Demonstration

C proceedings

FAIMUSS: Flexible Data Transformation to RDF from Multiple
Streaming Sources

Georgios M. Santipantakis
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece

gsant@unipi.gr

Akrivi Vlachou
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece
avlachou@aueb.gr

ABSTRACT

In this paper, we present FAIMUSS a tool for data transformation
from a wide variety of heterogeneous streaming and archival
sources to RDF. This is a typical situation in the analysis of
mobility data, such as maritime and aviation, where streaming
position data of moving objects need to be associated with static
information (such as crossing sectors, protected geographical
areas, weather, etc.) in order to provide semantically enriched tra-
jectories. FAIMUSS is designed to perform “near-to-the-sources”
integration, by interaction between a streaming source and an
archival source, thus generating linked RDF graph fragments.
Most of the existing approaches operate either on streaming or
on static sources, thus fail to address our problem setting. In
addition, FAIMUSS supports reusable user-defined functions that
are applied to input data and achieve the desired data transfor-
mations and cleaning. We demonstrate our prototype by using
data from the maritime and aviation domains.

1 INTRODUCTION

The Resource Description Framework (RDF) enables the descrip-
tion of physical entities as resources, in favor of data interop-
erability, integration and exchange. As a result, a wide range
of solutions exists for converting a data source to RDF, based
on a schema specified by RDFS or OWL profiles. For instance,
R2RML [5] is a mapping language that translates SPARQL queries
to SQL (and vice-versa). Ontology Based Data Access (OBDA) [2,
3] also focuses on relational data sources, but again requires ad-
vanced knowledge to define the (usually complicated) mappings
between the data source and the ontology schema. SPARQL-
Generate [10] provides an extension of SPARQL 1.1 that allows
generation of RDF fragments from documents. Solutions tailored
for specific RDF stores also exist, for example Virtuoso Cartridge!,
however they are tied to a particular product.

Moreover, the amount of streaming data sources has increased
rapidly in recent years, and such sources pose new challenges
for data integration [13]. Apart from the obvious performance
challenge raised by high stream rate, streaming data are typically

!https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtProgrammerGuideRDFCartridge

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Apostolos Glenis
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece
apostglen46@gmail.com

Christos Doulkeridis
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece
cdoulk@unipi.gr

Nikolaos Kalaitzian
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece
nikoskalai@gmail.com

George A. Vouros
Department of Digital Systems
University of Piraeus
18534 Piraeus, Greece
georgev(@unipi.gr

semi-structured, and contain noisy data. As such, the problem of
integrating streaming data sources is still open, and there is a lack
of flexible tools that transform streaming data to RDF, integrate it
with external sources, and are easily configurable to new sources.

eeee

)/_JJO

AN T . /é&f

| FAIMUSS
iﬁ - —
B RDF Store
—_—

Archival Data

Figure 1: FAIMUSS consumes streaming and archival
sources and produces (linked) RDF data.

Our work is motivated by the need to produce enriched rep-
resentations of moving object trajectories expressed in RDF, by
ingesting streaming surveillance data in real-time and associating
it with other sources, both streaming and archival. Figure 1 illus-
trates this process, focusing on mobility data in maritime [4] and
aviation domains recording positions of moving objects, such as
vessels and aircrafts. However, this is simply for demonstration
reasons, as our work is readily applicable to any other category
of streaming data, including social data consumed through an
API (e.g., Twitter API).

In this paper, we present FAIMUSS (Flexible dAta Transformatlon
to RDF from MU]tiple Streaming Sources), a flexible, user-friendly
system for end-to-end data transformation of streaming data to
RDF and integration with external sources. Given an ontology,
FAIMUSS converts streaming data (but also other data sources)
into RDF triples, which are also integrated with other archival
data sources. We employ the datAcron ontology [12] for rep-
resenting trajectories at multiple levels of analysis. However,
the system imposes no constraints on the use of a specific on-
tology, while it supports a wide range of input source data for-
mats. Salient features of FAIMUSS include its flexibility and user-
friendliness: the process of triple generation is determined by a
Graph Template that is easily edited by the user with the support
of a rich editor. Furthermore, FAIMUSS supports “near-to-the-
sources” integration, by generating linked RDF graph fragments
during the process of data transformation. Finally, the implemen-
tation of FAIMUSS also addresses scalability issues and aims at
high performance.

10.5441/002/edbt .2018.79

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.79

FAIMUSS

[Visual Interface
.
Y
4 Graph Ontology
5| Template scheme
8%
= T
archival og
data sources S ﬁ>L o
w 1
w o RDF Store
|

Figure 2: System architecture of FAIMUSS. White arrows
indicate data flows and black arrows indicate user interac-
tions.

2 SYSTEM ARCHITECTURE

In this section, we describe the system architecture that con-
sumes data from a variety of data sources and outputs RDF graph
fragments. This process is designed in a generic fashion, so as
to accomplish multiple objectives, including flexibility, exten-
sibility and scalability. FAIMUSS comprises the following main
components, a) the Data Connector, b) the Triple Generator, and
c) the Visual Interface. Figure 2 illustrates the overall system and
the individual components and their interactions, which will be
described in detail. The prototype system has been implemented
in Oracle Java 8 (64-bit) and is platform-independent.

2.1 Data Connector

The Data Connector component implements the functions that
accept data from an individual data source. Moreover, it performs
data conversion on values of specific fields as provided by the
source and basic data cleaning operations. As the data sources
can vary significantly in terms of representation, size, rate of
data access, and noise, FAIMUSS provides a Data Connector for
each type of source. The implemented system currently sup-
ports data consumption from a wide range of sources/formats,
such as: a) CSV format, b) direct access to databases, c) JSON
messages, d) XML files,) METAR/SPECI weather reports from
offline/continuous feeds from online services, f) binary (GRIB2)
files for weather reports, g) SPARQL endpoints to online open
data, h) ESRI shape-files to convert information about spatial
object to entities and relations of the ontology, and i) proprietary
formats of streaming. The list of supported data formats can be
easily extended, to support the inclusion of any other data format
required in the future.

As an abstraction of the data source in hand, the Data Con-
nector considers all data sources as streams, i.e. it consumes data
record-by-record (or tuple-by-tuple), to be processed with mini-
mal latency. This data access model makes no distinction on the
nature of data (e.g. archival data or streaming data). In addition, it
minimizes the memory footprint of Data Connectors, and enables
scalability and parallelization as a multi-threaded process, both
for a single source and across sources.

2.2 Triple Generator

The role of Triple Generator is to consume the data provided by
the Data Connector and generate the corresponding set of triples.
This procedure depends on configuration files providing a Graph
Template Gr, and a vector of variable names V. The vector V
contains the variables that appear in the Graph Template, and
binds the values of the input record to the variables in Gt. The

663

Graph Template

makeAviSemNode(?id, ?ts, ?lon, ?lat, ?status)
Object getFlight ircraft(?id) ;
:hasHeading asDegrees(?heading);
:hasAltitude hundredsOfFeet(?alt) ;
:hasAirspeed knots2meterps(?speed) ;
dul:hasGeometry getGeom(?lon,?lat);
makeTimeConstituent(?ts) .
getGeom(?lon, ?lat) a :Point ;
:hasWKT makePoint(?lon,?lat) .

Variable Names
?id, 7ts,

?lon, ?lat,

?alt, ?status,

?speed, ?heading

- o

[[001,15:21:30UTC,
w 35‘33972,25‘1803.
Connector 120, take-off,

155.88,30]

| :takeOff :occurs :sn001_1468 .
| :sn001_1468 a :Node;
ofMovingObject :aircraft001;
hasHeading 30 ;
hasAltitude 36.576~ ~unit:meters ;
hasAirspeed "80.19"~ ~unit:meterpsec ;
hasGeometry :p35 ;
dul:hasTemporalFeature :t1 .
t1 a :Instant ; :TimeStart "2016/11/14, 15:21:30UTC".
:p35 a :Point ; :hasWKT "POINT (35.33972 25.1803)".

Triple
Generator

Figure 3: A Graph Template and Variable Vector example
in Triple Generator.

Graph Template consists of a set of triple patterns, i.e. any of
the three elements in the triple (subject, predicate, object) can
be replaced by a variable. The Graph Template differs from the
standard RDF Graph Pattern, in that variables can be used as
arguments in functions, to compute dynamic values at runtime.
Furthermore, the implementation of Triple Generator is paral-
lelized in a multi-threaded process, due to the record-by-record
conversion to triples.

Figure 3 illustrates the application of a Graph Template on a
single record from a stream of aircraft surveillance data to gener-
ate the corresponding triples. Specifically, the Triple Generator
consumes the data provided from the Data Connector and con-
structs a new resource (:sn001_1468) of type :Node, based on
the Graph Template depicted at the top of the figure. This new
resource is the spatio-temporal representation of the moving ob-
ject (aircraft). The Triple Generator also relates the :sn001_1468
to the resource representing an aircraft (using the property :of-
MovingObject), as well as information regarding the status, the
altitude and position of the moving object.

Figure 4 shows another example of data transformation where
two data sources are processed and integrated, by having two
instances of Triple Generator interact with each other. The po-
sitioning data connector provides surveillance data of vessels
to a Triple Generator instance, similar to the previous example.
The GRIB connector accesses binary files that contain weather
forecasts and can extract the related weather attributes for a
given spatio-temporal position. As soon as a new position is re-
ceived, a request is made to the Triple Generator instance that
retrieves the weather information and provides it in RDF repre-
sentation based on the respective Graph Template. This allows
data transformation of selected weather information, namely this
corresponding to the area defined by the positioning information.
More interestingly, the weather Triple Generator returns the URI
of the weather condition to the positioning Triple Generator,
which can then create the :hasWeatherCondition property and
associate the position with the weather. This is an example of
lightweight, “near-to-the-sources” integration.

2.3 Visual Interface

The Visual Interface enables the configuration of Data Connector
and Triple Generator, the preview of input data, the visualization
of output triples on a map, and output validation. Specifically,
the user can select the ontology to be used, which will provide

r Cgeom2 - - ‘asWeatherConditions = —
| g

| Seonzom o, oz

|

|

|

Request
— WeatherCondition ~—-—»{ TriPle Get
resource for<xy.z.t>

Figure 4: Example of data transformation and “near-to-
the-sources” integration (maritime domain).

the vocabulary for the Triple Generator. Obviously, the ontol-
ogy should be taken into consideration when editing a Graph
Template, to guarantee consistency of the generated triples.

Figures 5 and 6 provide screenshots of the Visual Interface
using data from the aviation domain. As illustrated in Figure 5(a),
the user can select and configure the data source that will be
processed (e.g., specify the IP and port of remote endpoints, or
folder/file for local access), and the type of Data Connectors that
should be used for consuming the data. A sample of the data
available in the configured data source, for visual inspection.
The user can also select the fields of the input data source that
should be converted to triples, and specify the Variables Vector
to be used in the Graph Template. Figure 5(b) shows the editor
for composing the Graph Template. On the right side, the set of
available functions is provided, from which the user can insert
in the editor by a double click. Also, the Variables corresponding
to the input source are also available. The editor uses different
font color for functions and variables to improve readability. In
addition, import (export) of Graph Templates from (to) disk is
supported. It should also be mentioned that automatic valida-
tion of a sample (or the entire output) of triples generated w.r.t.
the provided Graph Template is supported. Figure 6 depicts a
map-based interface provided by FAIMUSS, which enables the
illustration of spatial and spatio-temporal RDF data. In this ex-
ample, it depicts trajectories of moving objects (aircrafts), which
correspond to RDF data generated by our system.

3 DEMONSTRATION SCENARIOS

We have used FAIMUSS in two domains, maritime and aviation,
thus showing the generic nature of our system and its appli-
cability in different domains. The selection of these domains
originates from our involvement in the H2020 research project

664

datAcron (http://datacron-project.eu/), where one of the objec-
tives is to integrate heterogeneous and voluminous archival data
with streaming data sources.

Scenario 1: Flexible Integration of New Sources. We intend to
show in the demo that a new streaming data source can be added
to FAIMUSS, after a small set of steps that can be performed by
selections from the GUL The aim is to demonstrate the ease of
use of FAIMUSS in practice. In more detail, the streaming data
source is going to be surveillance data from vessels travelling
in the Mediterranean Sea. Each record in the stream contains
the spatio-temporal position of a moving object, along with its
unique identifier. From the GUI of FAIMUSS, we are going to
input the necessary information for establishing a connection
(IP address, port, and authentication details). Thereafter, a Graph
Template is going to be specified from an editor of the GUI, which
guides the Triple Generator and determines the transformation
of stream records into RDF triples. As already mentioned, the
editor facilitates the composition of Graph Templates even for
moderately familiar users, not only by loading existing Graph
Templates that can be modified, but also by providing access to
lists of available functions and variables that generate Graph
Template code in the editor.

Scenario 2: Trajectory Enrichment. We will show in the demo
how we can generate enriched trajectories from moving objects’
positions, where the positional information can be integrated
with arbitrary data sources. Continuing scenario 1, the spatio-
temporal position of each vessel is going to be integrated with
weather conditions. Weather conditions are available as forecasts
for a temporal period (e.g. three hours) in the form of large binary
files (GRIB2 format), and mainly define 3-dimensional cells that
contain multiple variables describing weather condition (e.g., tem-
perature, humidity, pressure, etc.). In this scenario, upon receipt
of a spatio-temporal position of a moving object, the Triple Gener-
ator instance responsible for surveillance data is going to produce
RDF triples. By communication with a Triple Generator instance
for weather data, which produces weather-related triples, the
resulting positional RDF data is linked with weather information.
In this way, we generate enriched trajectories of moving objects
represented in RDF, which will be illustrated on a map for visual
inspection, and provide additional (weather-related) information
for each spatio-temporal position of a moving object.

4 RELATED WORK

A wide list of data transformation and conversion tools exists,
and such tools? have been evaluated during the design of our
system, however these are mostly ad-hoc solutions tailored for
converting archival data in specific file formats. For example,
Omnidator [1] converts any CSV or HTML online file into RDF
triples. GeoTriples [8] employs automatically generated RZRML
mappings given a source and a configuration, but demands the
use of a relational database, which is not applicable for streams.
SPARQL-Generate [10] provides an extension of SPARQL 1.1 that
allows generation of RDF fragments from documents.

Data integration over streaming data poses new challenges
compared to traditional data integration [13]. The Graph of
Things [9] targets an IoT setting where many sources provide
data for integration and querying, and supports spatial and tem-
poral data, but it is not optimized for mobility data. Also related
to our work is StreamLoader [11] which provides a user-friendly,

Zhttps://www.w3.org/wiki/ConverterToRdf

. < B Graph Template Editor v0.7 - O X
ible dAta Integration over MUltiple Streaming data Sources - FAl..
File SiElE Ps Black | | Functions nputs Retum Type
F N P tName() 2[string ~
ol E makeFlghtPanURI(?field_7) a getFlightPlanType(2field_17) ; //f field_17 i not empty, it is FM_RTFM (regulated), | {2 #
Type of file: |CSV FSelect Fie e) Tiwing
C:\Users \pasto\Documents\@itHub RDFizer RDFizer_New \Data\CSV\datacronairaraft.csv shasldentification asString(?field_7) ; stored SuRL
=departureAirport getAerodromeByICAO(?field_1) ; store) 2URT
sdestinationArport getAerodromeByICAO(field_2) ; preparc() Ofvoid
hEa :ITOT parselCAOtoDate(¥field_8) ; round(2{double
:EQBT parselCAQtoDate(?field_18) ; getDestnation) gﬁ;mg .
:FP_CruiseSpeedAkitude toQuotedstring(?field_82) . e
regd el free operator 2 =rsubmittedForFlight makeFlight(?field_23, ?fisid_18) . //=submittedForFight field_18(substring(8)) & a :Fight,
PUPLS uLac [EDRA SUPER PET... PRIVATE OWNER dul-hasParticipant $movingObject Variables
PU-VGA wrs [V/T-5 DYNAMIC PRIVATE OWNER ##makeAircraftURI(?field_57) :issues_flight_plan makeFightPlanURI(?field_7) . ~
PU-DCT wTg [AEROSPOOL WTS... PRIVATE OWNER assignRegulation (?field_29, ?field_01,7field_7,?field_8) Pfield_2
5 320 IUNKNGVIN / VARL... ICODE USED BY SE... parseFlightPlan Trajectory(?field_7, field_23, 7field_8, field_S7, ?field_17,?field_86, 2field_100,2field_114) Field_3
EIC-1108 ACS0 |GULFSTREAM 630D |EJERCITO DE €O... | Phicld_3
PULEX RVS [AMATELR VANS R... PRIVATE OWNER Pfield_S
PRZTM RV7 [AMATELR VANS R... PRIVATE OWNER oficld_6
PUBGC RVS [AMATELIR VANS R.... PRIVATE OWNER ::E:j’;
PPXT RV7 VANS RV-7 FRIVATE OWNER Eﬁgx{g v
LV-5004 p208 [TECNAMP-2008 _PRIVATE OWNER
Export Template. Import Template Convert to RDF Preview & Validate Close
Variables
ican regid mdl type operator
| | | |
Rename Variables
Separator Character: |, Reload File Continue

(a) Configuration of Data Connector

(b) Editor for Graph Templates

Figure 5: Screenshots of the Visual Interface of FAIMUSS (aviation domain).

Map Satelite

StAlb

Latitude: 51.505278

Longitude: 0.055278

Time and Date: 2016-04-01- 17:01:24

] I |
L8 G gasildon

Southe!

Canvey sland
Grays

Dartford

m W | Rochester

L1i20]

Figure 6: Map-based visualization.

web-based environment for ETL (Extract-Transform-Load) of
streaming data from heterogeneous sensors. However, it deviates
from our objective, namely to provide representations of stream-
ing data in RDF, thus allowing linking with other external (web)
sources. Moreover, it does not explicitly address the domain of
moving objects and trajectories thereof, which is the motivation
of our work. Only recently, Optique [6, 7] proposes an approach
for integration of streaming with static relational data. Again,
this problem is much narrower than the one addressed by our
work, since we make no assumptions on the availability of a
relational database nor do we impose such requirements. None
of the existing approaches targets streaming mobility data of
vessels or aircrafts explicitly. Moreover, our work goes one step
further, by introducing a system for flexible data transformation
to RDF, with a particular focus on mobility data, also supporting
linking of generated RDF graph fragments.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present the FAIMUSS system for flexible data
transformation of streaming and archival data sources to RDF.
Despite the generic and extensible design of our system, the
focus of our attention is on moving objects and integrating their
spatio-temporal positions with a variety of heterogeneous data
sources, including weather conditions, spatial areas of interest,
as well as external databases. In our future work, we intend to

665

fully parallelize our system, thus providing a scalable solution to
the problem of data integration from different data sources.

ACKNOWLEDGMENTS

This work has been supported by project datAcron, which has
received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No
687591.

REFERENCES

[1]
[2]

[3]

Omnidator. http://omnidator.appspot.com/.

C. Bizer and A. Seaborne. D2RQ-treating non-RDF databases as virtual RDF
graphs. In Proc. of ISWC, 2004.

D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao. Ontop: Answering SPARQL queries over
relational databases. Semantic Web, pages 1-17, 2016.

C. Claramunt, C. Ray, E. Camossi, A. Jousselme, M. Hadzagic, G. L. Andrienko,
N. V. Andrienko, Y. Theodoridis, G. A. Vouros, and L. Salmon. Maritime data
integration and analysis: recent progress and research challenges. In Proc. of
EDBT, pages 192-197, 2017.

S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language.
https://www.w3.org/TR/r2rml/, 2012.

E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, O. L. Oz¢ep, C. Pinkel, C. Svingos, D. Zheleznyakov, I. Horrocks,
Y. E. Ioannidis, and R. Méller. Ontology-based integration of streaming and
static relational data with optique. In Proc. of SIGMOD, pages 2109-2112, 2016.
E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Nikolaou, O. L. Ozgep,
C. Svingos, D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E. Ioannidis, S. Lam-
parter, and R. Méller. Towards analytics aware ontology based access to static
and streaming data. In Proc. of ISWC, pages 344-362, 2016.

K. Kyzirakos, I. Vlachopoulos, D. Savva, S. Manegold, and M. Koubarakis.
GeoTriples: a tool for publishing geospatial data as RDF graphs using R2RML
mappings. In TC/SSN@ISWC, pages 3344, 2014.

D. Le-Phuoc, H. N. M. Quoc, H. N. Quoc, T. T. Nhat, and M. Hauswirth. The
Graph of Things: A step towards the Live Knowledge Graph of connected
things. Web Semantics: Science, Services and Agents on the World Wide Web,
37:25-35, 2016.

M. Lefrangois, A. Zimmermann, and N. Bakerally. A SPARQL extension for
generating RDF from heterogeneous formats. In Proc. of ESWC, pages 35-50,
2017.

M. Mesiti, L. Ferrari, S. Valtolina, G. Licari, G. L. Galliani, M. Dao, and K. Zettsu.
StreamLoader: An Event-Driven ETL System for the On-line Processing of
Heterogeneous Sensor Data. In Proc. of EDBT, pages 628-631, 2016.

G. Santipantakis, G. Vouros, C. Doulkeridis, A. Vlachou, G. Andrienko, N. An-
drienko, G. Fuchs, J. M. C. Garcia, and M. G. Martinez. Specification of seman-
tic trajectories supporting data transformations for analytics: The datAcron
ontology. In Proc. of Semantics, 2017.

N. Tatbul. Streaming data integration: Challenges and opportunities. In Proc.
of ICDE, pages 155-158, 2010.

[4]

[5]

G

7

[

8

=

[9]

[10]

(1]

[12]

[13]

	FAIMUSS: Flexible Data Transformation to RDF from Multiple Streaming SourcesGiorgos Santipantakis, Apostolos Glenis, Nikolaos Kalaitzian, Akrivi Vlachou, Christos Doulkeridis, George Vouros

