
Summarization Algorithms for Record Linkage
Dimitrios Karapiperis

Hellenic Open University

Patras, Greece

dkarapiperis@eap.gr

Aris Gkoulalas-Divanis

IBM Watson Health

Cambridge, MA, USA

gkoulala@us.ibm.com

Vassilios S. Verykios

Hellenic Open University

Patras, Greece

verykios@eap.gr

ABSTRACT
Record linkage has received significant attention in recent years

due to the plethora of data sources that have to be integrated to

facilitate data analyses. In several cases, such an integration in-

volves disparate data sources containing huge volumes of records

and must be performed in near real-time in order to support

critical applications. In this paper, we propose the first summa-

rization algorithms for speeding up online record linkage tasks.

Our first method, called SkipBloom, summarizes efficiently the

participating data sets, using their blocking keys, to allow for

very fast comparisons among them. The second method, called

BlockSketch, summarizes a block to achieve a constant num-

ber of comparisons for a submitted query record, during the

matching phase. Additionally, we extend BlockSketch to adapt

its functionality to streaming data, where the objective is to use

a constant amount of main memory to handle potentially un-

bounded data sets. Through extensive experimental evaluation,

using three real-world data sets, we demonstrate the superiority

of our methods against two state-of-the-art algorithms for online

record linkage.

1 INTRODUCTION
Massive amounts of data, stored in disparate data sources, have

to be integrated and matched to support data analyses that can

be highly beneficial to businesses, governments, and academia.

Record linkage, also known as entity resolution or data matching,
is the process of identifying records that match, i.e., refer to the

same real-world entity. The lack of common unique identifiers

for records that belong to different data sources, as well as the

existence of variations, errors, misspellings, and typos in various

data fields, constitute record linkage a challenging process. Tradi-

tionally, record linkage consists of two main steps: blocking and

matching. In the blocking step, records that potentially match

are grouped into the same block. Subsequently, in the matching

step, records that have been blocked together are examined to

identify those that match. Matching is implemented using either

a distance function, which compares the respective field values of

a record pair against specified distance thresholds, or a rule-based
approach, e.g., “if the surnames and the zip codes match, then

classify the record pair as matching".

Several blocking approaches have been developed with the

aim to scale the record linkage process to Big data sets without

sacrificing accuracy [1, 6, 14, 32]. These methods perform the

linkage process offline and provide the result set only when the

entire linkage process has been completed. Given the size of mod-

ern data sets and the costly operations that have to be performed

for record linkage, offline methods can take a significant amount

of time to produce the matchings. There are many cases though,

where the linkage process has to return a fast response in order

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

to allow for emergency actions to be triggered. Let us assume, for

example, a central crime detection system that collects data from

several sources, such as crime and immigration records, central

citizens’ repositories, and airline transactions. Query data about a

suspect could be submitted to this system in order to be matched

with any possible similar records found therein. The results of

this process have to be reported as fast as possible or, at least,

within an acceptably low time period, in order to trigger police

enforcement actions.

As another example, consider the recent series of bank and

insurance company failures, which triggered a financial crisis of

unprecedented severity. In order for these institutions to recover

and return to normal business operation, they had to engage in

merger talks. One of the driving forces of such mergers is the

appreciation of the extent to which the customer databases of

the constituent institutions are shared, so that the benefits of the

merger can be proactively assessed in a timelymanner. A very fast

estimation of the extent of the overlap of the customer databases

is thus a decisive factor in the merger process. To achieve this,

the data custodians could use summaries of their databases in
order to quickly estimate the overlap of their customers, instead

of engaging in a tedious record linkage task. Although our moti-

vation comes from the summarization of the blocking structure

of a database, we believe that database summarization is an area

of great interest with applications beyond record linkage.

To support real-world applications where record linkage has

to be performed in near real-time, several online record linkage

approaches have been proposed in the literature [5, 10, 24, 31].

These approaches require the availability of large amounts of

main memory, which is necessary in order to store their corre-

sponding data structures. For instance, [5] utilizes large inverted

indexes, while [10, 24, 31] sort the records to form blocks by

leveraging large matrices or huge graphs. Despite several efforts

to utilize small amounts of memory, e.g., [24], the results in terms

of performance clearly indicate the inability of these algorithms
to handle an increasingly large volume (or a continuous stream) of
records in a real-time fashion. Given that main memory is always

bounded and the number of records may in several real-world

applications be unbounded, the performance of these data struc-

tures quickly degrades significantly. Furthermore, in order to

deal with this plethora of records and detect the matching pairs,

the proposed methods usually resort to conducting an excessive
number of distance computations. This strategy, however, is not
efficient, since it incurs significant delays to the record linkage

process.

In this paper, we introduce three methods for efficiently man-

aging large volumes of records in the context of online record

linkage. Our first method, called SkipBloom, performs a summa-

rization (synopsis) of the blocking structure of a data set using a

small footprint of main memory, whose size is logarithmic in the

number of distinct processed blocking keys. This synopsis can

be easily transferred to another site (or used remotely) to esti-

mate the common number of blocking keys. Such a preliminary

estimation may bring to surface important insights, which can

Series ISSN: 2367-2005 73 10.5441/002/edbt.2018.08

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.08

be further analyzed by the data custodians. The outcome of such

analyses may encourage (or discourage) the data custodians to

conduct a full-scale record linkage task.

Our second method, called BlockSketch, tackles the prob-

lem of blocks that are overwhelmed with records, which should

be compared against a query record to detect matching pairs.

BlockSketch instead of implementing the naïve linear approach,

compares the query record with a constant number of records
in the target block, which entails a bounded matching time. In

order to achieve this optimization, BlockSketch compiles, for

each block, a number of sub-blocks, which reflect the distances

of the underlying blocked records from the blocking key. The

algorithm places a query record to the sub-block whose records

exhibit the smallest distances from the query record.

Our third method, called SBlockSketch, operates on data

streams, where the entire data set is not known a-priori but,

instead, there is an unbounded stream of incoming data records.

SBlockSketch maintains a constant number of blocks in main

memory at the cost of a time overhead during their replacement

with blocks that reside in secondary storage. In this scheme, we

propose a selection algorithm to effectively select the blocks that

should be replaced, by taking into account their selectivity (by

the incoming records) and age.

To the best of our knowledge, SkipBloom is the first algorithm
for creating an appropriate synopsis of a blocking structure, while

BlockSketch and SBlockSketch are the first methods for suffi-

ciently summarizing a block for the needs of the matching phase

of a record linkage task.

The rest of this paper is structured as follows: Section 2 presents

the related work, while Section 3 outlines the building blocks

utilized by our algorithms and provides the formal problem defi-

nition. Sections 4, 5, and 6 present our proposed algorithms from

both a practical and a theoretical point of view. The results of

our experimental evaluation, including a detailed comparison

with baseline methods, are reported in Section 7, while Section 8

concludes this work.

2 RELATEDWORK
A significant body of research work has been conducted in record

linkage during the last four decades. This work has been nicely

summarized in a number of survey articles [4, 9, 30]. However,

only a very limited amount of work has targeted the area of near

real-time record linkage, such as [5, 7, 8, 12, 15].

In [5], Christen et al. present an approach that involves a pre-

processing phase, where the authors compute the similarities be-

tween commonly blocked values, using a set of inverted indexes.

The authors use the double metaphone [3] method to encode the

string values, which are then inserted into the inverted indexes.

This scheme is extended in [27], where a heuristic method is

presented to index the most frequent values of data fields. This

method, though, requires a-priori knowledge of the values in

certain fields and is not well-suited for settings where highly

accurate results are needed. Ramadan and Christen in [26] utilize

a tree structure where a sorting order is maintained according

to a chosen field(s). A query record scans not only the node that

is inserted, but also its neighboring nodes where similar records

may also reside. Nevertheless, the distance computations that

should be performed may degrade considerably the performance

of this method in online settings.

Dey et al. in [7] develop a matching tree to speed up the

decision about the matching status for a pair of records, so that

it can be made without the need to compare all field values.

However, the performance of this method depends heavily on

the training of the matching tree, which requires a large number

of record pairs. Moreover, the authors do not draw any attention

to the acute problem of reducing the record pairs comparisons.

Ioannou et al. in [8] resolve queries under data uncertainty, using

a probabilistic database. The effectiveness of their method heavily

depends on the potential of the underlying blocking mechanism,

which is used implicitly, to produce blocks of high-quality. In

[12], Altwaijry et al. propose a set of semantics to avoid resolving

certain record pairs. Their scheme, however, focuses on how to

resolve generic selection queries (e.g., range queries), rather than

on minimizing the query time.

There is also another body of related literature that deals with

progressive record linkage (e.g., [10, 24, 31]). These techniques

report a large number of matching pairs early during the linkage

process and are quite useful in the event of an early termination

of the linkage process, or when there is limited time available for

the generation of the complete result set.

The solutions proposed byWhang et al. in [31] and Papenbrock

et al. in [24] are empirical and rely heavily on lexicographically

sorting the input records to formulate clusters of similar records.

Although the sorting technique is quite effective in finding simi-

lar values in certain cases, it cannot guarantee identification of

matching record pairs. Consider, for example, the similar strings

‘Jones’ and ‘Kones’, where the first letter has been mistyped; us-

ing [24, 31], the corresponding records would definitely reside

in different clusters (assuming a large number of records). Con-

sequently, the corresponding pair of records would never be

considered as matching.

More recently, Firmani et al. [10] introduced two progressive

strategies that provide formal guarantees of maximizing recall,

focusing though only on minimizing the number of queries to

an oracle (which is an entity that replies correctly about the

linkage status of a pair) and not on minimizing the running

time. Both strategies implicitly assume an underlying blocking

mechanism that has been applied on the data sets, and heavily

rely on the effectiveness of that blocking mechanism. Their most

serious shortcoming is the excessive amount of time-consuming

similarity computations, which need to be performed between

the formulated pairs in the blocks, without achieving any increase
in recall. For example, in a data set of 3million records (including

the query set), more than 1.3 billion similarity computations

should be performed without reporting any results!

There is also another body of work, termed as meta-blocking
[22, 23], which investigates how to restructure the generated

blocks with the aim of discarding redundant comparisons. Meta-

blocking techniques, however, conduct a cumbersome transfor-

mation of a blocking structure into a graph, which renders these

techniques not applicable to online settings.

In Section 7, we elaborate further on the approaches of Chris-

ten et al. and Firmani et al., which are the state-of-the-art methods

with which we compare our proposed techniques.

3 BACKGROUND AND PROBLEM
STATEMENT

In this section, we first introduce the necessary background and

terminology for the understanding of our proposed schemes, and

subsequently derive the problem statement.

74

‘Bob’ ‘Ceilia’ ‘Jack’ ‘Larry’ ‘Mary’

 ‘Bob’ ‘Jack’ ‘Mary’

‘Bob’ ‘Mary’

1010010010

0010110010
Key ‘John’ is inserted into the
current Bloom filter of ‘Jack’.

k = ‘John’

0010110010
current Bloom filter

Figure 1: SkipBloom inserts and locates a key in logarithmic time using a small amount of main memory. The blue rectan-
gles and arrows indicate the route to locate the nearest key to k .

3.1 Skip List
A skip list [25] is a probabilistic data structure that is designed

to provide fast access to an ordered set of items. It is actually

a sequence of lists, or levels, where the first list, termed as the

base level, contains all the items inserted so far in sorted order.

Each successive list is a copy of the previous with some elements

skipped, until the empty list is reached. Its randomization lies in

the number of levels an item will join, determined by tossing a

fair coin
1
. Each item of each list is linked to the same item in the

previous list, as well as to the next item at the same level. The

query operation for an item starts at the top-level, by horizontally

scanning the items therein until it encounters either the target

item or a larger item. In the case of a larger item, the same process

is repeated at the lower level until the base level is reached. The

running time to insert an item, as well as to report the existence

of an item, is O(log(n)), where n is the number of inserted items.

3.2 Bloom Filter
A Bloom filter [2] is a probabilistic data structure for representing

a large number of items using a small number of bits, which are

initialized to 0, to efficiently support membership queries. Each

item is hashed by a set of universal hash functions that map

it to certain positions, chosen randomly and uniformly, in the

Bloom filter. Accordingly, these positions are set from 0 to 1.

Upon querying for an item, the same process is followed, where:

• one can definitely infer that this item has not appeared, if

all retrieved positions are set to 0.

• one can conjecture that this item has appeared with cer-

tain probability, if all retrieved positions are set to 1. The

probabilistic nature of the reply is due to the fact that these

positions may have been set to 1 by other items and not

the query item.

3.3 Problem Formulation
Consider two data custodians who own data sets A and B, re-
spectively. For each record r of A (or B), the data custodians use

1
As long as tails come up, we add the item to each successive list. We terminate

this process when we encounter heads.

a function k = block(r) that generates the blocking key k of r .
This key is used to locate a target block in the blocking struc-

ture to either insert r into the target block (blocking), or iterate

all the records already found therein and compare them with

r (matching). We use DA and DB to denote the set of blocking

keys of each of these data sets. Moreover, we refer to the fraction

D =
|DA∩DB |
|DB |

, as the overlap coefficient between A and B.

In this workwe introduce three algorithms, namely SkipBloom,
BlockSketch, and SBlockSketch, for addressing the following
problems

2
:

Problem Statement 1. Calculate the overlap coefficient for
A and B, by accurately summarizing DA and DB using sublin-
earmemory requirements and sublinear running time in the
number of inserted blocking keys.

Problem Statement 2. For each query record of A (or, equiv-
alently, B), find the set of its matching records from B (or, equiva-
lently, A) in constant running time.

Problem Statement 3. For each query record of A (or, equiv-
alently, B), find the set of its matching records from B (or, equiv-
alently, A) in constant time, using also a constant amount of
main memory.

4 THE OPERATION OF SKIPBLOOM
SkipBloom is an efficient blocking data structure that reports

membership queries of blocking keys (derived from a large data

set) to the blocking structure, using only a small footprint of

main memory. It implements the following generic operations:

• query(k): Reports the membership (true or false) of key
k to SkipBloom.
• insert(k): Inserts key k into SkipBloom.

The operation of SkipBloom is based on a skip list that imple-

ments a mechanism to locate efficiently a blocking key, as well

2SkipBloom aims to address Problem 1, BlockSketch targets Problem 2, while

SBlockSketch tackles Problem 3.

75

Figure 2: SkipBloom inserts a reference from the list of
Bloom filters of ‘Johnson’ to the first Bloom filter of
‘Johns’, in order to maintain the consistency of the block-
ing mechanism.

as on a series of Bloom filters, which are used as fast memory-

bounded buffers.

SkipBloommaintains, in expectation,

√
n blocks in main mem-

ory, stored in the base level of the skip list. Each such block,

which is represented by its key
3
, includes a list of Bloom filters

in order to store keys that have been driven by the mechanism

of the skip list to this block. This actually means that the keys

stored in the Bloom filters of a block are greater than the value

of the corresponding key.

The operation of SkipBloom is illustrated in Figure 1. In this

figure, a skip list is shown that contains five keys in the base

level. Upon receiving a query record, which is first filtered by a

blocking function to generate its key (e.g.,k = ‘John’), SkipBloom
locates the block ‘Jack’ very fast, using the logarithmic runtime

property of the underlying skip list. According to the operation

of skip lists, this block is alphabetically the nearest key to k from

the left. The next step is a simple insertion of k into a Bloom

filter of ‘Jack’. Each block has an active Bloom filter, termed as

current, and a number of inactive Bloom filters, which are used

only during the query process, as we will shortly explain.

To answer a query on whether a certain key k exists or not,

SkipBloom follows almost the same process as described above.

Assume, for example, that SkipBloom receives the query k =
‘Jonathan’. First, the skip list will be scanned to eventually locate

‘Larry’. Subsequently, each Bloom filter of this block will be it-

eratively queried until k is found, or the Bloom filters of ‘Larry’
are exhausted.

In what follows, we provide details that will justify certain

design choices, such as the reason for maintaining a series of

small (in length) Bloom filters in each block, instead of having

a larger one. In order to populate the skip list with keys, we

apply a simple Bernoulli random sampling algorithm that chooses

each key with probability equal to n−1/2. This sampling process

ensures the uniform reflection of the distribution of keys from

the data set to the skip list. This is an appealing feature, since

SkipBloom easily tackles distribution anomalies, such as skews of

certain ranges of keys, by choosing these keys and inserting them

into the skip list to effectively reduce the bottleneck of certain

keys and maintain uniformity (in expectation). Any uniform

sampling method can be applied; we refer the interested readers

to a comprehensive survey in [13].

If a large number of similar keys are generated, then the sam-

pling routine will choose randomly similar keys to create the

corresponding blocks. For example, consider the case of blocking

a large number of surnames from the US census data. Then, possi-

ble blocks might be ‘Johns’, ‘Johnson’, and ‘Johnston’, which will

3
Henceforth, key and blocking key will be used interchangeably.

be created in this particular chronological order. Consequently,

there will be keys other than ‘Johns’, e.g., ‘Jordan’ or ‘Jolly’, that
will be inserted into the Bloom filters of ‘Johns’. These Bloom
filters should be now transferred to (or referenced by) ‘Johnson’,
and then to (by) ‘Johnston’. For this reason, we keep the number

of keys that can be inserted into each Bloom filter small; this

number will be accurately specified later. Moreover, we anno-

tate each Bloom filter with its smallest and its greatest key, in

terms of alphabetical order. By doing so, upon inserting ‘Johnson’,
SkipBloom scans iteratively the Bloom filters of ‘Johns’ to locate

Bloom filters that might contain ‘Johnson’, or any greater values.

If such Bloom filters exist, a simple reference is established be-

tween the block of ‘Johnson’ and the corresponding Bloom filters.

Figure 2 illustrates the reference of a block to a Bloom filter that

belongs to the previous block.

Eventually, a record is stored into a key/value database system,

maintaining its original blocking key, regardless of the block that

was used in SkipBloom.

Algorithm 1 The query operation of SkipBloom.

Input: Skip list SL, query key k
Output: true if k is found, false otherwise
1: Key p ← SL.query(k)
2: while (p.hasBloomfilters()) do
3: bf← p .nextBloomfilter()
4: if (k ≥ bf.min AND k ≤ bf.max) then
5: if (bf.member(k) == true) then
6: return true
7: end if
8: end if
9: end while
10: return false

4.1 Algorithms
Algorithm 1 illustrates the query operation of SkipBloom. First,
the skip list SL is queried to locate the nearest key p to the query

k (line 1). Then, the Bloom filters that are both maintained and

referenced by p4 (line 2) are scanned iteratively to find k using

the min and max values of each Bloom filter (line 4). If k is found,

then the algorithm terminates (line 6). In case of composite keys,

we perform a conjunction using the individual keys.

Algorithm 2 outlines the insertion of a key in SkipBloom.
For each key k derived from each record, we determine with

probability
1√
n
whether k will be inserted into the skip list or

not (line 1). In more detail, we generate a random value in (0, 1)

and then pick k if this value is less than
1√
n
. Since the generation

of a random value is an expensive operation, we exploit the fact

that the number of keys skipped between successive inclusions

follow a geometric distribution [13]; accordingly, each time we

pick a key, we generate the position of the next key, in the stream

of records, that will be picked.

If a key k will be inserted into the skip list as a base level key,

then a block is created after the nearest key to k (line 2). Then,

SkipBloom has to locate each Bloom filter of p that may contain

keys that should be now transferred to the newly created block

of k (lines 4–8). In order to easily locate these Bloom filters, we

annotate each Bloom filter used with the min and max keys it

contains (line 5). The inclusion of a Bloom filter with a valid

range of keys is achieved through a reference from p to k .
If a key will not be stored in the skip list, then the nearest key

p to k is located in order to insert k in the current Bloom filter of

4SkipBloom locates these Bloom filters performing a recursive process.

76

Algorithm 2 The insert operation of SkipBloom.

Input: Skip list SL, key k
1: if (nextSample() == true) then
2: Key p← SL.insert(k) ▷ Key p is the nearest (previous) key to k
3: List bfList← k .createList() ▷ The list bfList that will

host the Bloom filters of k is created

4: for each bf in p do
5: if (k ≥ bf.min AND k ≤ bf.max) then
6: bfList.add(bf) ▷ A reference is added

to each Bloom filter found in p
that might contain keys that belong to k

7: end if
8: end for
9: else
10: Key p ← SL.query(q)
11: bf← p .getCurrentBloomFilter()
12: bf.insert(k)
13: if (k ≤ bf.min) then
14: bf.min← k
15: end if
16: if (k ≥ bf.max) then
17: bf.max← k
18: end if
19: end if

p (lines 10–12). Algorithm 2 eventually updates the min and max
annotations of the current Bloom filter of p (lines 13–18).

4.2 Accuracy and Complexity Analysis
As we expect

√
n blocks in the base level of the skip list, where

the sampling process ensures a uniform distribution of the corre-

sponding blocking keys, the expected number c of keys in each

block is:

E[c] =
n
√
n
=
√
n. (1)

By setting u =
√
n/m to be the maximum number of keys that

will be stored in each Bloom filter, wherem is a constant value

(e.g., m = 10), the number of Bloom filters in each block will

be (in expectation) equal tom. Furthermore, the numbermbt of

Bloom filters contained in block b at time t , specifies the upper
and lower bound of the number nbt of the distinct keys inserted,
which is:

(mbt − 1)

√
n

mbt
≤ nbt ≤ mbt

√
n

mbt
. (2)

The accuracy of SkipBloom to report the existence of a key

depends on the false positive probability parameter fp of the

Bloom filters. First, consider the event where a query key does

not exist in any Bloom filter of the resulting block. The probability

of reporting correctly this event, using one such Bloom filter, is

1 − fp. Hence, the same probability by using collectively all the

m Bloom filters is:

(1 − fp)m , (3)

since the content of a Bloom filter is independent from that of

another Bloom filter.

In the case that a query key does exist in any
5
Bloom filter

of the resulting block, the probability of reporting this event

is 1. Therefore, we bound from below the error probability of

SkipBloom by 1 − (1 − fp)m .

Computational complexity: Based on Algorithm 1, the run-

ning time of querying SkipBloom isO(log(
√
n)+m+m

√
n), where

the first term denotes the time of scanning the skip list to locate

the appropriate block, the second term denotes the time of scan-

ning the Bloom filters found therein, and the last term is the time

of scanning the Bloom filters referenced directly or indirectly by

the chosen block.

5
Since, we expect to have duplicate keys, it is quite natural that the same key may

be stored into multiple Bloom filters of a block.

Algorithm 2 suggests that the running time of an insertion of

a key into SkipBloom is O(log(
√
n) +m), where the two terms

are the time of inserting a key into the skip list and the time of

scanning the Bloom filters of the nearest key, respectively.

Memory complexity:Thememory requirements of SkipBloom
are O(2

√
n+
√
nm) = O(

√
n(2+m), because the skip list contains

O(2
√
n) keys and each key in the base level of the skip list consists

of O(m) Bloom filters.

4.3 Using SkipBloom as a Synopsis of the
Universe of Blocking Keys

SkipBloom can be used as a synopsis, termed also as summariza-
tion, of the universe of the blocking keys of a database, in order to
facilitate an accurate pre-blocking process. During the execution

of this process, the data custodians will resolve very fast the com-

mon blocks, which will be of great assistance in estimating the

running time, in terms of the number of comparisons that will be

needed (by exchanging the number of records in each common

block). In turn, the data custodians will determine whether they

will perform the linkage process or not, by considering several

factors based on these preliminary results. For instance, if the

number of common blocks is very small, then (a) the chances of

identifying similar, or matching, record pairs are rather slim, and

(b) the record linkage process itself may not be cost-effective.

Let us now consider the following scenario. Data custodian

A generates a SkipBloom from database A, which is submitted

to data custodian B. Subsequently, data custodian B iterates her

blocking keys and queries the SkipBloom, which reports positive

or negative answers for the existence of the query keys. This

entails O(n(log(
√
n)+m +m

√
n)) = O(n(log(

√
n)+
√
n)) running

time,
6
since each key of B is queried against the SkipBloom of A.

To further accelerate this process, data custodian B also gen-

erates a SkipBloom, to compile a uniform sample of keys and

to use this SkipBloom to report membership queries. The keys

found in the base level of the skip list are now queried against

the SkipBloom of A, as illustrated in Figure 3.

Figure 3: The blocking keys of the databases are packed
into their corresponding synopses, each of which is imple-
mented as a SkipBloom (symbolized by SB). These synopses
are used to draw inferences about the source databases.

Since, the keys of B constitute a randomly and uniformly cho-

sen sample, they can be used as input to a Monte Carlo simulation

[21], which will estimate the proportion (or the number) of identi-

cal blocking keys between the data sets of the two data custodians.

Using only the synopses, the data custodians will acquire a clear

picture about the overlapping keys with certain approximation

guarantees. Monte Carlo simulation requires (ϵ2ϑ)−1 (ignoring a
small constant factor) keys from B in order to exhibit relative er-

ror ϵ with high probability. Since the proportion of identical keys

is unknown, we bound it from below with a reasonable value, e.g.,

ϑ = 0.05, to approach the number

√
n of the sampled keys that

6
We assume that the number of distinct blocking keys is n in both A and B .

77

Figure 4: Illustration of a block with λ = 2 sub-blocks,
whose key is <‘John’, ‘Jon’>. BlockSketch inserts records
into the sub-blocks based on the distance of the key values
of these records from the chosen representative(s). The
sub-block for which one of its representatives exhibits the
smallest distance from the key values of a record, is cho-
sen as the target sub-block.

are contained in the SkipBloom of B. Even for a relatively small

n = 10
8
, the Monte Carlo simulation will provide its guarantees,

since

√
n is greater than the required number of sampled keys

for ϵ ≥ 0.05. The fraction of the overlapping keys found in the

sample is used as an estimate for the overlap coefficient of the

keys between the two databases. By comparing the synopses, we

eventually achieve the much faster O(
√
n(log(

√
n)+
√
n)) running

time, compared to using only the synopsis of data custodian A.

5 THE OPERATION OF BLOCKSKETCH
The existence of blocks that contain a large number of records

makes the matching phase (i.e., the comparison of query records

against every record found in a target block) prohibitively expen-

sive in highly demanding environments. The situation becomes

even more challenging in environments where the matching

record pairs have to be reported in near real-time.

To address this shortcoming, in this work we opt for a dif-

ferent strategy: we compare the query record with a constant
number of records of the target block, which entails a bounded

matching time. This optimization requires maintaining λ sub-

blocks (S1, S2, . . . , Sλ) in each block, whose aim is to represent

sufficiently the records inserted so far. In our proposed represen-

tation, a number of records play the key role of representatives for
each sub-block. This allows to formulate groups of records inside

each block that are more likely to match. We term our proposed

algorithm as BlockSketch, because a small number of records

comprise a sketch that represents sufficiently the records of an

entire block. The concept of sufficient representation boils down

to choosing representatives that exhibit certain distances from

the corresponding blocking key. We note that BlockSketch can

operate either autonomously or in conjunction with SkipBloom,
where the latter will be used as a fast bounded memory to report

whether a certain blocking key has appeared or not.

The fact that certain records are inserted into a block, using

a blocking function, implies that all these records share some

degree of similarity. Therefore, it is reasonable to assume that the

distance between a key and a record
7
will be upper bounded by

λθ . Hence, BlockSketch formulates λ sub-blocks, each of which

7
The distance either between a pair of records, or between a blocking key and a

record, is determined by the distances of the certain field values, part of which

usually make up the blocking key.

represents records with distances ≤ θ , ≤ 2θ , . . . , ≤ λθ from the

key, where θ is the distance threshold of the keys of a pair of

matching records. Upon receiving a key, BlockSketch aims to

insert this record into the sub-block of the target block, where it

is more likely to formulate matching record pairs. For this reason,

each key is compared against all representatives found in a block,

in order to locate the sub-block whose representative exhibits

the smallest distance from the newly arrived key.

As an example, assume that we use edit distance as the sim-

ilarity metric, θ = 2 and λ = 3, and a blocking key is used that

consists of the first three letters and the whole value of the sur-
name and given name attributes, respectively. As Figure 4 shows,
record <‘John’, ‘Jones’, 1970>, whose key values exhibit a total

distance of 2 ≤ θ from <‘John’, ‘Jon’>, is inserted into the 1-st

sub-block, because of the representative <‘John’, ‘Jon’>. Similarly,

<‘John’, ‘Jonker’, 1975>, whose distance is 3 ≤ 2θ from <‘John’,
‘Jon’>, is inserted into the 2-nd sub-block, due to the comparison

with the representative <‘John’, ‘Jonkers’>.
It is important to note that for threshold θ any metric that

is used in record linkage processes can be supported, whether

satisfying the triangle inequality or not. For example, a very

commonly used metric in record linkage is the Jaro-Winkler

similarity function [3], which takes on values in [0, 1]. Hence,

one by setting the similarity threshold to θ ′, and then by choosing
θ = 1 − θ ′, produces very reasonable sub-blocks.

The probability for a record to fall into a certain sub-block

that holds its matching record, depends on the representatives of

the target sub-block, as well as on the left and right neighboring

sub-blocks. For instance, assume two neighboring sub-blocks

with representatives ‘Jacks’ and ‘Jackson’, respectively. The keys
of these representatives comprise the values of the ‘surname’
attribute. Key ‘Jackson’ arrives, whose record is inserted into the

identical sub-block of ‘Jackson’. At a later time, ‘Jacksn’ arrives,
that suffers from a typo, whose record is inserted into the sub-

block of ‘Jacks’. We have thus missed the formulation of one

matching record pair. BlockSketch tackles this deficiency by

using more than one representatives for each sub-block8, so as

to give more chances for grouping together matching record

pairs. By doing so, if record a has been inserted into a sub-block,

BlockSketch compares the key of its matching record b with

more similar representatives to record a. To keep the number

of representatives of a sub-block constant, whenever a key is

chosen for inclusion in a sub-block, the algorithm tosses a coin

to determine if this newly inserted key would be a representative

as well. If it is chosen, a randomly picked old representative is

evicted from the set of representatives.

As a last step, the query record is inserted into that sub-block

which is maintained by a key/value database. The pairs formu-

lated in this sub-block constitute the final result set.

5.1 Algorithm
Algorithm 3 outlines the basic operation of BlockSketch. For
a query record q, the algorithm first retrieves an object S that

contains the corresponding sub-blocks, either from a key/value

database or from a cache structure in main memory (line 2).

BlockSketch then iterates over the representatives of each sub-

block and performs the distance computations between the key

values of q and these representatives,
9
whose results are stored

in array u (line 5). The representative that exhibits the smallest

8
The exact number of representatives will be specified later.

9
A representative, being essentially a blocking key, has only key values.

78

distance from the key values of q specifies the sub-block (line 12)

into which q is finally inserted (line 17). For ease of presentation,

we omit from Algorithm 3 the details regarding the random

choice and eviction of a representative from a sub-block.

Algorithm 3 The core operation of BlockSketch.

Input: Query record q
1: k← block(q) ▷ Function block(·) generates the

blocking key, which will be used to

look up the corresponding sub-blocks.

2: SubBlocks S ← retrieve(k) ▷ S , which is retrieved

from secondary storage or

from a cache structure,

contains the sub-blocks of block k .
3: for i = 1 to λ do
4: for j = 1 to ρ do
5: u[i][j] ← d (k, S [i][j]) ▷ S [i][j] denotes the j-th

representative of the i-th sub-block.

6: end for
7: end for
8: min← u[1][1]
9: for i = 1 to λ do
10: for j = 1 to ρ do
11: if (min > u[i][j]) then
12: min← i ▷ Find the i-th sub-block whose at least

one of its representatives exhibits

the smallest distance from k .
13: end if
14: end for
15: end for
16: represent(k , min) ▷ Determine with a coin toss

if k would be a representative for

the chosen sub-block.

17: insert(q, k, min) ▷ Store q in a key/value database by

setting the key as the concatenation of k and min.

5.2 Accuracy and Complexity Analysis
The probability of a record to fall into the correct sub-block is 1/λ,
since it completely relies on the distance from the corresponding

representative. Hence, the inverse probability of a record not

falling into the correct sub-block, and therefore not formulating

a record pair, is ≤ 1 − 1/λ. In order to amplify the probability of

formulating a matching record pair, we give more chances for

grouping together the two constituent records, by comparing

each key with a number ρ of representatives, chosen randomly

and uniformly from the underlying stream. We rigorously spec-

ify the required number of representatives that each sub-block

should maintain, as the following lemma suggests.

Lemma 5.1. If a pair of records, which constitute a matching
pair, has been brought in a certain block, then by maintaining
ρ = λ ln(1δ) representatives in each sub-block, this matching pair
is detected with probability at least 1 − δ .

Proof. The probability of not detecting a matching pair that

exists in a certain block is (1 − 1

λ)
ρ
. We bound this probability

above by δ and solve for ρ in the following:

(1 −
1

λ
)ρ < δ ≊ −

ρ

λ
< ln(δ) ⇐⇒ ρ > λ ln(

1

δ
), (4)

since ln(1 − 1

λ) ≤ −
1

λ . □

We subsequently apply the ceiling function on the value of ρ
(⌈·⌉), in order to select the smallest integer following ρ for the

sake of optimality. ■
Computational complexity: The running time of

BlockSketch is O(logn + λρ), which consists of the time

to retrieve a block from the database (which is logarithmic
10
),

and the execution of the subsequent λ × ρ distance computations

(ρ representatives for each of the λ sub-blocks).

Memory complexity: The storage requirements of

BlockSketch are O(λn), where n is the number of block-

ing keys.

6 THE OPERATION OF SBLOCKSKETCH
Let us now suppose that the number of records, which are ini-

tiated from multiple sources, e.g., from different hospitals, is

unbounded (or endless). This literally turns the record linkage

scenario of a large number of records, into the record linkage of a

stream of records. Therefore, BlockSketch will grow in both di-

rections; it will not grow only in terms of sub-blocks, but also its

number of blocks might unexpectedly grow considerably. Since

our main memory is bounded, BlockSketch adapts its operation
to record linkage tasks that involve streams of records.

In this version of BlockSketch, called SBlockSketch, we
bound the number of blocks, that are maintained in main mem-

ory, by an integer value µ which depends on the available main

memory. Since the number of blocks is bounded, SBlockSketch
applies an eviction strategy, so as to insert a newly arrived block-

ing key from the stream, when there is not an empty slot to

accommodate the corresponding block. We annotate each live11

block with (a) the number of incoming records that generated

its key, i.e., the number ξ of times this block has been chosen as

the target block, and with (b) its age α , in terms of the number

of times that this block has survived eviction, since its admission

into main memory. We derive the eviction status of each block

as follows:

es = e(wξ−α), (5)

where factorw adjusts the weight of successes ξ of a block to its

es. The intuition behind this scheme is that we promote (a) newer

blocks against older ones, and (b) blocks that exhibit higher eligi-

bility. The status of old blocks, that are additionally not chosen

by the incoming records, will exponentially decay, which will

result in their eviction from the main memory. SBlockSketch is

materialized by a hash table, which holds the live blocks, and the

corresponding sub-blocks, and a priority queue, that is used to

indicate which of these live blocks should be evicted in case of a

newly arrived block (key).

Figure 5 illustrates the components of SBlockSketch, namely

the hash table T and the priority queue pq. T exists in main

memory and contains a specified number µ of rows, each of

which holds a block, as a function of the available main memory.

Each row of T contains the sub-blocks of the corresponding

block. The priority queue pq stores the eviction status of each

live block in ascending order, so as to return the key of the block

that holds the minimum eviction status. In the example shown

in Figure 5, we observe that the block with key k4 has survived
α = 4 evictions and has not been chosen as target block since its

admission intoT . These two events lead inevitably to its eviction,
despite the existence of block k2, which has α = 10 survivals, but

it additionally exhibits ξ = 6 successes.

10
For instance, LevelDB (see https://github.com/google/leveldb) uses an in-memory

highly efficient multi-level data structure, which enables logarithmic disk seeks in

the number of stored blocking keys.

11
A live block is a block that is stored in main memory.

79

Figure 5: In this example, SBlockSketch uses a hash table
T with µ = 4 blocks, λ = 3 sub-blocks, and the weight of
successes set to w = 1.5. On the arrival of an incoming
new key, the block with key k4 is evicted because of its low
eviction status. The priority queue pq stores the eviction
status (on a logarithmic scale) of each live block.

6.1 Algorithm
Algorithm 4 illustrates the operation of SBlockSketch, using a
stream of data records. Upon receiving a record from the stream,

the algorithm first derives its key, and then queriesT (line 2). Only

if this query is fruitless, SBlockSketch resorts to the structures

of secondary storage (line 4). If the block that corresponds to

the incoming record exists neither inT nor in secondary storage,

then SBlockSketch initiates the eviction of the block fromT that

exhibits the minimum eviction status, as indicated by pq (line 7).

Eventually, SBlockSketch computes the eviction status of each

live block and rebuilds pq.

Algorithm 4 The eviction algorithm of SBlockSketch using a
stream of records.

Input: Query record q
1: k← block(q)
2: SubBlocks S ← T.get(k) ▷ Function get() retrieves an

entry from hash table T .

3: if (S == NULL) then
4: SubBlocks S ← retrieve(k)
5: end if
6: if (S == NULL) then
7: SubBlocks S← pq.poll(); ▷ pq is a priority queue

that holds the eviction status

of each live block in ascending order.

8: S.evict(); ▷ Function evict() transfers a certain
block, which is essentially a structure

of sub-blocks, from main memory

into secondary storage.

9: calculateStatus(); ▷ Function calculateStatus()
computes the status of each

live block and inserts it into pq.
10: end if

6.2 Accuracy and Complexity Analysis
The accuracy of SBlockSketch is not affected by the use of T ,
since the block in question might exist either in main memory or

in secondary storage. However, T , whose operations are of O(1)
time, affects both running time and space.

Computational complexity:The running time depends on two

mutually exclusive possibilities. The first one is when a block

exists inT , where the running time is O(λ) (see Section 5.2), while
the other possibility is when a block should be evicted from T .
The eviction requires accessing the priority queue, which is of

O(
√
µ) time, and then transferring the incoming block intoT . The

Table 1: Technical characteristics of the data sets used. The
blocking fields used, and their length (in characters) are
shown in bold (m = 5).

DBLP NCVR LAB

|Q | 300K 500K 100K

|A| 300M 500M 100M

fields ‘author’[50%], ‘given name’, ‘assay’[6],
‘venue’, ‘year’ ‘surname’[50%], ‘result’

‘address’, ‘town’ ‘year’
u = 3,465 u = 4,473 u = 2,000

latter step consumes, as we discussed in Section 5.2, O(log(n))
time in the number n of available blocks found in the secondary

storage. Finally, we have to add the time to build the priority

queue, which is O(µ log(
√
µ)). Hence, the total running time for

replacing a block is O(
√
µ + log(n) + µ log(

√
µ)).

Memory complexity: The space occupied in main memory is

exactly O(µλ), where µ corresponds to the rows and λ to the cells
of T (by assuming T as a two-dimensional array).

7 EXPERIMENTAL EVALUATION
For the experimental evaluation, we used three real-world data

sets, namely (a) DBLP
12
, which includes bibliographic data records,

(b) NCVR
13
, which comprises a registry of voters, and (c) LAB

14
,

which includes biological assays (e.g., albumin, hepatitis, or crea-

tinine) and their corresponding results. The technical characteris-

tics of these data sets are summarized in Table 1. For each record

of each data set, denoted by Q , we generated 1,000 perturbed

records, which were placed in a separate data set symbolized by

A. We perturbed all the available fields using at most four edit,

delete, insert, or transpose operations, chosen at random.

The blocking methods that were used for the needs of the

evaluation were standard [4] and LSH blocking [18], which relies

on the Locality-Sensitive-Hashing [11] technique. LSH blocking

generates from a single record a certain number of blocking keys

that are placed in multiple hash tables. This number of blocking

keys is a function of several parameters [19] of LSH blocking,

such as the distance threshold. The LSH technique is commonly

used in the domain of record linkage [17, 18, 20, 29] because

of its efficiency and accuracy guarantees. We used Hamming

LSH blocking [18], in which records are embedded into the Ham-

ming space using record-level Bloom filters [28]. LSH blocking

implements redundant blocking, because a record is inserted

into multiple independent blocks, which are accommodated into

independent hash tables. In contrast, standard blocking inserts

records that exhibit identical values, in an appropriately chosen

blocking field(s), into the same block.

For performing the standard and the LSH blocking, we utilized

LevelDB15 and LSHDB [16], respectively. The length of each

Bloom filter, utilized by SkipBloom, was set to 32,000 bits for

storing 5,000 keys, with false positive probability set to fp = 0.05.

We evaluated our schemes and their competitors according to

the time needed, and the memory that was consumed to perform

the record linkage process, as well as the recall and precision rates

12
http://dblp.uni-trier.de/xml

13
http://dl.ncsbe.gov/index.html?prefix=data/

14
https://idash-data.ucsd.edu/community/43

15
https://github.com/google/leveldb

80

that were achieved. We ran each experiment 20 times and plotted

the average values in the figures. The software components were

developed using the Java programming language (ver. 1.8) and

the experiments were conducted in a virtual machine utilizing 4

cores of a Xeon CPU and 32GB of main memory.

7.1 Baseline Methods
We compared our schemes with two state-of-the-art methods

for online record linkage. The first method, termed as INV [5],

uses inverted indexes as its basic blocking structure. The main

idea behind this method is the pre-computation of similarities

between field values that have been inserted into the same block.

An inverted index is used for this purpose, which stores the

blocking keys encoded by the double metaphone method
16
. A

weakness of this structure regards the storage of all field values

of a record into the same set of indexes. As a result, one cannot

be certain for a value encountered therein, to which field this

value belongs. This ambiguity affects negatively the recall rates

of INV.

The second method we compared against is the Edge Ordering

strategy, termed as EO, which was introduced in [10]. EO utilizes

an oracle, which is aware of the ground-truth, to resolve the

matching status of a record pair. A graph is constructed by as-

suming each record pair, which materializes an edge connecting

two vertices/records, formulated in each block. The algorithm

performs all similarity computations in the target block in order

to assign a probability estimate to each edge (pair) based on its

similarity. In turn, EO selects those edges that are expected to

maximize the recall, and submits them to the oracle that returns

their matching status.

Both EO and INV utilize only key/value pairs, materialized by

hash tables that map a key to list of record Id’s. These methods

do not offer any component to report efficiently the membership

of a certain key, or to adequately summarize the data set. Thus,

in order to be fair in our comparison with these methods, we

maintained the key/Id’s mappings, as well as the entire records,

in secondary storage.

Both the baseline methods and our proposed schemes used

the Jaro-Winkler [3] function as the similarity measure, where

the corresponding threshold was set to θ = 0.75.

7.2 Experimental Results
In our first set of experiments, we evaluated the running time

and memory performance, as well as the ability of the SkipBloom
algorithm to provide accurate estimates in the pre-processing

step of record linkage.

Figure 6a shows the total time needed to build the SkipBloom,
by scaling the number of the streaming records using the NCVR

data set. It is quite obvious that the time increases by a constant

factor, depending on the number of records that are processed.

The consumption of main memory is illustrated in Figure 6b,

where SkipBloom exhibits almost linear performance. Specifi-

cally, although the number of records increases by 10 and 50

times, SkipBloom utilizes 0.6GB, 0.8GB, and 1.4GB of main mem-

ory, respectively. In contrast, a map data structure, symbolized

by MAP, e.g., a HashMap in the Java programming language, ex-

hibits a steep linear performance. In both scenarios, MAP throws

fatal errors and terminates when it reaches the processing of

500M records.

16
Using the double metaphone encoding method, ‘SMITH’ and ‘SMYTH’ are both

encoded as ‘SM0’.

10M 100M 500M

100

500

800

1000

number of records

T
im

e
 (

in
 s

e
c
s
)

SB

MAP

(a) Time consumption

10M 100M 500M

1

5

15

number of records

R
A

M
 (

in
 G

B
)

SB

MAP

(b) Main memory usage

Figure 6: Scaling the number of records to measure the
time and space requirements of SkipBloom.

Table 2: Time (in seconds) consumed by SkipBloom for re-
porting the existence of a key.

10M 100M 500M

Time 0.000277 0.000315 0.000365

Table 3: Evaluating the accuracy of SkipBloom in estimat-
ing the fraction of matching pairs.

ϵ DBLP NCVR LAB

.10 0.94 ± .023 0.95 ± 0.021 0.94 ± 0.022

.05 0.97 ± .022 0.98 ± 0.021 0.98 ± 0.024

Table 2 illustrates the time consumed by SkipBloom to report

the existence of a key. We remind to the reader the probabilistic

nature of SkipBloom, whose performance depends on the num-

ber of comparisons that will take place until the target block is

located (which is O(log(
√
n))). For this reason, we observe that

SkipBloom almost consumes the same amount of time when it

has to process either 100M or 500M records.

The accuracy of SkipBloom is evaluated by the fraction of

overlapping keys it estimates using the above-mentioned data

sets. Table 3 clearly shows that SkipBloom approximates the

overlap coefficient of A and Q for each data set, where in the

worst case it exhibits an error nearly equal to 0.06 (which is

within its approximation guarantees specified by ϵ).
In the next set of experiments, we compared our schemes

against EO and INV. Figures 7a and 7b display the recall rates

achieved by all methods using standard and LSH blocking, respec-

tively. We observe in Figure 7a that EO exhibits slightly better

recall rates than BlockSketch, by using all data sets, although

the differences lie in the small range [0.01, 0.04]. Also, INV falls

short in formulating those matching pairs that exhibit a high

degree of perturbation, which is due to the weakness of the dou-

ble metaphone scheme to group together such pairs into the

same blocks. The recall rates of DBLP and NCVR are also higher

than LAB, which is due to the longer (in characters) blocking

keys, which render them more tolerant to the perturbation errors.

BlockSketch achieves to maintain high recall rates, although

we have to stress that the underlying blocking method drives

the whole linkage process. As Figure 7b suggests, LSH blocking,

which leverages redundancy, scores much better rates than stan-

dard blocking. Only BlockSketch and EO can use LSH blocking,

because they essentially run on top of the blocking mechanism.

81

DBLP NCVR LAB

0
.6

0
.8

1
.0

data sets

re
c
a
ll

BlockSketch

EO

INV

(a) Recall (standard)

DBLP NCVR LAB

0
.6

0
.8

1
.0

data sets
re

c
a
ll

BlockSketch

EO

(b) Recall (LSH)

DBLP NCVR LAB

0
.6

0
.8

1
.0

data sets

p
re

c
is

io
n

BlockSketch
EO
INV

(c) Precision (standard)

DBLP NCVR LAB

0
.6

0
.8

1
.0

data sets

p
re

c
is

io
n

BlockSketch
EO

(d) Precision (LSH)

Figure 7: Measuring the recall and precision rates using
standard blocking and LSH blocking.

On average, BlockSketch and EO achieve 10% and 8% higher

recall rates, respectively, using LSH blocking.

Figures 7c and 7d show the precision rates using the two dif-

ferent blocking approaches described before. As one can observe,

BlockSketch outperforms both EO and INV by a large margin,

due to the effective categorization of records into the sub-blocks

of each block. This minimizes significantly the required num-

ber of comparisons. Specifically, the precision rates of EO and

INV fall by 18% and 21%, respectively, compared with the rates

of BlockSketch. The reasons for this recession vary between

the two methods. EO starts to produce meaningful recall rates

after performing a large number of comparisons to derive the

probability estimates for each pair. These comparisons, however,

considerably reduce the precision rates. On the other hand, the

double metaphone scheme of INV groups a large number of non-

matching pairs into the same block, whose comparisons also

result in low precision rates. The redundancy of LSH blocking

accounts for the reduced precision rates of both BlockSketch
and EO, as shown in Figure 7d, since both methods perform a

larger number of comparisons for the pairs formulated in the

blocks of each hash table. We observe though that BlockSketch
retains its superiority over EO by scoring, on average, rates that

are very close to 0.75. The time needed to perform the block-

ing step is illustrated in Figures 8a and 8b. EO and INV block

each record a little faster than the combination of SkipBloom
and BlockSketch, which for each insertion have to perform a

constant number of comparisons with the representatives of the

sub-blocks. Specifically, BlockSketch, through a single get oper-
ation, retrieves the representatives of a block from the database,

as well as replaces them, through a single set operation, when
needed. INV utilizes three hash tables to store the precomputed

similarities, the encoded, and the original field values, which

leads to certain delays.

Table 4: Average time (in seconds) for resolving a query
record.

DBLP NCVR LAB

standard 0.0051 0.0055 0.0045

LSH 0.0097 0.0098 0.0088

DBLP NCVR LAB

5
2

0
3

0
4

0

data sets

ti
m

e
 (

in
 m

in
s
)

SkipBloom
EO
INV

(a) Blocking time (standard)

DBLP NCVR LAB

1
0

5
0

8
0

1
2

0

data sets

ti
m

e
 (

in
 m

in
s
)

SkipBloom
EO

(b) Blocking time (LSH)

DBLP NCVR LAB

5
2

0
3

0
4

0
5

0

data sets

ti
m

e
 (

in
 m

in
s
)

BlockSketch
EO
INV

(c) Matching time (standard)

DBLP NCVR LAB

1
0

5
0

1
0

0
1

5
0

data sets

ti
m

e
 (

in
 m

in
s
)

BlockSketch
EO

(d) Matching time (LSH)

Figure 8: Measuring the time needed for blocking and
matching for BlockSketch.

In Figures 8c and 8d, we present the time performance of

BlockSketch and its competitors for resolving the query data

sets, symbolized by Q (see Table 1), after having populated the

blocking structures with the records of A. For each query record

of Q , BlockSketch performs a constant number of comparisons

in each target block, which results in superior performance. As

Figure 8c suggests, BlockSketch is 2× and 1.5× faster than EO

and INV, respectively, which both struggle to compare all records

found in a block. Moreover, EO should build the graph to locate

these record pairs that are expected to maximize the recall. Using

LSH blocking, which is shown in Figure 8d, both BlockSketch
and EO exhibit longer time rates, which are nearly 3× slower than

before, due to the inherent redundancy of LSH. Since, a record

pair might appear several times during the matching phase, for

each record of Q , we utilize a map data structure
17

to discard

the comparisons of duplicate record pairs. Table 4 illustrates

the time for resolving a single query record of Q during the

matching phase. The constant number of distance computations

for a single record accounts for the stable time performance of

BlockSketch regardless of the size of the corresponding data set.
In contrast, EO and INV consume running times which apart from

the fact that in most cases they are almost the double of those of

BlockSketch, they also depend on the number of records found

in each block.

17
The map structure is initialized for each record of Q .

82

DBLP NCVR LAB

5
2

0
3

0
4

0
5

0

data sets

ti
m

e
 (

in
 m

in
s
)

Blocking
Matching

(a) Running time (standard
blocking)

DBLP NCVR LAB

1
0

5
0

1
0

0
1

5
0

data sets
ti
m

e
 (

in
 m

in
s
)

Blocking
Matching

(b) Running time (LSH)

Figure 9: Measuring the time needed for blocking and
matching for SBlockSketch.

500K 1M 2M

1
0

5
0

1
0

0
1

5
0

values of µ

ti
m

e
 (

in
 m

in
s
)

Blocking
Matching

(a) Running time (standard)

500K 1M 2M

5
0

1
5

0
2

5
0

3
5

0

values of µ

ti
m

e
 (

in
 m

in
s
)

Blocking
Matching

(b) Running time (LSH)

Figure 10: Measuring the time needed for blocking and
matching for SBlockSketch by varying µ using the NCVR
data set.

In SBlockSketch, we initially set µ to a moderate size (µ =
1M

18
). In Figures 9a and 9b, we observe an average of 10% in-

crease in time consumption than BlockSketch, only in NCVR

and DBLP. The large number (over 60M) of distinct blocking

keys that are generated in these data sets, resulted in relatively

frequent evictions and disk seeks for the replacement of blocks

in T . Nevertheless, the eviction status of highly selective (high

ξ) but old (high α) blocks remained high during the blocking

phase, which prevented their eviction from T . The running time

of LAB remained almost intact due to the small number of block-

ing keys (about 10M) and the corresponding replacements. Since,

SBlockSketch utilizes a single hash table T , LSH keys were for-

mulated in a composite format HashTableNo_Key to accommo-

date all of them in T .
We next varied the values of µ and initiated the streaming

of records of the NCVR data set. Figures 10a and 10b illustrate

the time performance of SBlockSketch, where we observe that
by doubling µ, we achieve significantly lower running time. For

instance, by setting µ = 1M, the corresponding time value is 43

minutes, which is almost 4× faster than the previous value (156

minutes) on the y-axis. In LSH blocking, the number of incoming

records increases by a constant factor, which is the number of

the LSH keys that are generated for each record. Since a large

number of these keys are identical, the running time increases

by 156% on average, as Figure 10b suggests, compared to the use

of standard blocking.

18
We had 32GB of main memory available.

Summary: Based on our conducted experiments, it becomes

apparent that our proposed schemes are suitable for processing

online queries for performing record linkage by using synopses of

the blocking structures maintained in the persistent storage. They

significantly outperform the state-of-the-art baselines, which rely

their operation on memory-resident indexes regardless of the

increasing volume of the underlying data sets.

8 CONCLUSIONS
In recent years, several applications have emerged which require

access to consolidated information that has to be computed and

presented in near real-time, through the linkage of records resid-

ing in voluminous disparate data sources. To address this need,

we proposed the first summarization algorithms that operate

in the blocking and matching steps of online record linkage to

boost their performance. SkipBloom compiles a synopsis of the

blocking structure of a data set using a small footprint of main

memory, while BlockSketch compares each query record with a

constant number of records in the target block, which results in a

bounded matching time. Our experimental findings indicate that

SkipBloom and BlockSketch outperform the state-of-the-art al-

gorithms, in terms of the time needed, the memory used, and the

recall and precision rates that are achieved during the linkage

process. SBlockSketch utilizes a constant memory footprint to

perform the linkage in settings that use streaming data.

REFERENCES
[1] M. Bilenko, B. Kamath, and R. J. Mooney. 2006. Adaptive blocking: Learning

to scale up record linkage. In ICDM. 87–96.

[2] A. Broder and M. Mitzenmacher. 2002. Network Applications of Bloom filters:

A Survey. In Internet Mathematics. 636–646.
[3] P. Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Springer, Data-Centric Sys. and
Appl.

[4] P. Christen. 2012. A Survey of Indexing Techniques for Scalable Record

Linkage and Deduplication. TKDE 12, 9 (2012), 1537 –âĂŞ 1555.

[5] P. Christen, R. Gayler, and D. Hawking. 2009. Similarity–aware indexing for

real-time entity resolution. In CIKM. 1565 âĂŞ– 1568.

[6] W. W. Cohen and J. Richman. 2002. Learning to Match and Cluster Large

High-Dimensional Data Sets for Data Integration. In SIGKDD. 475–480.
[7] D. Dey, V. Mookerjee, and D. Liu. 2011. Efficient techniques for online Record

Linkage. TKDE 23, 3 (2011), 373 – 387.

[8] E.Ioannou, W. Nejdl, C. Niederee, and Y. Velegrakis. 2010. On-the-fly entity-

aware query processing in the presence of linkage. PVLDB 3, 1 (2010), 429–438.
[9] A. Elmagarmid, P. Ipeirotis, and V. Verykios. 2007. Duplicate Record Detection:

A Survey. TKDE 19, 1 (2007), 1–16.

[10] D. Firmani, B. Saha, and D. Srivastava. 2016. Online Entity Resolution Using

an Oracle. In PVLDB, Vol. 9. 384 – 395.

[11] A. Gionis, P. Indyk, and R. Motwani. 1999. Similarity Search in High Dimen-

sions via Hashing. In VLDB. 518–529.
[12] H. Altwaijry and D. Kalashnikov and S. Mehrotra. 2013. Query-driven Ap-

proach to Entity Resolution. In PVLDB, Vol. 6. 1846–1857.
[13] P. J. Haas. 2016. Data-Stream Sampling: Basic Techniques and Results. Data

Stream Management: Processing High-Speed Data Streams (2016), 13–44.
[14] M.A. Hernandez and S.J. Stolfo. 1995. The Merge/Purge Problem for Large

Databases. In SIGMOD. 127–138.
[15] I. Bhattacharya and L. Getoor and L. Licamele. 2006. Query-time entity

resolution. In KDD. 529–534.
[16] D. Karapiperis, A. Gkoulalas-Divanis, and V. Verykios. 2016. LSHDB: a parallel

and distributed engine for record linkage and similarity search. In ICDM Demo.
1–4.

[17] D. Karapiperis, D. Vatsalan, V.S. Verykios, and P. Christen. 2016. Efficient

Record Linakge Using a Compact Hamming Space. In EDBT. 209 – 220.

[18] D. Karapiperis and V.S. Verykios. 2015. An LSH-based Blocking Approach

with a Homomorphic Matching Technique for Privacy-Preserving Record

Linkage. TKDE 27, 4 (2015), 909–921.

[19] D. Karapiperis and V.S. Verykios. 2016. A fast and efficient Hamming LSH-

based scheme for accurate linkage. KAIS (2016), 1–24.
[20] H. Kim and D. Lee. 2010. Fast Iterative Hashed Record Linkage for Large-Scale

Data Collections. In EDBT. 525 – 536.

[21] R. Motwani and P. Raghavan. 1995. Randomized Algorithms. Cambridge Univ.

Press.

[22] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. 2014. Meta-blocking:

Taking Entity Resolution to the Next Level. TKDE 26, 8 (2014), 1946–1960.

83

[23] G. Papadakis, G. Papastefanatos, and G. Koutrika. 2014. Supervised meta-

blocking. In PVLDB. 1929–1940.
[24] T. Papenbrock, A. Heise, and F. Naumann. 2015. Progressive Duplicate Detec-

tion. TKDE 27, 5 (2015), 1316 – 1329.

[25] W. Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. CACM
33, 6 (1990), 668–676.

[26] B. Ramadan and P. Christen. 2014. Forest-Based Dynamic Sorted Neighbor-

hood Indexing for Real-Time Entity Resolution. In CIKM. 1787 âĂŞ– 1790.

[27] B. Ramadan, P. Christen, H. Liang, R. Gayler, and D. Hawking. 2013. Dy-

namic Similarity-Aware Inverted Indexing for Real-Time Entity Resolution. In

PAKDD Workshops. 47 âĂŞ– 58.

[28] R. Schnell, T. Bachteler, and J. Reiher. 2009. Privacy-preserving Record Linkage

using Bloom Filters. Central Medical Inf. and Decision Making 9 (2009).

[29] R. Steorts, S. Ventura, M. Sadinle, and S. Fienberg. 2014. A Comparison of

Blocking Methods for Record Linkage. In PSD. 253–268.
[30] D. Vatsalan, P. Christen, and V.S. Verykios. 2013. A Taxonomy of Privacy-

Preserving Record Linkage Techniques. Inf. Sys. 38, 6 (2013), 946 – 969.

[31] S. E. Whang, D. Marmaros, and H. Garcia-Molina. 2013. Pay–as–you–go

Entity Resolution. TKDE 25, 5 (2013), 1111–1124.

[32] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.

2009. Entity resolution with iterative blocking. In SIGMOD. 219–232.

84

	Summarization Algorithms for Record LinkageDimitrios Karapiperis, Aris Gkoulalas-Divanis, Vassilios S. Verykios

