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ABSTRACT
The volume of RDF data is now growing tremendously. It is
thus considered prudent to store and process massive RDF data
with distributed SPARQL engines instead of relying on a single-
machine system.Many sophisticated index and partitioning schemes
have also been proposed to support SPARQL query evaluations.
However, existing SPARQL engines have mainly followed one-
at-a-time scheme so that query evaluation is focused only on
processing each query separately. We showcase SAMUEL, a dis-
tributed SPARQL engine that simultaneously evaluates many
SPARQL queries for a massive RDF dataset with MapReduce.
SAMUEL provides an efficient optimization algorithm to evaluate
many SPARQL queries simultaneously in a shared and balanced
way. Extensive experiments present that without any sophisti-
cated partitioning or index mechanisms, our approach signifi-
cantly outperforms other MapReduce-based SPARQL engines as
well as an ad-hoc query engine equipped with various indexes
and partitioning tools for evaluating multiple SPARQL queries.

1 INTRODUCTION
The Resource Description Framework (RDF) is a versatile graph
data model that enables users to express facts and their relation-
ships in the form of triples ⟨ Subject, Predicate, Object ⟩ where a
predicate (P) expresses a relationship between a subject (S) and
an object (O) [2]. Many knowledge bases are now defined in the
RDF format, e.g., DBpedia [16], Bio2RDF [6] and UniProt [7] and
they shape a very large set of graphs having millions of triples
interlinked each other and are queried by using SPARQL query
language [1]. It has been a major challenge to find subgraph
patterns described in given SPARQL queries from a massive set
of RDF graphs with supporting both efficiency and scalability.
To address the issue, numerous SPARQL query engines have
been devised based on MapReduce [15] or their proprietary dis-
tributed architectures [3]. Meanwhile, multiple SPARQL queries
often need to be evaluated together as the queries can be pre-
pared before runtime in some scenarios [13, 20]. Motivated by
these facts and our previous work on XML data [8], we devise
a MapReduce-based SPARQL engine called SAMUEL, which si-
multaneously evaluates many SPARQL queries in a shared and
balanced way. Major features of SAMUEL are as follows :
Support of parallel multi-SPARQL query processing
SAMUEL provides an efficient means to process a massive set of
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RDF data in parallel. It does not require any sophisticated par-
titioning or index mechanisms for SPARQL query evaluation.
Nonetheless, SAMUEL easily outperforms other MapReduce-
based distributed SPARQL engines by simultaneously evaluating
multiple SPARQL queries with a short series of MapReduce jobs.
Sharing input scans and intermediate results
SAMUEL enables computing nodes to share input scans and their
intermediate results with each other. While joining RDF triples
for evaluating queries, a group of join operations assigned to
each reducer share their input and intermediate results associated
with distinct subquery patterns that multiple queries commonly
contain. Consequently, it saves many I/Os by removing many
redundant subquery matchings while evaluating queries.
Runtime load balancing and multi-query optimization
In a distributed system, a straggling task delays overall job execu-
tion. This problem deteriorates with the use of MapReduce since
MapReduce typically enforces barrier synchronization between
Map and Reduce tasks. MapReduce’s native runtime scheduling
algorithm also proved to be inefficient especially in the reduce
stage [12, 15]. To address the issue, SAMUEL rather exploits dy-
namic shuffling scheme that balances workloads across reducers
at each MapReduce job in accordance with the cardinality of RDF
triples that each reducer consumes for joining. It decomposes a
given set of SPARQL queries into distinct triple patterns and then
gradually builds a bushy query plan tree that covers all RDF join
operations required to evaluate the given SPARQL queries. Since
processing join operations at each level in the query plan tree
requires a single M/R job, SAMUEL always tries to build a bushy
plan tree with the lowest possible height. Then, it partitions the
join operations at each level into n groups and then assigns them
to n reducers. To balance workloads across reducers that actually
perform join operations, SAMUEL computes the cost of each join
operation at each level of the plan tree before actual joining. It
then assigns join operations into reducers at each level such that
every reducer has the same overall cost of join operations and the
lowest communication cost by avoiding redundant RDF triples
being transferred to multiple reducers so far as possible.

The rest of this paper is organized as follows. Section 2 intro-
duces previous studies directly related to our work. Section 3
describes how we evaluate multiple SPARQL queries together
at a time and our system architecture that provides workload
balancing as well as multi-SPARQL query processing. Section 4
presents our demonstration scenario including the major results
of performance evaluations.

2 RELATEDWORK
Numerous distributed SPARQL engines have been devised to
store RDF data and to evaluate SPARQL queries so far [3, 9,
11, 14, 19, 21, 22]. Readers are referred to a recent survey on
distributed SPARQL query engines [3]. These systems fall into
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Figure 1: System architecture

two categories in the aspect which framework these systems
rely on : (i) general-purpose framework such as MapReduce and
(ii) specialized RDF systems. In this paper, we only deal with
MapReduce-based RDF engines due to the limit of space.
MapReduce-based RDF engines
MapReduce is a popular parallel processing tool that provides
high scalability as well as simple abstraction. Therefore, many
studies have been done with MapReduce although it has some
inherent limitations [15]. It is noteworthy that most M/R-based
RDF engines do not well utilize index mechanisms since MapRe-
duce is originally devised for batch processing rather than ad hoc
queries. Indexes are considered inefficient for batch jobs due to
their expensive building cost only for one-time use.

SHARD [21] is a distributed RDF engine built with MapRe-
duce. All the RDF triples are stored in a single file in HDFS and
RDF triples are hash-partitioned across nodes. SPARQL queries
are evaluated as M/R job iterations. A subquery pattern is eval-
uated within a M/R job and its results are transferred to a sub-
sequent M/R job. SHARD does not utilize any indexing scheme
so that it needs to scan the entire dataset for query evaluation.
HadoopRDF [11] is another RDF engine built with MapReduce.
It partitions RDF triples into multiple files in the way that each
file contains all the triples that have the same predicate. It also
locates non-duplicate binary joins together into a M/R job to
minimize MR job iterations. SHAPE [14] also uses MapReduce
but it uses semantic hash partitioning scheme to group vertices
on the basis of URI hierarchy for improving data locality. How-
ever, these systems suffer from workload imbalance if a few triple
patterns dominates overall data distribution. H2RDF+ [19] is a
distributed engine based on both MapReduce and HBase, the
open sourced version of BigTable. It materializes combinations
of RDF triples and store them into HBase tables in order to utilize
some features of HBase, e.g., sorted keys and range-partitioned
tables based on the keys. However, H2RDF still join RDF triples
with M/R job iterations thus a complex queries can expand the
iterations. CliqueSquare [9] partitions RDF triple in three ways,
by hashing them on the basis of subject, predicate and object for
increasing data locality. It exploits the data replication feature of
HDFS to locally process all first-level joins on each node. It also
tries to minimize the number of M/R job iterations for RDF joins
with a shallow query plan tree and multi-way join operations.
Multi-query optimizations
Multi-query optimization on MapReduce is regarded as an ex-
tended version of the classical job-shop problem [5] that has a
long history. A few studies related to multi-query optimization
on MapReduce have been reported in the literature [18, 23] in
the context of relational processing. They provide generalized
grouping techniques that merge multiple jobs into a single job

Definitions
 Definition 7 ‐ Common subquery pattern set

• A common subquery pattern refers to a triple pattern that is common to partial 
SPARQL queries Qp = {qi, qj} for a set of SPARQL queries Q

• The common subquery pattern set is given by TPc = {(tp∈qi)∩(tp∈qj)|qi,qj∈Q} 
when 1<i<|Q|
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Example query 1
SELECT ?stud, ?course
WHERE 
{?stud type Student .
?stud type Course .
?stud takesCourse ?course .
Kyu-Chul teaches ?course}

Example query 2
SELECT ?stud, ?facul, ?course
WHERE
{?stud type Student .

?facul type Faculty .
?course type Course .
?stud advisor ?facul .
?facul teaches ?course .
?stud takesCourse ?course}

In the example, 
TPc = {tp(?v type ub:Student),tp(?v type ub:Course)}

takesCourse

teaches

type type

q1Kyu-Chul

Student ?stud ?course Course

q2

Student Faculty

Course

?stud ?facul

?course

type typeadvisor

teachestakesCourse

type

Figure 2: Example of common subquery patterns in two
SPARQL queries

thereby enabling the merged jobs to share input scans and com-
mon mapped outputs. Some studies address the issue in the con-
text of SPARQL queries [13, 20]. Multi-query optimization for
SPARQL is also proven to be NP-hard so that they rather propose
heuristic algorithms that partition a set of queries into groups
such that queries in each group can be optimized together. How-
ever, their algorithms [13, 20] are focused only on working on
a single-machine engine rather than a distributed environment
such as MapReduce. Therefore, all the approaches are hard to be
directly applied to distributed SPARQL engines. On the contrary,
we focus on multi-query optimization on MapReduce-based dis-
tributed SPARQL engines. To the best of our knowledge, this
is the first work that provides a solution for the multi-query
optimization problem in MapReduce-based SPARQL engines.

3 MULTI SPARQL QUERY PROCESSING
SAMUEL performs its query evaluation in three phases: (i) pre-
processing phase, (ii) labeling & filtering phase, and (iii) iterative
joining phase (see Fig. 1). In the preprocessing phase, RDF data
and a set of SPARQL queries are loaded on HDFS. In our system
RDF triples are simply stored in a single file where each triple
is recorded as a single line as it is, except that redundant URIs
and labels are substituted by unique IDs for saving storage vol-
ume and I/Os. Note that we do not use any partitioning or index
mechanisms for RDF data since we only show the effect of our
approach, distinguished from the benefits that we can get with
the mechanisms. Query loader decomposes SPARQL queries into
a set of distinct triple patterns, and then associates each triple
pattern with a set of queries that contains the triple pattern like
Fig. 2. It also builds an in-memory radix tree where a tree node
at each level represents a unique S, P , and O of triple patterns,
respectively. With the radix tree, SAMUEL rapidly finds triple
patterns matched to an input RDF triple while query evaluation.

The labeling & filtering phase is implemented with a single
M/R job. In the phase, RDF triples are labeled with IDs for their
corresponding triple patterns by traversing the radix tree and
also are filtered out if they have no corresponding triple patterns.
This work has an analogy to filtering stream data. Since reducers
aggregate RDF triples that has the same pattern, it allows us to
easily compute the cardinality of each triple pattern in the phase.

Based on the cardinality information, our query optimizer
builds a global query plan tree that has the lowest possible height
to minimize the number of M/R job iterations for joining RDF
triples. Redundant join operations are removed as each join oper-
ation is shared by multiple queries. When assigning binary RDF
join operations to reducers, we consider both join cost and trans-
mission cost to minimize and balance workloads across reducers.
It is achieved by summing the cost of every RDF join operation
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Dataset LUBM-100M WatDiv-1M WatDiv-10M WatDiv-100M WatDiv-1B
# of triples in total 138,280,374 1,098,468 10,989,614 109,795,305 1,098,717,244
# of distinct triples 133,573,856 1,085,817 10,906,204 109,051,965 1,091,667,092

# of distinct patterns matched to queries 23 361 355 358 355
(1,000 queries for WatDiv and 14 queries for LUBM)

Data size(GB) 23.02 0.14 1.45 14.63 148.23
Table 1: Statistics of RDF Datasets
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Figure 3: Data skewness in two datasets

Figure 4: SAMUEL GUI

assigned to each reducer and the cost of each RDF join operation,
implemented with binary hash join, is computed by summing the
sizes of two input RDF triple pattern lists. Triples are grouped on
the basis of distinct triple patterns and the groups are ordered in
a descending order of cardinality. We devise a heuristic optimiza-
tion algorithm based on first-fit decreasing scheme whose input
is a set of ordered lists of the distinct triple pattern groups. Some
triple patterns have very high cardinality as shown in Fig 3. We
thus allow splitting a very large triple pattern list into multiple
small lists for better workload balance. Note that our global query
plan tree is gradually built. That is, the n-th level in the tree is
computed right before running the n-th joining phase. In each
joining phase, implemented by another M/R job, mappers read
grouped RDF triples and tag reducer IDs to the triples accord-
ing to the global plan tree. Since mapped outputs are shuffled
by intermediate keys, triples tagged by the same reducer ID go
to the same reducer together and are then joined. Again, each
reducer computes the cardinality of its joined outputs and the
cardinality information and joined results are stored in HDFS.
Then, our optimizer repeats building the n+1-th level of the plan
tree with the cardinality of the results of the n-th joining phase.

4 DEMONSTRATION
During the demonstration, audience are invited to compare our
system with other distributed SPARQL engines based on the
MapReduce framework, interactingwith the system to run queries
and to check the influences of optimization techniques.

Hardware setup:We implemented our systemwith Hadoop ver-
sion 1.2.1. SAMUEL as well as compared systems were installed
and run on a cluster of 15 nodes, each of which was equipped
with an Xeon E5-2620 2.1GHz CPU, 64GB memory and an 1TB
7200RPM HDD, running on Ubuntu 12.04. All the nodes were
connected via Gigabit switching hub and a node is designated as
a master node. We basically used the same settings for our cluster
for fair comparison. However, the settings were sometimes tuned
for showing the best performance of compared systems.
Dataset: We used two datasets, which had been widely used for
measuring SPARQL engines in the literature [4, 10]. Table 1 and
Figure 3 present the statistics for datasets used in our demonstra-
tion and their data distributions. Both datasets exhibited high
skewness in their data distributions in that only a few of triple
patterns dominated most of the data distributions (see Fig. 3).
Compared systems: In our demonstration, we compare our sys-
tem with RDF-3X [17], a single-machine SPARQL engine that uti-
lizes various indexes, and three other MapReduce-based systems,
i.e., SHARD [21], SHAPE [14], and H2RDF+ [19]. For evaluation,
the performance of each system was averaged over five runs
excluding the maximum and minimum values.
Demo scenarios and interaction
Weprovide a user interface shown in Fig. 4 to demonstrate the per-
formance of SAMUEL using large-scale RDF datasets, i.e., LUBM
and WatDiv. In our demonstration, we however use only a few
fractions of the two datasets due to the limited time and comput-
ing resources. However, we still present our evaluation results
performed with all the datasets (see Fig 5). Currently, SAMUEL
supports a subset of SPARQL language, i.e., basic graph pattern
matching. In our demonstration, users will be given a list of
SPARQL queries generated from WatDiv for the datasets in Ta-
ble 1. Users are also allowed to load their own queries and RDF
data into the system and run the queries themselves. During
the processing, users will be explained with Hadoop GUI and
our own UI how our system processes multiple SPARQL queries
simultaneously. Users will also check how features of SAMUEL
affect the overall performance as they turn on and off the fea-
tures, i.e., sharing input scan and filtered solutions, optimization
policies, and so on.
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Figure 5: Performance evaluation
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