
Don’t mix pages with di�erent lifetimes in one stream

Soyee Choi
Sungkyunkwan University

Suwon, Kyouggi, Republic of Korea
ithdli@skku.edu

Hyun-Woo Park
Sungkyunkwan University

Suwon, Kyouggi, Republic of Korea
music2eye@skku.edu

Sang-Won Lee
Sungkyunkwan University

Suwon, Kyouggi, Republic of Korea
swlee@skku.edu

ABSTRACT

We present a demonstration about optimizing two database

storage engines by leveraging multi-streamed SSDs (MS-SSD in

short). By storing data pages with similar lifetime together in

the same physical �ash blocks, MS-SSD can e�ectively reduce

the overhead of garbage collection, improving the write perfor-

mance and prolonging the lifespan. Thus, in order to bene�t

from MS-SSD, it is very crucial for database storage engines to

precisely classify logical data pages according to their update in-

tervals and to e�ectively map those logical data streams to phys-

ical streams in MS-SSD. Given that numerous new interfaces be-

tween host and �ash memory SSD for better performance are

emerging, this demonstration will provide a model case of phys-

ical database tuning on �ash memory SSDs.

We have successfully multi-streamed two database engines,

MySQL/InnoDB and ForestDB, by identifying several logical

data streamswith distinct update intervals in each engine and by

taking the stream-per-object policy, instead of the naïve stream-

per-�le one. By running both vanilla and multi-streamed ver-

sions of two storage engines on real MS-SSD, we showcase that

multi-streamed versions consistently outperform vanilla ones.

In addition, we propose a set of guidelines on how to group log-

ical streams with di�erent update intervals into smaller number

of physical streams with minimal performance degradation.

1 INTRODUCTION

During the last decade, we are witnessing that �ash memory

SSDs have relentlessly been replacing harddisks as themain stor-

age because of several advantages such as high IOPS/$ and low

power consumption [9]. However, to prevent data loss due to

electrical interference, �ash memory chips do not allow over-

write. Hence, a costly erase operation against a block is neces-

sary prior to overwriting the existing data pages in the block [5].

For this reason, most contemporary �ash storage device takes

the log-structured copy-on-write approach and, among many

FTL schemes, the page-mapping FTL approach is most popu-

lar [10]. In FTLs, when no more clean block is available, a costly

but inevitable garbage collection (GC) operation has to be trig-

gered so as to secure new blocks to write new incoming page

writes. During GC, valid pages from the victim block has to be

copybacked to a clean block. It is well known that the excessive

copybacks of valid pages during GC negatively a�ects the per-

formance and lifetime of �ash memory SSDs. Hence, one of the

key challenges in modern �ash memory SSDs is to reduce the

GC overhead.

Meanwhile, every modern �ash memory SSD has abundant

computing resource which is a�ordable to support other new

interfaces than the existing dummy read and write block inter-

face. In fact, numerous new interfaces between host and �ash

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
21st International Conference on Extending Database Technology (EDBT), March
26-29, 2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

memory SSD have been actively proposed for various purposes

including better performance. Among them, one notable inter-

face is Multi-Streamed SSD (MS-SSD in short) [8]. The interface

is recently standardized in the SCSI interface [11] and the com-

mercial SSDs which support it exists. The goal of the MS-SSD

is to minimize the GC overhead. That is, by storing data pages

with di�erent lifetimes in di�erent physical �ashmemory blocks

(i.e., di�erent write streams), MS-SSD expects that it can reduce,

compared to the existing non-multi-streamed SSD, the number

of pages to be copybacked in victim blocks, and thus can improve

both the write performance and the lifespan. In short, instead of

writing all data pages in one stream regardless of lifetime, by

explicitly allowing to cluster data pages with di�erent lifetime

into di�erent write streams, the MS-SSD interface is intended to

reduce write ampli�cation due to GC.

However, the performance bene�t of MS-SSD depends heav-

ily on the accuracy of classifying logical data streams according

to update interval [7]. Therefore, it is very crucial for storage

engines to precisely classify logical data pages base on their up-

date intervals and to e�ectively map those logical data streams

to physical streams in MS-SSD. For this reason, the �rst step in

making any database engine multi-streamed is to understand its

write patterns and then to �gure out all logical data streams dis-

tinguishable from each other in terms of update intervals.

In this demonstration, we will show how to make two

database storage engines multi-streamed, MySQL/InnoDB and

ForestDB, and present the bene�t of each multi-streamed ver-

sion over its vanilla engine in terms of transaction throughput

and WAF. The contributions of this demonstration can be sum-

marized as follows. First, we show that each database storage

engine has several logical data streams with distinct update in-

tervals. Second and more importantly, we show that, in database

engines, the logical data streams with di�erent update intervals

can be found when the write patterns are analyzed per-object.

Unlike the existing work on multi-streaming LSM-based NoSQL

engines such as Cassandra and RocksDB using the per-�le pol-

icy [6, 8], we found out that those two database engines used in

this demonstration can not be e�ectively multi-streamed with

the per-�le policy. Given that numerous interfaces between host

and �ash memory SSDs for better performance are emerging,

this demonstration will provide a model case of physical data-

base tuning on �ash memory SSDs. Our demonstration will pro-

ceed following the steps below:

• Using the logical data streams identi�ed according to the per-

object approach in each storage engine, we explain how to clas-

sify each of streams intoHot, Cold andWarm and the rationale

behind it. (Section 2)

• Based on the classi�cation obtained from the above step, we

will show that there are numerous other combinations in map-

ping logical streams into physical streams than the naïve one-

to-one mapping, run representative benchmark in each stor-

age engine by changing the combinations, explain the results,

and discuss its implications. (Section 4.2)

Demonstration

 

 

Series ISSN: 2367-2005 654 10.5441/002/edbt.2018.77

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.77


• While running benchmarks on both multi-streamed and

vanilla version of each storage engine, we will show, using

a GUI program, how the key metrics including CPU utiliza-

tion, IOPS, TPS (transaction per second) and WAF dynami-

cally change over time. (Section 4)

• Based on the performance results from several combinations

in mapping logical streams to physical streams, we suggest a

set of practical guidelines for making storage engines multi-

streamed e�ectively. (Section 4.2)

2 BACKGROUND

2.1 MultiStream SSD

The goal of MS-SSD is to reduce the GC overhead by sepa-

rating logical data pages with di�erent lifetimes into di�erent

physical streams of �ash blocks inside SSD [8]. Multiple physi-

cal streams will divide physical space in �ash SSDs into several

smaller spaces. Applications in the host are responsible for dis-

tinguishing data pages by explicitly attaching stream-id when

making a write request toMS-SSD. Upon receiving write request

for data page(s) with stream-id, SSD places the page(s) in the

�ash block belonging to the corresponding physical stream id.

All the blocks belonging to each physical stream will be man-

aged by the �ash translation layer (FTL) separately from other

blocks of other physical streams. Consequently, compared to the

non-multi-streamed SSDs, MS-SSD expects that most pages in

victim blocks upon GCs is invalidated for GC, thus minimizing

the number of pages to be copybacked for GCs.

Although MS-SSD looks promising, there are at least two

practical issues to be addressed when making any database en-

gine multi-streamed. As noted above, the stream-id of data

pages is not determined automatically by MS-SSD itself, but in-

stead should be explicitly hinted by applications. Thus, the per-

formance bene�t of any multi-streamed database engine will be

highly dependent on the accuracy of logical data stream classi�-

cation. Next, because the number of physical streams available

in anMS-SSD is limited in practice (e.g., 16 in the case of PM953),

applications should be able to get best performance with the lim-

ited number of physical streams. For this, when the number of

logical data streams from the applications is larger than that of

physical streams supported by MS-SSD, a set of guidelines on

how to group multiple logical streams into smaller number of

physical streams with minimal performance degradation.

2.2 Logical Streams in Database Engines

As discussed above, the crux in leveraging the opportunities

from MS-SSD is to accurately separate logical stream with dif-

ferent lifetime. In this section, we illustrate how logical streams

from each of two real database engines, MySQL/InnoDB and

ForestDB, are derived. From a set of separate experiments, where

two storage engines were, likewise as in existing work [8] multi-

streamed according to the per-�le approach, anymeaningful per-

formance improvementwas not observed. In some cases, the per-

formance of multi-streamed versions was even worse than that

of non-streamed vanilla ones. This is because the write patterns

from those database engines do not reveal any distinguishable

lifetime among di�erent database �les.

MySQL/InnoDB is a popular open source relational data-

base engine, which takes the traditional in-place update pol-

icy. On the other hand, ForestDB, a storage engine for Couch-

base NoSQL database [3, 4], is taking the out-of-place update

approach, likewise other popular NoSQL engines such as Cas-

sandra and RocksDB. But unlike these LSM-based NoSQL en-

gines used in the previous work on MS-SSD [8], ForestDB is a

B-tree-based storage engine, which appends new key-value ver-

sions at the end of �les (that is, copy-on-write). It periodically

reuses the space occupied by the invalidated old versions of key-

value documents and, when the size of a database �le becomes

larger, the compaction operation has to be carried out. In this

section, although these two database engines of MySQL/InnoDB

and ForestDB take di�erent approaches in updating data, they

are common in that each engine has several object types and in

turn each object type exhibits distinct update intervals. This ob-

servation clearly con�rms that there exist opportunities for im-

proving database performance by making those engines multi-

streamed using the stream-per-object approach.

Table 1: Characteristics of MySQL TPC-C’s Data Type

avg update total write

interval write (MB) ratio(%)

DWB (H1) 2 1330556 50

new_orders(H2) 226410 88349 3.32

order_line(C1) 26425310 202777 7.62

customer(C2) 7741410 157006 5.54

orders (W) 2861170 108706 4.085

stock (W) 2873060 771190 28.98

2.2.1 Mysql. In order to derive logical data streams, which

are suitable to the purpose of MS-SSD, from MySQL/InnoDB en-

gine we collected the write trace while running TPC-C bench-

mark [1]) with 200GB database size for one day. Using the trace,

we calculated the average update interval, total write amount,

and the relative write ratio for major object types in the data-

base. Between the time point when data is written and updated

in each LBA, write commands are issued to another LBAs. Av-

erage update interval represents the average of the numbers of

intervening writes issued for all LBAs belonging to each object

type. Therefore, the larger average update interval is, the less fre-

quently the pages in the object type is updated. The results for

major object types (with write ratio greater than 1%) are summa-

rized in Table 1.

The most outstanding object from the table is double-write

bu�er (DWB), to which every dirty page evicted from the bu�er

cache has to be redundantly journaled to guarantee the page

write atomicity. It shows very low value of average update in-

terval and also occupies half of total writes in MySQL/InnoDB.

For this reason, DWB is de�nitely a hot data object with very short

lifetime and is thus denoted as H1 in Table 1. In addition, we see

from the table that the new_orders table has relatively low av-

erage update interval and thus it is also regarded as hot object.

Similarly, two tables, order_line and customers are treated as

cold objects and all other object are as warm objects.

2.2.2 ForestDB. A ForestDB database consists of multiple

�les and each database �le is comprised of four data types:

database header, super block, index node, and document. As

mentioned above, there was no performance gain when multi-

streamed using the stream-per-�le approach. Therefore, as in the

case of MySQL/InnoDB, in order to verify that those four object

655



Table 2: Characteristics of ForestDB’s Data Type

avg update total write

interval write (MB) ratio(%)

DB Header (W1) 764571 6069 10.4

Index Node (W2) 848531 1048 1.8

Data Page (C) 1457589 44858 77.1

Super Block (H) 752 6222 10.7

types are suitable as logical data streams for MS-SSD, we col-

lected the write trace while running ForestDB-Benchmarkwork-

load [2] with 7.5GB database for four hours. Using the trace, we

calculated the average update interval, total write amount, and

the relativewrite ratio for those four object types. The results are

given in Table 2. From Table 2, it is obvious that Super Block is

hot (denoted as H), DB Header and Index Node warm (denoted

as W1 and W2, respectively, and Data Page cold (denoted as C. In

addition, we veri�ed that all data pages of each object type tend

to have uniform update intensity.

3 SYSTEM OVERVIEW

Figure 1: Multi-Streamed Database Engine: Architecture

Figure 1 shows the architectural overview of how a multi-

streamed database engine interacts with MS-SSD. First, as

shown in the bottom of Figure 1, a commercial MS-SSD from

Samsung with NVMe interface (PM953 model) is used. The MS-

SSD currently provides 16 physical streams. Next, as shown at

the top of Figure 1, a multi-streamed database engine will, for

each data page to be written, identify the logical data stream

where the page belongs according to the stream-per-object pol-

icy explained in Section 2. Finally, as illustrated in the middle

of Figure 1, the database engine is responsible for mapping its

each logical stream to a speci�c physical stream in MS-SSD us-

ing the posix_fadvise system call. For example, the database

engine can assign di�erent physical stream to its each logical

stream (that is, one-to-one mapping between logical and physi-

cal stream). As another example, as exempli�ed in Figure 1, four

logical data streams in database engine can be combined to map

to three di�erent physical streams in MS-SSD(that is, many-to-

one mapping between logical and physical stream).

The database engine will, before writing a data page,

�rst check its logical stream, then assign the appropri-

ate physical stream_id to the page according to the map-

ping between logical and physical streams, and �nally call

the multi-streamed write interface using the ioctl command

of posix_fadvise(fd,stream_id,0,POSIX_FADV_STREAMID).

Upon receiving the command, FTL will place the data page in

the physical stream corresponding to the given stream_id.

4 DEMONSTRATION DETAIL

4.1 Demonstration Scenario

The main goals of this demonstration are two-folds. First, we

will show that real database engine can signi�cantly bene�t by

accurately classifying its logical streams according to the stream-

per-object policy and then by calling the multi-stream interface.

Second, given the limited number of physical streams available

in realMS-SSDs, wewill show that it is possible to achieve nearly

optimal performance by e�ectively using physical streams less

than logical streams.

Table 3: Stream Combinations (MySQL/InnoDB)

5 streams 2 streams

(H1, H2, C1, C2, W) (H1, else) (C1, else)

(H1+H2, else) (H1+C1, else)

Table 4: Stream Combinations (ForestDB)

4 streams 3 streams 2 streams

H, C , W1, W2 W1+W2, H, C (H, else) (C,else)

H+C, W1, W2 (W1, else) (W2, else)

For this, by running TPC-C an ForestDB-Benchmark on

MySQL/InnoDB and ForestDB, respectively, this demonstration

will present the performances of vanilla version of each storage

engine. In addition, we will present, as the baseline performance,

the performance of its multi-streamed version when run by as-

signing one physical stream to each logical stream. As shown in

the �rst column of Table 3 and Table 4, respectively, a dedicated

physical stream is assigned to each logical stream in Table 1 and

in Table 2, respectively. Then, for each database engine, we will

present the performance of multi-streamed version when run

by grouping logical data streams into smaller number of phys-

ical streams in several meaningful combinations. In the case of

MySQL/InnoDB, we tested all four combinations shown in the

second column of Table 3. For example, the combination (H1+H2,

else) in the table represents that two hot logical streams of

H1 and H2 share one physical stream while all other three log-

ical streams do other physical stream. Similarly, in the case of

ForestDB, we tested all the six combinations shown in the sec-

ond and third columns of Table 4.

In order to show the e�ect of multi-streamed database visu-

ally, we made a GUI system to monitor status of computer re-

sources utilization, which is illustrated in Figure 3. Using the

GUI we will compare the e�ect of multistream SSD.

4.2 Preliminary Performance Evaluation

For each of MySQL/InnoDB and ForestDB engines, we have

evaluated the performance of its multi-streamed version as well

as its vanilla version. In the case of MySQL/InnoDB, we mea-

sured the write ampli�cation factors over time while running

656



(a) TPC-C on MySQL/InnoDB (b) ForestDB-Benchmark on ForestDB

Figure 2: Preliminary Experimental Results: Original vs. Multi-Streamed Database Engine

Figure 3: GUI used in Demonstration

TPC-C benchmark for twelve hours on its multi-streamed ver-

sion for every �ve combinations in Table 1 as well as on its non-

multi-streamed version. The results are presented in Figure 2(a).

Similarly, in the case of ForestDB, we measured the write ampli-

�cation factors over time while running ForestDB-Benchmark

for six hours on its multi-streamed version for every seven com-

binations in Table 2 as well as the original ForestDB version. The

results are presented in Figure 2(b).

From Figure 2(a) and Figure 2(b), we can make several com-

mon observations on the performance implications of combin-

ing logical streams into physical streams. First, since everymulti-

streamed versions always outperforms the vanilla version for

both database engines, it is, obviously, always bene�cial to sepa-

rate at least one logical stream. Second, the best performance is

achievable by one-to-one mapping between logical and physical

streams. Third, it is better to combine data objects having similar

lifetime rather than di�erent lifetime. For example, when com-

paring the (H1+H2, else) case with the (H1+C1, else) one in

the case of MySQL/InnoDB, the former case shows lower WAF

value. Also, the (W1+W2,else) combination in ForestDB outper-

forms all other combinations except for one-to-onemapping log-

ical and physical mapping case, in terms of WAF value. Fourth,

it is always desirable to separate logical streams with extremely

low update interval, such as DWB (H1) in MySQL/InnoDB and

Superblock(H) in ForestDB. Lastly, though obvious, it is less ef-

fective to separate any logical stream with very low write ratio

than to separate one with high write ratio, as exempli�ed by two

streams of W1 and W2 in ForestDB.

5 CONCLUSION AND FUTUREWORK

In this demonstration, we have shown that database engines

can signi�cantly bene�t from MS-SSD by appropriately identi-

fying logical streams according to the stream-per-object policy.

In addition, given that the number of physical streams available

in real MS-SSDs is limited, we have derived a set of guidelines

on e�ectively grouping logical streams into the fewest physical

streams with minimal performance degradation.

One promising future research direction is to automatically

identify logical streams out of any write-intensive application,

which are suitable to MS-SSD, considering that we found out a

set of logical streams from each of two database engines manu-

ally. Another challenging future work is to automatically group

logical streams into minimum number of physical streams.

ACKNOWLEDGEMENTS

This research was supported in part by IITP under the “SW

Starlab” (IITP-2015-0-00314) and in part by Samsung Electronics.

REFERENCES
[1] 2008. tpcc-mysql benchmark. https://github.com/Percona-Lab/tpcc-mysql.

(2008).
[2] 2014. Forest Databse System Benchmark. https://github.com/couchbaselabs/

ForestDB-Benchmark. (2014).
[3] 2014. ForestDB. https://github.com/couchbase/forestdb. (2014).
[4] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, J.W Kim, and

Seungryoul Maeng. 2016. ForestDB: A Fast Key-Value Storage System for
Variable-Length String Keys. IEEE Trans. Comput. 65 (March 2016), 902–915.

[5] Shingo Nishioka Atsuo Kawaguchi and Hiroshi Motoda. 1995. A Flash-
Memory Based File System. In UniSex Winter. 155–164.

[6] Yang Fei, Dou Kun, Chen Siyu, Hou Mengwei, Kang Jeong-Uk, and Cho
Sangyeon. 2015. Optimizing NoSQL DB on Flash: A Case Study of RocksDB.
In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing.

[7] Yang Jingpei, Pandurangan Rajinikanth, Choi Changho, and Balakrishna Vi-
jay. 2017. AutoStream: automatic stream management for multi-streamed
SSDs. (May 2017).

[8] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014.
The Multi-streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 14).

[9] Sang-Won Lee, Bongki Moon, and Chanik Park. 2009. Advances in Flash
Memory SSD Technology for Enterprise Database Applications. In Proceed-
ings of the 35th SIGMOD international conference on Management of data. 863–
870.

[10] Ma, Dongzhe and Feng, Jianhua and Li, Guoliang. 2014. A Survey of Address
Translation Technologies for Flash Memories. ACM Computing Survey 46, 3,
Article 36 (Jan. 2014), 36:1–36:39 pages.

[11] William Martin(T10 Technical Editor). 2015. SCSI Block Commands - 4 (SBC-
4) (Working Draft Revision 9): 4.34 Stream Control. (November 2015), 110–
112 pages. http://www.t10.org/cgi-bin/ac.pl?t=f&f=sbc4r09.pdf

657


	Don’t write all data pages in one streamSoyee Choi, Hyunwoo Park, Sang Won Lee

