
http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.50




3.2 Classification
After the model has been trained, it is ready to accept unlabeled
data and can be used to classify that data. The classification
stage therefore takes as input a set of columns representing the
unannotated data, and the trained classifier that will be used
to classify the data. The output is the set of predicted labels
produced by the classifier. Inside the user-defined function, the
classifier will again have to be deserialized into an in-memory
object, after which it can be used to classify the input data and
produce a set of labels.

An example of a user-defined function that classifies a set of
data is given in Listing 2. This function can be called from within
SQL with the unlabeled data and the classifier as input, and will
produce a list of predicted classes.

Listing 2: Classification
1 CREATE FUNCTION predict(data INTEGER, classifier BLOB)
2 RETURNS INTEGER
3 LANGUAGE PYTHON
4 {
5 import pickle
6 classifier = pickle.loads(classifier)
7 return classifier.predict(data)
8 };

The predict function can be used both to test a trained model
and to classify a set of new data using such a model. The model
can be tested by predicting a set of data for which the labels
are known, and comparing the predicted labels against the new
labels. The model can be used to

3.3 Ensemble Learning
In addition to only storing the trained models, we can store addi-
tional metadata about the models in the database. This metadata
can include information such as parameters used to instantiate
the model, or information about the effectiveness of the model
obtained through testing it against certain datasets. We can then
choose a model to classify new data based on this metadata, or we
could classify the data using multiple models that are stored and
use the results from the classifier with the highest confidence.

4 EXPERIMENTAL ANALYSIS
In this section, we demonstrate how a real classification pipeline
can be integrated into a column-store database, and show how
the in-database processing pipeline performs when compared
against the same pipeline implemented in a standard scripting
language where the input data is loaded from a file or transferred
over a database socket connection.

The pipeline we use in our experiments is used to attempt
to classify who people from North Carolina will vote for in the
Presidential Elections based on data from the 2012 Presidential
Election. For this purpose, we use two separate datasets:

• The North Carolina Voters Dataset contains the infor-
mation about the individual voters. This is a dataset of
7.5M rows, where each row contains information about the
voter. There are 96 columns in total, describing character-
istics such as place of residence, gender, age and ethnicity.
Note that we do not know who each person actually voted
for, as this information is not publicly available.

• The Precint Votes Dataset contains the aggregated vot-
ing statistics for each precinct, (i.e., how many people in
each precinct voted Democrat, and how many voted Re-
publican). This dataset has 2751 rows, one for each precinct
in North Carolina.

By combining these two datasets we can attempt to classify in-
dividual voters. We know the voting records of a specific precinct,
and we know in which precinct each person voted, so we can
make an educated guess who each person voted for based on this
information.

Preprocessing. As we do not have the true class labels for
each voter, we have to generate them from the information we
have about the precincts. This requires us to join the voter data
with the precinct data, giving us the voting records of the precinct
that each voter voted in. We then generate a “true” class la-
bel for each voter using a weighted random function based on
the precinct voting records. For example, if voters in a specific
precinct voted for Democrats 60% of the time, each voter in that
precinct has a 60% chance of being classified as Democrat and
40% chance of being classified as Republican.

Training. After we have generated the true class labels, we
have to train the model using the data and the labels. However,
we don’t simply want to use all the data for training. Instead,
we want to divide the data into a training set and a test set to
prevent overfitting. We then feed the data in the training set to
the model using the function shown in Listing 1 and store the
resulting model in the database.

Testing. After the model is trained, we want to test how it
performs by classifying the data in the test set and looking at the
results. We can classify the voters in the test set by running the
function shown in Listing 2. After having obtained the predicted
class labels, we can test the accuracy of our model by comparing
against the known true class labels of the data. However, since
we only have the generated class labels of the individual voters,
comparing the predicted labels against those would not give us a
lot of information about our classification accuracy. Instead, we
aggregate the total amount of predicted votes for each party by
precinct. Then we compare the aggregated predictions against
the known amount of votes in each precinct.

PerformanceAnalysis.To determine howwell our in-database
processing solution performs compared to ad-hoc analysis pipelines
we have implemented the pipeline described above both (1) using
MonetDB/Python UDFs and (2) inside Python, using various dif-
ferent methods of initially loading the data. For loading the data
in Python, we have experimented with loading from binary files
(NumPy [20] files and HDF5 [18] using PyTables), CSV files using
an optimized parser, transferring the data to Python through a
database socket connection (with PostgreSQL [17], MySQL [21]
and SQLite [3] as database servers). For the scenarios where
the data is stored inside a relational database, we use SQL to
perform the preprocessing steps involving joins and aggrega-
tions. Whereas for the pure Python solutions, we use the Pandas
library [11] to perform these steps.

The experiments were run on a Fedora (Release 26) machine
with 2.6GHz 8-core Intel Xeon processor (Turbo Boost up to
3.2GHz), 20MB shared L3 cache and 256 GB of RAM. All the
tests are hot runs. The datasets and source code used for the
experiments are publically available1.

Results. The results of the benchmark are displayed in Fig-
ure 1. The numbers display the total time required to run the
entire classification pipeline, whereas the bottom gray bars in-
dicate the time spent loading the initial data into Python and
performing the initial preprocessing steps and aggregations.

1https://github.com/pholanda/VoterClassification

475



476


	Deep Integration of Machine Learning Into Column StoresMark Raasveldt, Pedro Holanda, Hannes Mühleisen, Stefan Manegold

