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ABSTRACT

Skipping mechanisms have been extensively studied to improve
query performance over large data volumes. A powerful skip-
ping technique for in-memory columnar databases is partition
elimination. The goal is to eliminate, as much as possible, loading
physically partitioned data into memory and probing column
partitions against queries. This is achieved by consulting column
partition summaries. The summary is often very compact com-
pared to the column partition itself, and is kept in memory, e.g.
the MinMax zone map. These summaries have been extensively
integrated into modern in-memory database systems including
SAP HANA [6]. In this paper, we argue that probing byMinMax
range is not efficient when there are gaps in the values that ap-
pear in a column partition. Any predicate that needs to probe
values in a gap inside a MinMax range naturally ends up re-
quiring a candidate check; this reduces the benefits of column
partition pruning. To address this problem, we propose a mech-
anism to encode each partition (likewise, query) using global
ranges, carefully designed to reduce false positive rates. Our ap-
proach not only provides a compact in-memory representation,
but also supports efficient partition pruning using bitwise op-
erations. Compared toMinMax, our experiments support that
our approach significantly reduces the false positive rate. It can
allocate memory budget among ranges in partition groups, based
on column density, estimated false positive rates from recent
workload, and gaps.

1 INTRODUCTION

Partition elimination is a powerful technique to improve query
performance over large volume of data [1, 4, 6, 8, 9]. To increase
parallelism and achieve operational scalability, physical partition-
ing is often employed to divide data into independent partitions.
This is done to eliminate loading partitions, and probing them
against the query, when partitions to access can be inferred ex-
plicitly from the query itself. For an in-memory database, this
can prevent unnecessary loads of cold partitions (better memory
utilization) and can bring significant performance improvement
[6]. Small materialized aggregates for partitions, e.g. theMinMax
synopsis, are small memory footprint objects that are good can-
didate for partition examination [5, 6]. If the predicate range of a
query does not intersect with the partitions’s MinMax synopsis,
then it is safe to skip the column partition without incurring false
negative. Pruning by partition synopsis is effective if:

• it causes no false negative (i.e. synopsis freshness [6]), and
• it minimizes the need for redundant partition examination.

This paper considers the second synopsis requirement.
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2 MOTIVATION: THE LIMITATIONS OF

MINMAX SYNOPSIS FOR SPARSE DATA

MinMax synopsis has high false positive rate for sparse par-
titions [7]. If the synopsis of a column partition includes data
points within its min-max range that do not actually exist in the
column partition, pruning byMinMax can yield false positive.
This can happen when the column partition has gaps or values
from a sparse distribution. For example, for a table storing the
prices of an item over the years, there are usually some gaps
in the price column. Although the price is expected to increase
monotonically over time, it often does not increase by smallest
price unit, and naturally some gaps are present. A natural im-
provement of theMinMax synopsis is to store several ranges for
each column partition. This way, some gaps can be excluded from
the column partition representation. However, this approach has
two limitations. First, it requires storing a number of value pairs
for each partition. This is space-consuming as we usually have
thousands of partitions. Second, processing predicates against
this extended synopsis becomes very expensive; for each par-
tition it requires comparison against ranges that represent the
partition.

3 OVERVIEW OF OUR CONTRIBUTIONS

To address the two limitations stated in Sec. 2, we propose a
new list-based structure called the Global Range Table (GRT).
This structure helps to construct compact synopses for single
column partitions, which supports efficient partition pruning
using bitwise operations. Fundamentally, the pruning approach
is very similar to the MinMax synopsis [6] and to the Adaptive
Range Filters [1] in that we use value ranges to determinewhether
to access each partition. The key properties of our ranges are:

(1) We construct the list of value ranges that is common across
all the partitions. This facilitates probing queries against
synopsis using bitwise operations, and

(2) We incorporate recent workload knowledge into our range
extraction algorithm. This is motivated by the observa-
tion that frequently–accessed values can suffer more from
false positives than rarely–accessed values, if the workload
characteristics does not change significantly.

We use the extracted GRT to encode column partitions; each bit
of the compact encoding indicates whether the corresponding
column partition contains some values within the respective
GRT range. The GRT ranges can be improved to have small
false positive rates, based on the knowledge learned from recent
workload and the importance of value ranges. We use the same
encoding approach to represent each query as a bit string. This
facilitates efficient query probing on partitions. Furthermore,
storing only one GRT global to all partitions in memory is much
cheaper, compared to storing multiple value ranges per partition.
Finally, the amortized space overhead of our approach is one
compressible bit string per partition. We propose algorithms to
further reduce this overhead, when the memory budget to store
partition synopses is limited (Sec. 4.2.2).
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Figure 1: Encoding column partitions using Global Range Table

Table 1: List of Notations

Notation Description
V The universe set of column values

C[v] The popularity of column value v (Sec. 4.1)
Np The total number of partitions
N p
V The total number of distinct values on the column in partition p
k The maximum number of sub-partitions for each partition
NR The number of ranges in rGRT (Sec. 4.2)
m The desired number of final GRT (i.e. the length of each encoded bit string)

4 DEEP DIVE: GLOBAL RANGE ENCODING

We demonstrate pruning by Global Range Table (GRT) using an
example. Table 1 summarizes the notations used in this section.

Example 4.1. The table shown in Fig. 1a has two columns, Age and

Income. This table is divided into three partitions based on the Age
attribute (Fig. 1b). The list of ranges in Fig. 1c defines 5 mutually

exclusive Income ranges. Using these Income ranges, each of the

three Income column partitions in Fig. 1a can be encoded using a

bit strings of length 5 in Fig. 1b. For instance, the Income column

for partition P3 is encoded as 10000, This is because this partition
only contains values 15 and 16, which fall in the range [15-16] of
the GRT table in Fig. 1c. As range [15-16] has index 5, only the

fifth bit is set. Now consider the query Income ≤ 12. This query

intersects with three ranges from the GRT, namely [1-3], [5-9], and
[11-12]. Therefore, the query can be encoded as 00111. Comparing

the bit string of the query with that of the encoding column in

Fig. 1c, one can verify that 00111 ∧ 10000 = 00000, hence partition
P3 can be pruned safely. The bit string encoding preserves more gap

information, compared with MinMax, e.g. encoding P1 as [1-13]
implies that [11-12] is included. The bit string excludes this range.

Conceptually, the global range table is a set of ranges on col-
umn partitions. The extraction of these ranges can be performed
in either a single-phase process from all column partitions at
once, or in a two-phase process by integrating the ranges from
partitions. The two-phase approach has several advantages:

• Memory consumption: the single phase approach requires
every column partition to be loaded into memory. The
alternative way reduces the memory footprint by integrat-
ing ranges extracted from independent partitions.

• Performance enhancement: the two-phase approach can
be implemented within the MapReduce framework, with
theMap phase applied to independent partitions (Sec. 4.1)
and the Reduce step to integrate ranges (Sec. 4.2).

• Capturing gaps: ranges extracted from all data might not
capture gaps inside partitions. Our two-step approach
avoids this by regarding gaps in partitions as constraints,
penalized in the goodness measure for ranges (Eq. 3).

4.1 The Sub-Partitioning Step

This step produces a set of ranges from each partition. Once
the set of all ranges have been created, they will be integrated
to construct GRT (Sec. 4.2). Given a set of values V , integer k ,
and cost function of Eq. 2, the sub-partitioning problem is to
find an optimal selection of non-empty subsets S1, . . . , Sk , s.t.
∪1≤i≤kSi = V . As the order of values is not represented in a set,
we re-order the rows in each column partition when extracting
ranges and consider subsets with consecutive members. That
leads to a simplified problem: given an ordered list of values
V , we find the optimal k mutually exclusive sub-lists V1= V [1 :
i1], . . . ,Vk = V [1+ik−1 : ik ], with i1≤j≤k being indices of sorted
value list.

4.1.1 Sub-Partitioning Cost Model. A column value is popular
if it can satisfy a large fraction of queries in the recent workload1.
The more query predicates a value can satisfy, the higher its pop-
ularity ranking is. For example, suppose we have two predicates
1 ≤ x ≤ 5 and 4 ≤ x ≤ 10 on an integer column. Values 4 and 5
can satisfy both predicates while the other values between 1 to
10 satisfy only one predicate each. In this case, 4 and 5 are more
popular than 1,2,3,6–10. Let |Pred | denote the total number of
predicates in the workload and let V be the set of column values.
We define the popularity of a column value v ∈ V (denoted by
C[v]) to be the ratio of predicates from the recent workload satis-
fied by v .C[v] is between 0 and 1, inclusive. A value is popular if
it satisfies many predicates. If a popular value is in a gap within
a partition, a query for this value returns nothing2. Thus, we
observe that the probability of false positives depends directly
on the popularity of the value(s) in gaps. Let G be a gap and VG
be the set of values included in G. We define the cost of gap for
G to be the sum of the popularities of the values it contains:

Cost(G) =
∑
v ∈VG

C[v]. (1)

For each sub-partition s , letV s
G be the set of values of the gaps

that are included in s . If a popular value v ∈ V s
G (i.e. v does not

exist in sub-partition s), then those predicates thatv satisfies will
cause false positives on the partition to which sub-partition s
belongs. The reason is that the sub-partition value range will
indicate the existence of v , but it is not true (i.e. false positive).
Therefore, the sub-partitioning cost of a partition is the sum of
gap costs included in any created sub-partition. Let Subp be the
set of sub-partitions in the partition p. Then,

SubCost(P) =
∑

s ∈Subp

∑
v ∈V s

G

C[v]. (2)

Thismeasure gives the likelihood that the sub-partitioning scheme
will create false positives for a partition, for values that do not
actually exist in the partition. Thus, creating sub-partition value
ranges that include popular gaps yields a high false positive rate.
Intuitively, the lower the cost is, the better the sub-partitioning
scheme is. When the cost is 0, that means there is no sub-partition
that produces false positives on any predicate. Thus, we would
like to minimize this measure. To normalize this cost, we divide
it by the maximum number of possible distinct values that the
partition can take. To summarize, the normalized cost penalizes
gaps that cause false positives in a set of ranges extracted from
each partition. The ranges are extracted via sub-partitioning.
1We base our approach on predicate stability, i.e. popular column values continue to
satisfy many predicates in future queries. If predicates are not stable, our approach
will remain valid but sub-optimal considering the false positive rates.
2However, a MinMax synopsis would incur false positive on this gap.
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4.1.2 The Largest Gap Greedy Algorithm. Sub-partitions with
fewer gaps reduce the cost of the ranges extracted from each
partition. Therefore, if we exclude popular gaps from each sub-
partition, the cost would be toward optimal. The main idea of our
greedy algorithm is to find top (k−1) popular gaps. We use a min-
heap to keep track of the top (k−1) popular gaps (i.e. with largest
costs). For each node of the min-heap, we keep the gap cost (i.e.
Eq. 1; the gap popularity) and the index of the gap. The index of
the gap is defined as the identifier of the value immediately before
the gap. The min-heap property is maintained with respect to the
costs stored in nodes. We go through the sorted list of distinct
values of the partition and manage the top (k − 1) popular gaps
as well as the indices of those gaps in the heap. At the end, the
indices determine sub-partition boundaries. At the beginning,
there are Np

V -1 candidate boundary points in partition p with Np
V

distinct values. Our algorithm selects (k−1) positions to minimize
the sum of the costs of sub-partitions (i.e. Eq. 2) in O(N

p
V logk)

time. We omit algorithm detail and proofs for brevity.

4.2 Extracting GRT And Optimizations

The sub-partitioning step produces k value ranges per partition.
Integrating at most kNp ranges into a single list may have over-
lapping ranges, as well as duplicates. In this step, a value-range
list global to all partitions is produced, with the primary goal to
reduce false positive rates. To achieve this, we extend Eq. 2 to
quantify the quality of a global range table GRT, as opposed to
one partition:

Cost(GRT ) =
∑

r ∈GRT

∑
p

(
C[v] : v ∈ V

p
G ∩r s.t. V P

G ∩r , r
)
. (3)

We first integrate kNp ranges (k ranges for Np partitions) into
one list, and call this rGRT (for raw GRT). We refine rGRT in two
steps. First, we remove duplicate ranges and value range overlaps
(Sec. 4.2.1). Then, for a given a memory budget, we show how to
merge ranges effectively and derive a reduced list (Sec. 4.2.2).

4.2.1 Mutually Exclusive GRT. Starting from rGRT, the goal
is to make every pair of ranges mutually exclusive. For this, we
propose an approach based on the greedy algorithm proposed
for the interval scheduling problem [3], where the range with
smallest endpoint from the list is picked and inserted into the
result list, if it does not intersect with any other ranges already
in the result list. The range is discarded if it is in conflict with
at least one range in the result list (i.e. cannot be scheduled
together). In our approach, whenever the value range overlaps
with some value range already in the result list, we split the
to-be-inserted range into smaller ranges instead of discarding it.
Each smaller range is either mutually exclusive or a duplicate (i.e.
already completely covered) of the ranges in the result list. Then,
we discard those duplicates and insert the others. For example,
assume that we want to insert value range [2-18] to the list of
ranges R={[1-4], [7-10], [15-16]}. In our approach, we split [2-
18] into six smaller ranges: [2-4], [5-6], [7-10], [11-14], [15-16],
and [17-18]. This is done based on the overlap of [2-18] with
the ranges in R. We process each sub-range separately. Because
[2-4], [7-10], and [15-16] are already present in the result list, we
discard them and insert [5-6], [11-14], and [17-18]. We iterate this
split-and-insert process for every range in rGRT and obtain a
mutually exclusive global range table (xGRT) in time linear to
the number of ranges in rGRT. In this process, the ranges are
refined and Eq. 3 reduces, but the number of ranges grows. This
increases the number of bits needed to encode each partition.

4.2.2 GreedyMerge Algorithm. A synopsis is expected to have
a small memory footprint. We propose a greedy algorithm to
merge ranges and reduce the size of xGRT while keeping the
GRT cost low. Merging t ranges R1, . . . ,Rt has two overheads:
the extra range cost3 and the cost of the newly introduced gaps.

Example 4.2. Suppose partition P={1, 3, 6, 8, 9, 13} and a given

xGRT. Suppose we select two ranges [8-9] and [11-12] to merge, and

let [11-12] be a range from another partition. The ranges [8-9] and
[11-12] would merge into [8-12]. After this merge, the popularities

of value 11 and 12 contribute to the GRT cost against partition P
while it would not before. This is the extra cost of the range [11-12].
Before merging, the query 11 ≤ x ≤ 12 would not have any match

on this partition since the GRT would tell that this partition has no

match. However, after merging, the GRT would suggest to load the

partition since this partition has data within [8-12]. Because there
is a gap between the two ranges (i.e. value 10 is missing), the cost

of the gap contributes to the extra cost of merging, which comes

from the popularities of 10, 11, and 12.

The greedy merge algorithm must maintain cost matrix EC ,
with ECi, j being the extra cost of merging ranges ri , . . . , r j in
xGRT. After merging ranges ru , . . . , rv , all entries at rowv or col-
umn v are invalidated, and every entry ECi, j at row u or column
u must be recomputed. We continue picking the lowest extra
cost and updating EC , until onlym ranges remain. However, we
notice that if a larger merging fully contains a smaller one, then
it is guaranteed that the smaller merging has a lower (or equal)
cost than the larger one since the extra-cost is non-negative.
Therefore, we simplify the algorithm to use a 1-dimensional list
of extra-cost, with EC having NR -1 entries. In this case, ECi de-
notes the extra-cost of merging the i-th range with the next one
in xGRT. At each iteration of the algorithm, we pick the lowest
extra-cost, ECu , and merge theuth range with the (u+1)th range
and update EC : we invalidate ECu+1 and range (u+1) in xGRT. If
ECu is the last entry, then ECu itself is invalidated. On the other
hand, we at most need to update two entries of EC . If ECu is not
the first or the last entry, we re-calculate ECu−1 and ECu using
the updated xGRT. Note that ECu now stores the extra-cost of
merging the uth and (u + 2)th ranges as the (u + 1)th entry has
been invalidated. If ECu is the first (the last) entry, then we only
re-calculate ECu (ECu−1). We iterate until onlym ranges remain.
We name the result list cGRT (for compact GRT). Our algorithm
takes O

(
(kNp −m)Np log(kNp )

)
time to find cGRT.

4.3 Partition Encoding and Elimination

Encoding partitions. Once the GRT is constructed withm mu-
tually exclusive ranges, each column partition can be encoded
using a bit string of lengthm. The bit i is 1 if and only if the par-
tition has at least one value within the value range ri in the GRT.
This is a pre-processing step. For each partition, the encoded bit
string serves as its compact synopsis, which is kept in memory.
Encoding query. At query processing time, each query is en-
coded as a bit string. The i-th bit is set to one if at least one value
in the range ri of the GRT satisfies the query predicate.
Partition pruning. The encoded query is compared against the
encoded bit string for each partition, using bitwise AND opera-
tion. If the result bit string has at least one set bit, there might
be some value(s) in the corresponding partition that satisfy the
query predicate. Otherwise, no record in the partition will satisfy
the query predicate, and the partition can be safely pruned.

3I.e. the range cost of merging R1, . . . , Rt but excluding Ri .
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(a) GRT based encoding vs. MinMax (ratio of gaps preserved)

(b) Normalized GRT cost, varying the number of bits (left)
(c) GRT construction time (seconds), varying the number of bits (right)

Figure 2: Experiments on 1M rows

5 EXPERIMENTAL EVALUATIONS

We conducted experiments on a machine with Intel Core i7-
4770 CPU. The dataset is from a real SAP application. We range-
partitioned the table based on a date column, and extracted syn-
opsis (MinMax or GRT based) from the document identifier (SAP
UUID) of each partition. The distribution of values in this column
was sparse with many gaps. Fig. 2a compares GRT encoding with
MinMax based on the ratio of gaps preserved. For each column
partition, the measure quantifies the ratio of values in column
partition’sMinMax range, that 1) do not appear in the column
partition, and 2) can be excluded using the column synopsis. This
ratio is between 0 and 1, with larger value more desirable; it indi-
cates better pruning. This measure is zero for MinMax; none of
the values appearing in a column partition gap can be excluded
by the minimum and the maximum range. The memory overhead
for MinMax for each partition is a pair of minimum and max-
imum values. For GRT based encoding, the memory overhead
is one bit string per partition, plus one global range table for
all partitions. Note that we need to have values (i.e. value pairs
for MinMax and value ranges in GRT) in memory, instead of
dictionary value identifiers. This is mainly because the pruning is
performed without accessing each column and its data structures
(i.e. encoded data vector and dictionary).

Using GRT based encoding (Sec. 4.2.2), one can preserve more
gaps as "zero" bits of the synopses to demonstrate values in the
gap that are not included in a partition. The number of gaps
preserved decreases when the number of bits dedicated to each
synopsis reduces; merging GRT ranges produce wider the ranges
in the target GRT table. This reduces the number of zeros as
well as pruning opportunity. Fig. 2b reports the normalized GRT
cost for no merge (xGRT of Sec. 4.2.1) and cGRT (Sec. 4.2.2).
With reduction in the number of bits, the overhead of merge
is observed as increase in the normalized GRT cost and in the
construction time (Fig. 2c). For both xGRT and merged GRT, the
normalized GRT cost decreases when the dataset size increases
(Fig. 3a,b). The reason is that partitions become larger and the
number or the size of gaps reduces in each partition. Therefore,
the number of split ranges in xGRT decreases. Consequently, the
time spent to merge these ranges reduces.

(a) Normalized GRT cost, varying the number or rows

(b) GRT construction time (seconds), varying the number or rows
Figure 3: Scalability

6 CONCLUSION AND FUTUREWORK

We introduced GRT, a compact data structure to achieve partition
pruning. GRT is a list of ranges which we use to encode partitions
and predicates. Bit string encoding is compact (compared to orig-
inal partitions) and can be used for efficient partition elimination.
This encoding is superior toMinMax zone maps. In particular,
when the distribution of values in column partitions is sparse and
value gaps appear, pruning byMinMax becomes less effective;
false positives demand for extra candidate check [7]. Encoding
partitions using global range tables, as opposed to local range
tables optimized per partition (e.g. [9]), has the advantage that
partition elimination can be performed without re-encoding the
query per partition. Our results confirm the effectiveness of our
approach, in preserving gap information. We studied the applica-
tion of GRT in the context of query processing on cold partitions.
However, its application can be extended to other use cases, e.g.
semi-join reduction and enforcing the uniqueness constraint. Our
encoding is reminiscent of Bloom filters [2]; we set bits using a
global range table common to all partitions, to assist point and
range queries. Designing GRT to offer bounds on false positive
rates is an interesting future research direction. We plan to assign
different sub-partitioning quota for dense vs. sparse partitions
(non-homogeneous sub-partitioning). Sparse partitions should
receive more encoding space than dense and uniform partitions,
to reduce false positive rates.
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