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ABSTRACT

Every year, the number of scientific publications increases, adding
complexity to the networks of collaborations, citations, and top-
ics, in which papers are embedded. Analyzing these networks
with efficient tools is important to help researchers identify rele-
vant works and understand scientific impact. However, available
tools face several limitations, indicating that there is still room
for improvement. We present Hermes, a prototype for explor-
ing large and heterogeneous scholarly networks. Hermes allows
users to seamlessly navigate diverse types of networks within a
single graph, spanning hundreds of millions of nodes and rela-
tionships. Our prototype achieves reasonable responsiveness on
commodity hardware through: a) comprehensive indexing, b) a
careful coupling of a graph database and a search engine, and c)
incremental processing of temporal queries. In this demonstra-
tion, we explain the techniques we adopt and illustrate how to
use Hermes for exploring theMicrosoft Academic Graph.

1 INTRODUCTION

The number of scientific publications increases every week, creat-
ing a large set of data about authors, citations, and collaborations.
As a result, it becomes more and more challenging to determine
which publications are relevant for a specific research goal [16].
In fact, new terms and fields, such as big scholarly data [22] and
science of science [24], are emerging to cover data management
challenges and novel analysis questions, which arise from schol-
arly information growth.

Scholarly network analysis (SNA): The traditional metrics of
science (e.g., the H-index), that rely on network-unaware statis-
tics, have been questioned by scholars [23], making a case for
improving the analysis of scholarly networks by complementing
such metrics with content & network-based analysis.

Types of scholarly networks: At least 7 types of networks are
usually considered for SNA [23]; coauthorship/collaboration, ci-
tations, co-citations, bibliographical coupling, topics, co-words,
and heterogeneous networks.

SNA and heterogeneous networks: Restrictive choices of net-
work type and aggregation entity can limit the generalizability
of SNA. To avoid this, researchers recommend to employ hetero-
geneous networks, and methods capable of extracting value from
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Figure 1: Indexing approaches in Hermes.

these networks [23]. One of such methods is FutureRank [15],
an approach for relevance ranking based on combining HITS,
over a collaboration graph, with PageRank, over a citation graph.

Data management for SNA: SNA involves studies at macro
(global), meso (community), and micro (individual)-levels of a
network. Considering the scale of networks, in addition to the
need for managing heterogeneity of entities and analysis (e.g.
content & statistical analysis), efficient tool support for SNA
poses several data management challenges. Among them, the
foremost could reasonably be resource management: to provision
for ad-hoc SNA within reasonable response times, while enabling
queries across different network scales and representations. Other
challenges include data cleaning, provenance, management of
analysis results, and integration with external sources.

Existing tools for large scale SNA: Several scientific digital li-
braries and search engines exist that index large amounts of pub-
lications [12], however their services often fall short in several
aspects, including consistency, available metrics, and possibilities
for ad-hoc SNA [11]. Regarding the latter, for example, Arnet-
miner1 [20] internally utilizes several kinds of network analysis,
however only local exploration of ego networks is currently
offered to its Web users. Among tools supporting SNA, CiteS-
pace [4] , Pajek [2] , Gephi [1] , igraph, [6] and NetworkX [10]
are some of the most popular.

Graph databases and SNA: Although RDF technology has been
widely researched for semantic publishing [3], to date there is
little research in specialized graph database technologies for SNA.
Within our work we consider this research gap.

In this demo paper we describe the first version of Hermes,
our proposed tool for SNA based on graph technologies. The core
technical insight behind our work at this stage is in exploiting
opportunities for close search engine/graph database coupling in
SNA tasks.
1https://aminer.org/
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With our tool we seek to enable users to seamlessly interact
with large scale heterogeneous networks, performing ad-hoc SNA
at different granularities, either through our APIs, or through
native graph/search-engine query languages.

Overall, we hope to encourage the audience to use our tool
for multiple purposes. We aim to: 1) help the audience in identi-
fying relevant publications and perfoming SNA tasks; 2) receive
feedback to improve Hermes; 3) introduce to the audience the
key indexing solutions that improve the performance of Hermes;
and 4) employ Hermes for user studies to investigate what could
constitute representative SNA workloads. Based on our work, we
intend to publish corresponding anonymous datasets of usage
patterns as open-source artifacts—thus providing data for work-
load characterization to the research community. Furthermore,
our tool will be freely available.

2 HERMES

In this section we describe the current architecture of our tool,
and we present two techniques we currently explore in Hermes
for improving its data access.

2.1 Architecture

For indexing and primary storage, Hermes relies on a search en-
gine, i.e., Elasticsearch, and a database, i.e., Cassandra. These
two components are integrated through a property graph data-
base, JanusGraph2—which can also be configured to other back-
end indexes and storages. JanusGraph uses the TinkerPop33
framework, and the corresponding Gremlin query language.
Data access in Hermes is provided via a web-interface with data
management supported by Gremlin and Elasticsearch servers.

JanusGraph provides three predefined types of indexes:
• Composites are traditional indexes tuned for point-queries.
They rely on the primary storage. They cover one or mul-
tiple keys of either vertexes or edges of the stored graph.
• Mixed indexes are based on the search engine. They enable
inexact querying, and relevance boosting.
• Vertex-centric indexes are supported by the primary stor-
age. They are included in the same storage space of a ver-
tex. Instead of indexing all entries in the database (global)—
as the former two indexes—they only index the set of edges
attached to a vertex (local). This allows to traverse faster
through edges while filtering on labels and properties.

Apart from these predefined indexes, users of property graph
databases can also use the "graph itself as an index". This is a
straight-forward approach, which we, for lack of a better term,
call GRAIN (graph as an index) [8]. In GRAIN meta-vertexes are
added to the modeled data, acting as roots and nodes of a search
tree, such that they lead within limited hops to a set of expected
entities. A practical enhancement is to denormalize properties
of the target vertexes unto the linking edges, such that filtering
can be applied on the edges without visiting any vertex. In our
system, the GRAIN approach is additionally adopted by using a
set of meta-vertexes with temporal expiration. They serve as a
cache for previous query results.

Within Hermes, we adopt a comprehensive indexing strategy
that exploits all these opportunities. In Figure 1, we show an
overview. We remark that the numbering corresponds only to
the order in which we introduced each index.

2http://janusgraph.org/
3http://tinkerpop.apache.org/

Listing 1: Alternative temporal queries with Gremlin.

titanGraph.V().
hasLabel("journal").
has("retiredAt", P.gte(year0)).
has("createdAt", P.lte(year0)).count().next();

titanGraph.V().
hasLabel("journal").
has("createdAt", year0+i).count().next();

2.2 Incremental Processing for Temporal

Queries

Analyzing the evolution of publication networks can yield in-
teresting findings. For example, studies on theMicrosoft Aca-
demic Graph [18] have found the number of publications per
year to be following an exponential growth for the last century—
doubling every 12 years, with the top 1% of publications contin-
uously accounting for around a quarter of citations each year
[7]. Similar analyses with more localized perspectives can have
practical value for researchers. For instance, they could help to
assess the impact of given conferences over time or to identify
high impact research topics.

Several works consider the formalization and evaluation of
temporal graph queries—both, in graph databases [17], and in
processing engines [13, 14]. Building on studies in this area [9],
we design our temporal queries in Hermes by creating a type of
meta-vertex, which we call logger vertexes. The set of edges in
such vertexes provide a relative time-line for when items appear
in the world represented by a graph. Analyzing the sequence
of edges in a logger vertex allows reconstructing a graph from
a certain point in time to another. Through this, it is possible
to implement incremental computation of temporal data over a
graph model that accumulates several snapshots.

We achieve incremental computation in Hermes by hand-
tuned query rewriting. In Listing 1, we provide an example of a
Gremlin query for identifying the number of journals on a year-
by-year basis throughout a specified period. Instead of adding
up the number of items for all years within the interval, we only
compute the existing journals for the first year. Then, we keep a
rolling total, based on the number of journals created or retired
in each successive year.

Recently, authors have considered automated rewriting of
multi-snapshot queries for co-scheduling tasks by their common
steps—in a style similar to SIMD processing [21]. The authors
call this approach Single Algorithm Multiple Snapshots. Unlike
their work, we do not store separate snapshots, and we do not
include automated rewrites in our tool.

In other study, groundwork for incremental view maintenance
on property graph databases has been proposed, over a formaliza-
tion of OpenCypher [19]. In contrast, the rewrites for incremental
processing illustrated with our current prototype are hand-tuned,
and require further standardization.

2.3 Query Rewrites Across Graph and Search

Engine Representations

Similar to other graph databases, such as Neo4j4, JanusGraph
can integrate a search engine to support full-text queries. This
provides a set of search engine functionalities, which are either

4https://neo4j.com/developer/elastic-search/
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Listing 2: Rewrite of degree centrality (DC) calculation for

Elasticsearch.

TermsBuilder termsBuilder = AggregationBuilders.terms(aggregationName).
field("idOfTargetVertex").size(numberOfVertices);

XContentBuilder contentBuilder;
contentBuilder = JsonXContent.contentBuilder().startObject();
termsBuilder.toXContent(contentBuilder, ToXContent.EMPTY_PARAMS);
contentBuilder.endObject();

SearchRequestBuilder searchRequest= esClient.prepareSearch("index").
setTypes("edges")).
setQuery(QueryBuilders.termQuery("edgeLabel","label")).
setAggregations(contentBuilder);

response = searchRequest.execute().actionGet();

offered through the graph API (e.g., launching so-called index-
Queries), or directly through the search engine APIs. After verify-
ing the potential of external access in previous work [8], we seek
to leverage this concept in Hermes to improve its functionality
by rewriting queries for the search engine APIs.

To make the case for such rewriting, we consider an example
degree centrality (DC) calculation in Gremlin that has to be
rewritten for the search engine. The DC of vertexes is a measure
to understand the actors of a network. It can be defined as the
number of edges (either incoming or outgoing) connected to ver-
texes. The in-DC of a given vertex indicates how prominent it is
within the network, while the out-DC indicates how influential
it is. The average vertex DC for a graph is the average of the DCs
of its vertexes. In Gremlin, we can express the in-DC computa-
tion as a traversal that starts from all vertexes with an incoming
edge having a specific label—grouping them by the vertex ID,
and the number of edges. Here is an implementation based on
recommendations by the TinkerPoP community5:

g.V().in("label").inV().group().by(__.ID()).by(__.inE(label).count())

For the search engine, we can increase the utility of the in-
dexed data by adding to each edge the JanusGraph ID of the
connected vertexes. This design decision amounts to a limited
use of denormalization, with few chances for inconsistency as
the IDs of connected vertexes do not change. Finally, we can con-
struct the average DC calculation as a single Elasticsearch term
query that searches for a given value over all edge labels. This
query aggregates the count of results based on the IDs of vertexes
(either the source or the target vertex). The result is an ordered
list of vertexes and number of edges to which they are either
the source or the target. We show a prototypical implementation
in Listing 2.

For an initial evaluation of this rewrite we use the Pokec
dataset, an online social network, and a commodity machine6.
In Figure 2, we show the results, which indicate a speedup of 150x
over the original, by employing the second query approach.7

The fundamental reason for the differences in performance
is that the queries in fact map to entirely different algorithms.
A Gremlin traversal begins by querying a given set of vertexes
(either using a composite index or a full-table scan). For each
match, Gremlin counts the number of incoming edges with a
specific label, groups the results by vertex IDs, and returns these

5http://tinkerpop.apache.org/docs/3.2.1-SNAPSHOT/recipes/#degree-centrality
6We used an Intel CoreTM i7-2760QM CPU (2.40GHz) processor with 8 cores and
7.7 GiB of memory.
7We would like to add the disclaimer that the performance gains we report are
specific to the queries and database we selected. Further comparisons are pertinent
to assess the benefits of these rewrites for other queries and databases.
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Figure 2: Response times for computing the average de-

gree centrality (DC) on the Pokec dataset.

values. In contrast, the Elasticsearch implementation relies on
a simpler representation of the same data: A set of documents
that stand for the edges, further indexed with Lucene’s inverted
indexes. These serve well term-based searches, such as our entry
query. Another index, covering as terms, the ID of source vertexes,
can be matched with the document numbers found by our entry
query. At last, the resulting collection is aggregated by counting
for each term the number of matching edge documents.

In spite of the benefits, there are limits that need to be consid-
ered in adopting a search engine for graph tasks in a multi-store
context. Namely, the impedance mismatch between domains, in-
adequate performance optimizations in the search engine , and
overheads from application-level mapping of items between the
different storage engines.

3 DEMONSTRATION OVERVIEW

Data: Our preloaded dataset is the complete Microsoft Aca-
demic Graph [18] as of early 2017, which is a property graph of
scholarly publications. It is compiled and made publicly available
by Microsoft. The graph consists of six entities: Field of study, au-
thor, institution, paper, venue, and event. Furthermore, the graph
includes six standard relationships: Citations among papers, pa-
per authorship, the venue or journal a paper was published at
(or a field of study if no venue is available), the institutional af-
filiations of authors, and the relationships of events to venues.
Overall, theMicrosoft Academic Graph comprises around 166
million papers, representing a heterogeneous and large dataset
for our tool.

Considering that the audience of our demonstration will be
conformed by the database community, we have tagged some
subgraphs of interest within the dataset. This includes a graph of
papers with transitive reference relationships to the foundational
paper of Edgar Codd on relational databases [5]. We call this the
Codd’s world graph, on which we aim to undertake studies in
future work.

Demonstration: We will start introducing the audience to the
core functionalities of Hermes by searching for authors or papers,
as shown in Figure 3. Based on the results, we navigate through
some different network representations of the data and explore
dependencies between the results. This will enable the audience
to use the tool by themselves.

In the next step, we explain some representative scenarios for
scholarly network analysis: Impact evaluation, academic recom-
mendation, or expert identification. This selection is based on a
recent survey [22]. We then carry out a task from the outlined
cases. For every alternative, we first accomplish the task and then
walk the user through the series of queries that conform it.
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Figure 3: Exploring networks with Hermes.

Following this, we take the user to a Jupyter notebook, where
we submit alternative versions (with different optimizations) of
a single query. For the queries we observe different execution
times in spite of them achieving the same task. This provides
insights into the practical, positive impact of the optimizations.

As a takeaway, we expect the user to understand the different
indexing and incremental processing techniques, which can be
used to build efficient prototypes based on mainstream graph
databases. We hope to encourage them to use our tool when
searching for literature, due to its supportive features.

4 CONCLUSION

In this paper we introduce Hermes, a tool for exploring and ana-
lyzing large scholarly datasets building upon on a graph database
and an integrated search engine. While in an early phase, it al-
ready comprises a range of functionalities that motivate us to
share our work with the community.We seek to encourage others
to use our tool, helping us to improve it and, through user stud-
ies, contributing to the understanding and characterization of
SNA workloads. For future work, we will enhance Hermes with
additional analysis options and automated query rewrites. Other
target features include support for cross-dataset exploration and
for connecting to more data sources (e.g., ORCIDs). Potentially,
we can also extend our tool to the purpose of supporting system-
atic literature reviews and research exploration, addressing the
lack of suitable tools in these research areas [11, 16].
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