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ABSTRACT
Why-not queries help scientists understand why a given data
item was not returned by the executions of a given work�ow.
While answering such queries has been investigated for relational
databases, there is only one proposal in this area for work�ow
provenance, viz. the Why-Not algorithm. This algorithm makes
the assumption that the modules implementing the steps of the
work�ow preserve the attributes of the input datasets. This is,
however, not the case for all work�ow modules. We drop this
assumption, and show in this paper how theWeb can be harvested
to answer why-not queries against work�ow provenance.

1 INTRODUCTION
Scienti�c work�ows have been shown to facilitate and accelerate
scienti�c data exploration and analysis in many areas of sciences
[6]. A work�ow can be viewed as an acyclic graph in which
the nodes are modules that can be executed locally or remotely,
and the edges specify the data dependencies between the con-
stituent modules. Work�ows have been utilized to model and
enact in-silico experiments in a range of scienti�c �elds, includ-
ing proteomics, transcriptomics, metabolics, plant phenotyping,
astronomy, and bio-medicine.

Fig. 1 illustrates an example of a simple work�ow used for
identifying the pathway associated with a given input metabolite
(compound). Given a compound identi�er, the �rst module re-
turns a compound name, which is used to feed the second module
to obtain the corresponding pathway.

Figure 1: Example work�ow.

Major work�ow systems are instrumented to capture prove-
nance information that records the data items used and generated
by the work�ow modules together with information specifying
the lineage of such data items across the work�ow execution.

Work�ow provenance information can be utilized in a range
of applications [8]. For example, it can be used to i)- estimate the
quality of data based on the source data, ii)- determine the entity
(author) to whom a given data item should be attributed, and
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iii)- debug errors in the work�ow execution. In this work, we
focus on an application that has received little attention within
the work�ow provenance community, namely why-not queries.
Given the provenance traces of work�ow executions, the scientist
may want to understand why a given result, e.g., his/her favorite
protein, does not appear in the result of work�ow executions.

1.1 Related Work
We distinguish between two classes of proposals for answering
why-not queries: instance-based and module-based.

Instance-based. Proposals that fall into this category attempt
to �nd the data items in the inputs that are responsible for the non
appearance of a given data item in the result. More speci�cally,
they determine the changes that need to be applied to the input
datasets for the data item provided by the user to appear in the
result. Artemis [9] and Missing-Answers [10] are examples of
algorithms for processing instance-based why-not queries over
relational databases. There is no proposal in the state of the art
that investigates instance-based why-not queries for work�ow
provenance.

Module-based. Proposals in this class attempt to identify the
modules that are responsible for the non-appearance of a given
data item in the work�ow results. The only proposal in this
category for work�ow provenance is the Why-Not algorithm
proposed by Chapman and Jagadish [4]. Indeed, while why-not
queries have been investigated in databases, where datasets are
manipulated using (white boxes) query operators with known
operational semantics, this is not the case for scienti�c work�ows,
where the steps of the work�ow are implemented by black boxes,
the behavior of which is not necessarily known. Using the Why-
Not algorithm proposed by Chapman and Jagadish, the user query
is expressed as a set of atomic predicates that are combined using
AND and OR. An atomic predicate is evaluated over a single
attribute of the Input datasets of the work�ow. Chapman and
Jagadish make the assumption that the attributes of the input
datasets are preserved by themodules that compose the work�ow.
This is not the case, however, in the general case. For example,
the modules in the work�ow illustrated in Fig. 1 do not preserve
the attribute of the input, viz. Compound � ID, in that the output
of the �rst and the second module do not contain information
about the compound identi�er.

As well as identifying the reason why a result is missing, a
number of proposals investigated changes that can be made to
the query to include known missing results (see e.g., [1, 5]).

In this work, we focus on explaining why a data item is missing
from the results of a data-driven work�ow. In doing so, we drop
the assumption made by Chapman and Jagadish, and propose
a solution that can be utilized for answering why-not queries
for work�ow with modules that do not preserve attributes of
the input datasets. Furthermore, unlike the Why-Not algorithm
which is module-based, our proposal is hybrid in that it seeks
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to answer instance- and module-based why-not queries. This
makes our solution the only hybrid solution targeted for work-
�ow provenance.1

In the rest, we start by lying down the foundations in Sect. 2.
We sketch our algorithm in Sect. 3. We then focus on operations
that are central to our algorithm, namely determining if a module
is picky, i.e., responsible for the non-appearance of an output data
item, and determining the missing input data item for a given
module in Sect. 4. Finally, we report on the results of a feasibility
study that we conducted, and conclude the paper in Sect. 5.

2 FOUNDATIONS
We de�ne a work�ow WF as a directed acyclic graph in which the
nodes correspond to modules, and the edges specify data �ow
dependencies. A data link connecting a module M1 to a module
M2 speci�es that the output produced by the invocation of the
�rst is used as input to feed the execution of the latter.

The invocation of a module M, which we call module instance
and denote by m, takes one or more data items as input and
produce a data item as output. We write m(dI1 , . . . , dIn ) = d

O,
where I1, . . . , In represents the domain of values of the inputs
of M and O the domain of values of the output. For the purpose
of this work, we consider that the modules of a work�ow are
functions, in that they return the same output data item given
the same input data items.

The execution of a work�ow WF gives rise to a work�ow in-
stance wf, which takes one or more data items and produce as a
result a data item. Major scienti�c work�ow systems are instru-
mented to capture provenance information of work�ow instances
specifying the data items used and generated by the work�ow,
which can be utilized to track the lineage of the work�ow results.

Typically, a scientist would execute a work�ow WF multiple
times, and then proceed to the exploration and analysis of the
results. We are, therefore, interested in querying the datasets
used and generated as a result of multiple executions (instances)
of WF. We write WF(DI1 , . . . , DIn ) = DO to denote that collectively
the instances of the work�ow WF, took as input the datasets
D
I1 , . . . , DIn and generated the dataset DO. Similarly, we write
M
WF(DI1 , . . . , DIn ) = DO to denote that the invocations (instances)

of themodule M that took place with the instances of the work�ow
WF used the datasets DI1 , . . . , DIn and generated the dataset DO.

Inverse of a Module. Central to our solution is the notion of the
inverse of a module. The inverse of a module M, which we denote
byMin� takes as input data items that are type-compatible with
the output of M, and delivers data items that are type-compatible
with the inputs of M .

Picky module. A module M is picky with respect to a data item
d if Min� does not accept d as input. More speci�cally, Min�
throws an illegal input exception when its execution is fed d.

3 ANSWERINGWHY-NOT QUERIES
3.1 Why-Not Queries
A user speci�es a why-not query by specifying a data item, which
has the same data type as the output of the last module of the
work�ow. Let such a module be MWF(DI1 , . . . , DIn ) = DO Consider
for the sake of simplicity that such a module output data items
that are characterized by the attributes ha1, . . . , ami. A why not-
query is a data item hv1, . . . , vmi that was not generated by M

1There are existing hybrid solutions, but they are targeted for relational databases
(see e.g., [2]).

when invoked within the work�ow WF. That is, ha1, . . . , ami < DO.
We denote such a data item in what follows by dwhy�not. Note
that, in the general case, a work�ow may have multiple �nal
modules. Our solution is applicable to those work�ows. To do
so, our algorithm is applied to each output data item (why-not
query) provided by the user.

3.2 Processing Why-Not Queries
To answer a why-not query, the modules of the work�ow are
explored from the sink to the source in a breadth-�rst fashion. To
do so, we group the work�owmodules into levels as illustrated in
Figure 2. Amodule belongs to a level i if its outputs are connected
to modules in levels  i � 1. Of course, this does not apply to
the modules in level 0, the outputs of which carry the results
of the work�ow execution. The modules of a given level can be
examined only if the examination of the modules of the previous
level has completed.

Figure 2: Work�ow levels.

Algorithm 1, which we named Why-Not Detective, sketches
the evaluation of a why-not query. It takes as input a data item
dwhy�not speci�ed by the user, and the work�ow modules orga-
nized into levels starting from the sink WF_Modules. The mod-
ules of each level are examined to identify if the module is picky.
Speci�cally, the inverse of the module in question M is examined
to check if:

• It does not accept the corresponding data items that were
generated by the inverse of the modules in the previous
level. By corresponding data items, we mean data items
generated by module parameters in the previous level, if
any, that are connected to the output of the Mmodule. The
module M is �agged in this case as picky.

• It accepts the corresponding data items that were gener-
ated by the inverse of the modules in the previous modules.
In this case, the data items the inverse of M produces are
saved to be used to feed the inverse of the modules in the
succeeding levels, if any. Notice here that the provenance
of the work�ow subjects to analysis will not contain such
data items, otherwise, the work�ow would have produced
dwhy�not.

The algorithm iterates over the modules of each level until i)- it
�nds modules of a given level that are picky, or ii)- it does not �nd
any picky modules. In the �rst case, the algorithm stops (see line
15). Indeed, the modules of the succeeding level, or at least subset
thereof, cannot be examined. This is because we will not have
data items to probe the inverse of such modules with. The picky
modules are therefore returned by the algorithm as the source
of the non appearance of dwhy�not in the results. Note here that
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our notion of picky module corresponds to the notion of Frontier
Picky Manipulation in the Why-Not algorithm by Chapman and
Jagadish [4]. In the second case (ii), the datasets used as input to
the execution of the work�ow are designated as the source of the
non-appearance of dwhy�not in the results. Speci�cally, the data
items returned by the inverses of the modules in the last level
are designated as missing in the inputs datasets.

Example 3.1. Consider our example work�ow in Fig. 1, and
suppose that the scientists did not �nd the pathway identi�ed by
map00220 in the results of the provenance of the work�ow. In
this simple example, we have two levels composed of one module
each. The algorithm starts by examining the getPathway mod-
ule. The inverse of this module accepts the value map00220 and
provides the compound name L � Argentine. This compound
name is accepted by the inverse of getCompoundName, which in
turn delivers the compound identi�er cpd : C00062. The Why-
Not detective concludes, in this case, that none of the modules is
picky, and that the non appearance of the pathway map00220 in
the results is due to the missing input data item cpd : C00062.

Algorithm 1Why-Not Detective
Input: WF_Modules = {L0, . . . , Lk } //work�ow modules grouped into

levels (breadth) from the sink to the source.
dwh��not // missing work�ow result.

Output: PickyModules // set of picky modules
MissingInputData// set of data items missing in the work�ow input
dataset

1: PickyModules = ;
2: MissingInputData = ;
3: Dcurrent = {dwhy�not }
4: Dcurrent+1 = ;
5: for Level in WF_Modules do
6: for M in Level do
7: if accept(inv(M), getInput(Dcurrent)) then
8: datacurrent+1 + = getResult(inv(M), getInput(Dcurrent))
9: else
10: PickyModules + = {M}
11: end if
12: Dcurrent+1+ = getResults(Minv, getInput(Dcurrent))
13: end for
14: if PickyModules , ; then
15: breakall
16: end if
17: Dcurrent = Dcurrent+1

18: end for

4 DETERMINING THE OUTPUT OF THE
INVERSE MODULE

The central operations, which are repeatedly performed in the
above algorithm, are the test of acceptance of data items by the
inverse of a given module M, and the calculation of the results
(data items) returned by the invocation of the inverse module.

To assess whether a module Minv accepts a given data item
d, we need to invoke Minv using d. If the invocation of Minv ter-
minates successfully, then we can conclude that Minv accepts d.
Otherwise, if the execution of Minv raises an illegal input excep-
tion, then we can conclude that Minv does not accept d.

Unfortunately, we cannot perform this test, because we do
not have access to Minv. To address this issue, we harvest the
(probably) biggest source of information, namely the Web. There
are several proposals in the literature that attempted to extract

relational data from tables on the Web (see e.g., [3, 11]). Our
objective is, however, di�erent. We do not seek to transform all
tabular HTML data into a structured format, but instead, identify
the input data items that may be candidate for producing a giving
data item when used to feed a given module.

We adopt for this purpose a process, composed of three steps:
i)- identifying candidate pages, ii)- extracting candidate input
data items, and iii)- examining the candidate input data items.

4.1 Identifying Candidate Web Pages
To identify the web pages of interest, we make use of semantic
annotations describing the input and output parameters of the
module M. Indeed, a number of scienti�c modules are annotated
with ontological concepts informing the semantic domain of the
input and output parameters of the module, see e.g., bio-tools2.
We make use of semantic annotations, because often the names
of the input and output parameters are non-informative and take
values like in or out. Semantic annotations provide a crisper
description of parameter types.

Consider for example that M has an input with a semantic
domain cin and an output of a semantic domain cout. We issue a
query with the following keywords: {cin, cout, d} against a Web
search engine. We are interested in �nding the web pages Wc that
contains all of the keywords. We call Wc candidate web pages. If
the set Wc is empty, then Minv is likely not to accept the data item
d. Note that we say likely. This is partly because the Web, albeit a
large data source, there is no guarantee of it being complete, and
partly because the keywords used may fail to locate a Web page
that contains the desired information, even if such a page exists.

4.2 Extracting Candidate Input Data Items
For each web page in Wc, we apply information extraction algo-
rithms to retrieve data items that have cout as a semantic domain.
The problem we face here is that Web pages are unstructured.
Solutions that have been proposed for information extraction,
e.g., [3, 7, 11] can be used for this purpose.

As well as the above proposals, in the context of our work,
we use recognizers. Indeed, many of the semantic domains, e.g.,
pathways, enzymes, proteins, etc., in the scienti�c �elds are as-
sociated with recognizers, able to identify the semantic domain
of a given raw text/string. This applies particularly to accessions,
which can be seen as scienti�c identi�ers for entities such pro-
teins, RNAs, etc., as well as other more complex structures such
as sequence entries, e.g;, Fasta format, IPR entry, etc. Therefore,
if cout is associated with a recognizer, then we apply the recog-
nizer to each of the web pages in Wc. This will result in a list of
candidate data items Dc

in
.

4.3 Examining Candidate Input Data Items
We use the data items in D

c

in
to feed the execution of the module

M. It an execution that takes an input data item din yields a
successful execution of M and produces as a result d, then we can
conclude that the inverse Minv accepts d and it delivers as a result
din. Note that in the general case, multiple input data items can
be associated with d. For the purpose of this work, however, we
assume that the module M and its inverse are functions.

If, on the other hand, none of the candidates in D
c

in
yields d

when invoking M, then we conclude that Minv is likely not to
accept d.

2https://bio.tools
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5 FEASIBILITY STUDY
The approach we have just described raises the following ques-
tion. Is the algorithm proposed able to identify the reason why a
given data item does not appear in the work�ow results? More
speci�cally, How e�ective is our solution in identifying picky mod-
ules and missing input data items?

To answer the above questions, we run a feasibility exper-
iment, in which we used a sample of 6 real-world work�ows
from the myExperiment repository 3. We selected work�ows
that involve deterministic modules, which mean modules that
deliver the same result (if any) given the same input. We did
not consider work�ows that include modules performing data
mining operations, for instance. We have also selected work�ows
for which the inverse modules are also deterministic functions.

5.1 Set-up
We have executed each work�ow using example data inputs
provided by the work�ow authors. In doing so, we used the
Taverna work�ow systems [12]. We then speci�ed two kinds of
queries for each work�ow:

• Instance-based why-not query. To assess the ability of the
algorithm in answering this type of queries, we randomly
selected an output data item d that was returned by the
work�ow executions. Next, we used our algorithm to see
if it is able to reconstruct the lineage of d by harvesting the
web to identify the input data items that were responsible
for its derivation. We then compared the lineage recon-
structed for d with the lineage available in the provenance
of the work�ow executions previously recorded by the
work�ow system. This allows us to see if our algorithm
was able to successfully identify the input data items re-
sponsible for the derivation of d.

• Module-based why-not query This kind of query is used
to assess if the algorithm is able to identify picky modules.
That is modules that are responsible for the non deliver-
ance of a given data item d by the work�ow executions.
To do so, for each work�ow, we identi�ed a data item that
we know it cannot be delivered by the work�ow because
of a given (picky) module. We then used our algorithm to
assess if it is able to identify such a module.

In total we had 6 queries of the �rst kind, which we denote
by {q+

1
, . . . , q+

6
}], and 6 queries of the second kind, which we

denote by {q�
1
, . . . , q�

6
}. The + sign indicates that we should be

able to reconstruct the provenance of the why-not query up to
the work�ow input, and the � sign indicates that we should not
be able to do so, and instead identify the picky module.

5.2 Results
Of the queries {q+

1
, . . . , q+

6
}, our algorithm was able to success-

fully constructs the provenance of the why-not query up to the
work�ow input for 3 queries. Most of the modules composing
these work�ows, namely 8 out of 11, provides information about
the input and output datasets on the Web using Tabular formats.

After examination of the three remaining work�ows, we found
that one them utilizes proprietary data sources, the content of
which is not accessible on the surface web. The last two work-
�ows, on the other hand, contain modules that manipulate ex-
cerpt from HTML web pages. Because of this, our algorithm was
not able to �nd the content on the Web of the input and output

3www.myexperiment.org

of those modules. However, we made a key observation thanks
to these two work�ows that will allow us to improve the quality
of the results delivered by our algorithm. Indeed, these modules
that were problematic for our algorithm perform format trans-
formation, which we refer to as Shims in scienti�c work�ows.
Such modules could be ignored (skipped) by our algorithm. For
example, once ignored, our algorithm was able to identify the
inputs data items of the remaining modules in the work�ows.

We also measured the number of Top-k web pages that needed
to be examined to identify the input data item corresponding
to a given output data item. On average, we needed to examine
the content of the 4 top web pages returned by the key-word
search engine4. In several cases, however, the top web page was
the right one, in the sense that it contained the input data item
we are after.

Regarding the queries {q�
1
, . . . , q�

6
}, our algorithm was more

successful in the sense that it was able to correctly identify 4
pickymodules out of 6. For two remaining work�ows, the module
that was identi�ed as picky by our algorithm was not the correct
one. After examination, it transpired that for certain modules the
corresponding data item could not be found on the web. Again
this issue was due to shims modules the input and output data
items are not published on the Web.

To sum up, this small feasibility study has shown that our
method is promising. It has also brought some insights into the
way our solution can be improved. Our ongoing work includes:
i)- tuning our algorithm to deal with shims modules in a work-
�ow, ii)- explore new source of information for identifying picky
modules, iii)- extending our solution to cases where the inverse
of a module is not a function, and iv)- an experiment involving a
large number of scienti�c work�ows.
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