. The

interface also includes necessary options for importing a dataset

to a new STD. Apart from setting spatio-temporal and textual

constraints, in order to perform a STKP query over the selected

STD, the user decides the index and search algorithm of his/her

choice. The semantic trajectories that are the results of the STKP

query are displayed through a proper animation zoom at the

selected map service and reference system by displaying the

geographical area that covers the specific semantic trajectories.

Correspondingly, information about the search results and the

number of trajectories that meet the search criteria are displayed

in a relevant result box.

4 ABOUT THE DEMONSTRATION

Throughout the demonstration, Hermes@Neo4j users will be

able to test the system by using the real “Foursquare New York”

dataset [14] and the synthetic “Hermes Attica” dataset 3

generated by the Hermoupolis generator [15]. The real dataset

includes long-term (about 10 months - from Apr.12, 2012 to

Feb.16, 2013) check-in data (227,428 check-ins) in New York City

collected from Foursquare social network and the synthetic

dataset consists of a total of 1,450,738 records that represent

semantic trajectories.

Figure 3: Interactive visual exploration of a semantic
trajectory that is the result of an STKP query through a 2D
map representation.

The demonstration captures the following phases: (i)

preparatory phase, where users have the opportunity to

comprehend the internals of our framework, and (ii) our

Hermes@Neo4j engine in action, where users experience various

scenarios of STKP search. In particular:

Preparatory phase (background knowledge). During this

phase, we show off the different datatypes and operands that can

be utilized in the Hermes@Neo4j engine. In addition, we

demonstrate how the user can use our framework to run legacy

operands, and even more interestingly, focus on the two STKP

query indexing and searching approaches.

Hermes@Neo4j engine in action. Having gained the

necessary background knowledge, the user experiences a

scenario of STKP search and index creation, based on the TSR-

tree search algorithm. For instance, Fig. 3 present an example of

3 http://chorochronos.datastories.org/?q=content/hermes-attica

an STKP query result, which is a semantic trajectory from the

“Hermes Attica” dataset. The user can display the results with a

selected 3D/2D map representation and reference system of

his/her choice. In addition, the user can interactively switch on

and off the visibility of the results. In turn, we present a scenario

of STKP search and index creation, based on the ESR-tree search

algorithm. The goal of this scenario is to effectively demonstrate

that the STKP search based on the ESR-tree, is more efficient in

comparison with the STKP search based on the TSR-tree index,

with the penalty of the higher index creation time and size

compared with the TSR-index.

For a deeper comprehension of the demonstrated

functionality, a related video is available at Hermes@Neo4j web

page4.

ACKNOWLEDGEMENTS

This work has been partly supported by the University of

Piraeus Research Center. This project has received funding from

the European Union’s Horizon 2020 research and innovation

programme under the Marie Sklowdoska-Curie agreement N.

777695.

REFERENCES

[1] Nikos Pelekis, Elias Frentzos, Nikos Giatrakos, and Yannis Theodoridis. 2008.
HERMES: aggregative LBS via a trajectory DB engine. In Proceedings of
SIGMOD. https://doi.org/10.1145/1376616.1376748

[2] Ralf H. Güting, Thomas Behr, and Christian Düntgen. 2010. SECONDO: a
platform for moving objects database research and for publishing and
integrating research implementation. IEEE Data Engineering Bulletin,
33(2):56-63.

[3] Cédric du Mouza and Philippe Rigaux. 2005. Mobility patterns.
GeoInformatica, 9 (4): 297-319. https://doi.org/10.1007/s10707-005-4574-9

[4] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. 2010. Querying
trajectories using flexible patterns In: Proc. of EDBT.
https://doi.org/10.1145/1739041.1739091

[5] Ralf H. Güting, Fabio Valdés, and Maria L. Damiani. 2015. Symbolic
Trajectories. ACM Transactions on Spatial Algorithms and Systems, 1(2).
https://doi.org/10.1145/2786756

[6] Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko,
Natalia Andrienko, Vania Bogorny, Maria L. Damiani, Aris Gkoulalas-Divanis,
Jose Macedo, Nikos Pelekis, Yannis Theodoridis, and Zhixian Yan. 2013.
Semantic Trajectories Modeling and Analysis. ACM Computing Surveys,
45(4), article 42. https://doi.org/10.1145/2501654.2501656

[7] Nikos Pelekis, Stylianos Sideridis, and Yannis Theodoridis. 2015. Hermessem: a
Semantic-aware Framework for the Management and Analysis of our
LifeSteps. In: Proc. of DSAA. https://doi.org/10.1109/DSAA.2015.7344849

[8] Stylianos Sideridis, Nikos Pelekis, and Yannis Theodoridis. 2016. On querying
and mining semantic-aware mobility timelines. International Journal of Data
Science and Analytics, 2(1-2), 29-44 (2016). https://doi.org/10.1007/s41060-016-
0030-1

[9] Fragkiskos Gryllakis, Nikos Pelekis, Christos Doulkeridis, Stylianos Sideridis,
and Yannis Theodoridis. 2017. Searching for Spatio-Temporal-Keyword
Patterns in Semantic Trajectories. In: Proc. of IDA.
https://doi.org/10.1007/978-3-319-68765-0_10

[10] Neo4j graph database, https://neo4j.com/.
[11] Neo4j Spatial library, http://neo4j-contrib.github.io/spatial/.
[12] Apache Lucene, https://lucene.apache.org/.
[13] NASA WorldWind, https://worldwind.arc.nasa.gov/.
[14] Dingqi Yang, Daqing Zhang, Vincent W. Zheng, and Zhiyong Yu. 2015.

Modeling User Activity Preference by Leveraging User Spatial Temporal
Characteristics in LBSNs. TSMC, 45(1).
https://doi.org/10.1109/TSMC.2014.2327053

[15] Nikos Pelekis, Stylianos Sideridis, Panagiotis Tampakis, and Yannis
Theodoridis. Simulating our LifeSteps by Example (2016) ACM Trans. Spatial
Algorithms and Sytems, 2(3), article 11. https://doi.org/10.1145/2937753

4 http://infolab.cs.unipi.gr/HermesNeo4j/visual.htm

681

	Spatio-Temporal-Keyword Pattern Queries over Semantic Trajectories with Hermes@Neo4jFragkiskos Gryllakis, Nikos Pelekis, Christos Doulkeridis, Stylianos Sideridis, Yannis Theodoridis

