
http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.79


Figure 2: System architecture of FAIMUSS. White arrows
indicate data �ows and black arrows indicate user interac-
tions.

2 SYSTEM ARCHITECTURE
In this section, we describe the system architecture that con-
sumes data from a variety of data sources and outputs RDF graph
fragments. This process is designed in a generic fashion, so as
to accomplish multiple objectives, including flexibility, exten-
sibility and scalability. FAIMUSS comprises the following main
components, a) the Data Connector, b) the Triple Generator, and
c) the Visual Interface. Figure 2 illustrates the overall system and
the individual components and their interactions, which will be
described in detail. The prototype system has been implemented
in Oracle Java 8 (64-bit) and is platform-independent.

2.1 Data Connector
The Data Connector component implements the functions that
accept data from an individual data source. Moreover, it performs
data conversion on values of specific fields as provided by the
source and basic data cleaning operations. As the data sources
can vary significantly in terms of representation, size, rate of
data access, and noise, FAIMUSS provides a Data Connector for
each type of source. The implemented system currently sup-
ports data consumption from a wide range of sources/formats,
such as: a) CSV format, b) direct access to databases, c) JSON
messages, d) XML files, e) METAR/SPECI weather reports from
offline/continuous feeds from online services, f) binary (GRIB2)
files for weather reports, g) SPARQL endpoints to online open
data, h) ESRI shape-files to convert information about spatial
object to entities and relations of the ontology, and i) proprietary
formats of streaming. The list of supported data formats can be
easily extended, to support the inclusion of any other data format
required in the future.

As an abstraction of the data source in hand, the Data Con-
nector considers all data sources as streams, i.e. it consumes data
record-by-record (or tuple-by-tuple), to be processed with mini-
mal latency. This data access model makes no distinction on the
nature of data (e.g. archival data or streaming data). In addition, it
minimizes the memory footprint of Data Connectors, and enables
scalability and parallelization as a multi-threaded process, both
for a single source and across sources.

2.2 Triple Generator
The role of Triple Generator is to consume the data provided by
the Data Connector and generate the corresponding set of triples.
This procedure depends on configuration files providing a Graph
Template GT , and a vector of variable names V. The vector V
contains the variables that appear in the Graph Template, and
binds the values of the input record to the variables in GT . The

Figure 3: A Graph Template and Variable Vector example
in Triple Generator.

Graph Template consists of a set of triple patterns, i.e. any of
the three elements in the triple (subject, predicate, object) can
be replaced by a variable. The Graph Template differs from the
standard RDF Graph Pattern, in that variables can be used as
arguments in functions, to compute dynamic values at runtime.
Furthermore, the implementation of Triple Generator is paral-
lelized in a multi-threaded process, due to the record-by-record
conversion to triples.

Figure 3 illustrates the application of a Graph Template on a
single record from a stream of aircraft surveillance data to gener-
ate the corresponding triples. Specifically, the Triple Generator
consumes the data provided from the Data Connector and con-
structs a new resource (:sn001_1468) of type :Node, based on
the Graph Template depicted at the top of the figure. This new
resource is the spatio-temporal representation of the moving ob-
ject (aircraft). The Triple Generator also relates the :sn001_1468
to the resource representing an aircraft (using the property :of-
MovingObject), as well as information regarding the status, the
altitude and position of the moving object.

Figure 4 shows another example of data transformation where
two data sources are processed and integrated, by having two
instances of Triple Generator interact with each other. The po-
sitioning data connector provides surveillance data of vessels
to a Triple Generator instance, similar to the previous example.
The GRIB connector accesses binary files that contain weather
forecasts and can extract the related weather attributes for a
given spatio-temporal position. As soon as a new position is re-
ceived, a request is made to the Triple Generator instance that
retrieves the weather information and provides it in RDF repre-
sentation based on the respective Graph Template. This allows
data transformation of selected weather information, namely this
corresponding to the area defined by the positioning information.
More interestingly, the weather Triple Generator returns the URI
of the weather condition to the positioning Triple Generator,
which can then create the :hasWeatherCondition property and
associate the position with the weather. This is an example of
lightweight, “near-to-the-sources” integration.

2.3 Visual Interface
The Visual Interface enables the configuration of Data Connector
and Triple Generator, the preview of input data, the visualization
of output triples on a map, and output validation. Specifically,
the user can select the ontology to be used, which will provide

663



Figure 4: Example of data transformation and “near-to-
the-sources” integration (maritime domain).

the vocabulary for the Triple Generator. Obviously, the ontol-
ogy should be taken into consideration when editing a Graph
Template, to guarantee consistency of the generated triples.

Figures 5 and 6 provide screenshots of the Visual Interface
using data from the aviation domain. As illustrated in Figure 5(a),
the user can select and configure the data source that will be
processed (e.g., specify the IP and port of remote endpoints, or
folder/file for local access), and the type of Data Connectors that
should be used for consuming the data. A sample of the data
available in the configured data source, for visual inspection.
The user can also select the fields of the input data source that
should be converted to triples, and specify the Variables Vector
to be used in the Graph Template. Figure 5(b) shows the editor
for composing the Graph Template. On the right side, the set of
available functions is provided, from which the user can insert
in the editor by a double click. Also, the Variables corresponding
to the input source are also available. The editor uses different
font color for functions and variables to improve readability. In
addition, import (export) of Graph Templates from (to) disk is
supported. It should also be mentioned that automatic valida-
tion of a sample (or the entire output) of triples generated w.r.t.
the provided Graph Template is supported. Figure 6 depicts a
map-based interface provided by FAIMUSS, which enables the
illustration of spatial and spatio-temporal RDF data. In this ex-
ample, it depicts trajectories of moving objects (aircrafts), which
correspond to RDF data generated by our system.

3 DEMONSTRATION SCENARIOS
We have used FAIMUSS in two domains, maritime and aviation,
thus showing the generic nature of our system and its appli-
cability in different domains. The selection of these domains
originates from our involvement in the H2020 research project

datAcron (http://datacron-project.eu/), where one of the objec-
tives is to integrate heterogeneous and voluminous archival data
with streaming data sources.

Scenario 1: Flexible Integration of New Sources. We intend to
show in the demo that a new streaming data source can be added
to FAIMUSS, after a small set of steps that can be performed by
selections from the GUI. The aim is to demonstrate the ease of
use of FAIMUSS in practice. In more detail, the streaming data
source is going to be surveillance data from vessels travelling
in the Mediterranean Sea. Each record in the stream contains
the spatio-temporal position of a moving object, along with its
unique identifier. From the GUI of FAIMUSS, we are going to
input the necessary information for establishing a connection
(IP address, port, and authentication details). Thereafter, a Graph
Template is going to be specified from an editor of the GUI, which
guides the Triple Generator and determines the transformation
of stream records into RDF triples. As already mentioned, the
editor facilitates the composition of Graph Templates even for
moderately familiar users, not only by loading existing Graph
Templates that can be modified, but also by providing access to
lists of available functions and variables that generate Graph
Template code in the editor.

Scenario 2: Trajectory Enrichment. We will show in the demo
how we can generate enriched trajectories from moving objects’
positions, where the positional information can be integrated
with arbitrary data sources. Continuing scenario 1, the spatio-
temporal position of each vessel is going to be integrated with
weather conditions. Weather conditions are available as forecasts
for a temporal period (e.g. three hours) in the form of large binary
files (GRIB2 format), and mainly define 3-dimensional cells that
contain multiple variables describing weather condition (e.g., tem-
perature, humidity, pressure, etc.). In this scenario, upon receipt
of a spatio-temporal position of a moving object, the Triple Gener-
ator instance responsible for surveillance data is going to produce
RDF triples. By communication with a Triple Generator instance
for weather data, which produces weather-related triples, the
resulting positional RDF data is linked with weather information.
In this way, we generate enriched trajectories of moving objects
represented in RDF, which will be illustrated on a map for visual
inspection, and provide additional (weather-related) information
for each spatio-temporal position of a moving object.

4 RELATED WORK
A wide list of data transformation and conversion tools exists,
and such tools2 have been evaluated during the design of our
system, however these are mostly ad-hoc solutions tailored for
converting archival data in specific file formats. For example,
Omnidator [1] converts any CSV or HTML online file into RDF
triples. GeoTriples [8] employs automatically generated R2RML
mappings given a source and a configuration, but demands the
use of a relational database, which is not applicable for streams.
SPARQL-Generate [10] provides an extension of SPARQL 1.1 that
allows generation of RDF fragments from documents.

Data integration over streaming data poses new challenges
compared to traditional data integration [13]. The Graph of
Things [9] targets an IoT setting where many sources provide
data for integration and querying, and supports spatial and tem-
poral data, but it is not optimized for mobility data. Also related
to our work is StreamLoader [11] which provides a user-friendly,
2https://www.w3.org/wiki/ConverterToRdf

664



(a) Configuration of Data Connector (b) Editor for Graph Templates

Figure 5: Screenshots of the Visual Interface of FAIMUSS (aviation domain).

Figure 6: Map-based visualization.

web-based environment for ETL (Extract-Transform-Load) of
streaming data from heterogeneous sensors. However, it deviates
from our objective, namely to provide representations of stream-
ing data in RDF, thus allowing linking with other external (web)
sources. Moreover, it does not explicitly address the domain of
moving objects and trajectories thereof, which is the motivation
of our work. Only recently, Optique [6, 7] proposes an approach
for integration of streaming with static relational data. Again,
this problem is much narrower than the one addressed by our
work, since we make no assumptions on the availability of a
relational database nor do we impose such requirements. None
of the existing approaches targets streaming mobility data of
vessels or aircrafts explicitly. Moreover, our work goes one step
further, by introducing a system for flexible data transformation
to RDF, with a particular focus on mobility data, also supporting
linking of generated RDF graph fragments.

5 CONCLUSIONS AND FUTURE WORK
In this paper, we present the FAIMUSS system for flexible data
transformation of streaming and archival data sources to RDF.
Despite the generic and extensible design of our system, the
focus of our attention is on moving objects and integrating their
spatio-temporal positions with a variety of heterogeneous data
sources, including weather conditions, spatial areas of interest,
as well as external databases. In our future work, we intend to

fully parallelize our system, thus providing a scalable solution to
the problem of data integration from different data sources.

ACKNOWLEDGMENTS
This work has been supported by project datAcron, which has
received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No
687591.

REFERENCES
[1] Omnidator. http://omnidator.appspot.com/.
[2] C. Bizer and A. Seaborne. D2RQ-treating non-RDF databases as virtual RDF

graphs. In Proc. of ISWC, 2004.
[3] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,

M. Rodriguez-Muro, and G. Xiao. Ontop: Answering SPARQL queries over
relational databases. Semantic Web, pages 1–17, 2016.

[4] C. Claramunt, C. Ray, E. Camossi, A. Jousselme, M. Hadzagic, G. L. Andrienko,
N. V. Andrienko, Y. Theodoridis, G. A. Vouros, and L. Salmon. Maritime data
integration and analysis: recent progress and research challenges. In Proc. of
EDBT, pages 192–197, 2017.

[5] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language.
https://www.w3.org/TR/r2rml/, 2012.

[6] E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, Ö. L. Özçep, C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks,
Y. E. Ioannidis, and R. Möller. Ontology-based integration of streaming and
static relational data with optique. In Proc. of SIGMOD, pages 2109–2112, 2016.

[7] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, Ö. L. Özçep,
C. Svingos, D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E. Ioannidis, S. Lam-
parter, and R. Möller. Towards analytics aware ontology based access to static
and streaming data. In Proc. of ISWC, pages 344–362, 2016.

[8] K. Kyzirakos, I. Vlachopoulos, D. Savva, S. Manegold, and M. Koubarakis.
GeoTriples: a tool for publishing geospatial data as RDF graphs using R2RML
mappings. In TC/SSN@ISWC, pages 33–44, 2014.

[9] D. Le-Phuoc, H. N. M. Quoc, H. N. Quoc, T. T. Nhat, and M. Hauswirth. The
Graph of Things: A step towards the Live Knowledge Graph of connected
things. Web Semantics: Science, Services and Agents on the World Wide Web,
37:25–35, 2016.

[10] M. Lefrançois, A. Zimmermann, and N. Bakerally. A SPARQL extension for
generating RDF from heterogeneous formats. In Proc. of ESWC, pages 35–50,
2017.

[11] M. Mesiti, L. Ferrari, S. Valtolina, G. Licari, G. L. Galliani, M. Dao, and K. Zettsu.
StreamLoader: An Event-Driven ETL System for the On-line Processing of
Heterogeneous Sensor Data. In Proc. of EDBT, pages 628–631, 2016.

[12] G. Santipantakis, G. Vouros, C. Doulkeridis, A. Vlachou, G. Andrienko, N. An-
drienko, G. Fuchs, J. M. C. Garcia, and M. G. Martinez. Specification of seman-
tic trajectories supporting data transformations for analytics: The datAcron
ontology. In Proc. of Semantics, 2017.

[13] N. Tatbul. Streaming data integration: Challenges and opportunities. In Proc.
of ICDE, pages 155–158, 2010.

665


	FAIMUSS: Flexible Data Transformation to RDF from Multiple Streaming SourcesGiorgos Santipantakis, Apostolos Glenis, Nikolaos Kalaitzian, Akrivi Vlachou, Christos Doulkeridis, George Vouros

