
Recalibration of Analytics Workflows
Maxim Filatov

Yandex, Moscow, Russia
maxfil@yandex-team.ru

Verena Kantere
School of Electrical and Computer Engineering

National Technical University of Athens
verena@dblab.ece.ntua.gr

ABSTRACT
As business decisions and strategies become more and more
automated, real-time, and data-driven, enterprises need to cre-
ate, manage and execute end-to-end analytics workflows that
process increasing data volumes, from new heterogeneous data
sources, on specialized processing engines. Workflows become
more complex and time-consuming to design and execute, since
they span a variety of systems and the amount of data being
processed grows. Therefore, it becomes increasingly difficult to
debug workflows in order to handle errors, as well as adjust the
workflow design and calibrate task parameters for applications
that perform exploratory data analysis. Towards this end, the
workflowmanagement system should provide recalibrationmeth-
ods i.e. methods to monitor and to influence workflow processing
at runtime. We demonstrate novel manual and automatic recali-
bration techniques for analytics workflows, on real use cases and
data from the telecommunication domain and web analytics, but
also on synthetic use cases and data.

1 INTRODUCTION
The analysis of Big Data is a core and critical task in multifarious
domains of science and industry. Such analysis needs to be per-
formed on a range of data stores, both traditional and modern, on
data sources that are heterogeneous in their schemas and formats,
and on a diversity of query engines. Workflow execution can be
extremely resource- and time-consuming. Thus, a system that
enables such long-term analytics processes on Big Data needs to
be able to show the progress of the execution and the intermedi-
ate results. This means that the user should be able to monitor
which workflow tasks have been executed, their produced results,
which tasks are currently executing, as well as data accessing
and resource utilization based on input from the runtime ma-
chines or the visualization tool. Further, the system should allow
the user to influence workflow processing. This means that the
system should provide methods that enable the analytics expert
to change a workflow by altering task parameters or infusing
new tasks manually at runtime, or even to predefine automatic
changes while she creates the workflow by providing alternative
workflow branches. Such recalibration methods constitute a pow-
erful functionality of a workflow management system, since they
enable the gradual design of exploratory analytics workflows
based on feedback from intermediate results, as well as efficient
error handling of complex and long-running workflows.

In this demonstration we focus on the novel functionality of
PAW1 (Platform for Analytics Workflows) for workflow recali-
bration. PAW is a platform for the design, management, analysis,

1Source code and live demo can be found on
https://github.com/project-asap/workflow

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

optimization and execution of analytics workflows. The first ver-
sion of PAW is presented in [1, 2] and includes the functionalities
of workflow design and analysis in order to clarify execution
semantics, single workflow optimization and multi-workflow op-
timization. In this demonstration we present for the first time the
new functionality of PAW on workflow recalibration. It includes
novel techniques for (a) manually changing a workflow at run-
time and re-executing it avoiding repeated computations, called
recovery and monitoring points technique (3.1); (b) automatically
changing a workflow at runtime based on conditional structures
if-then-else (3.2) and goto statements (3.3).

Several existing workflow management systems support con-
ditional structures to some extent. Each of these systems im-
plements these structures in different ways and with some lim-
itations: Kepler [7] allows the design of scientific workflows
and executes them efficiently using emerging Grid-based ap-
proaches to distributed computation. It offers a structure called
Comparator, which takes two inputs and performs a numerical
comparison. Taverna [8] is a well-known workflow management
system that does not include conditional structures in the work-
flow model, but tries to achieve the if and switch functionality at
a higher layer of workflow management. In Taverna such condi-
tional behavior is implemented using processors fail_if_false and
fail_if_true placed as first vertices of parallel branches. Depend-
ing of their input one of those processors fails, another satisfies
and only satisfied branch continue execution. UNICORE is a grid
middleware, aims to provide seamless, secure and intuitive ac-
cess to distributed resources [9]. UNICORE has a programming
environment to design and execute workflows. It supports three
specific types of if-then-else conditions, ReturnCode, FileTest and
TimeTest. The first performs a numerical comparison, the second
checks if a file exists or is executable and the third checks the cur-
rent time. Recalibration in PAW offers an abstract if-then-else task
that can be customized for a variety of input data and complex
conditions that involve the execution of fully-fledged procedures.
Only Taverna offers the same level of flexibility in the design of
conditions as PAW does. The rest of the considered systems are
very limited in possibilities to construct a condition. Also, they
don’t provide goto statements.

A new system that offers interactive debugging framework
for big data processing is BigDebug [10], which provides a set of
debugging primitives: (a) simulated breakpoints and on-demand
watchpoints that allow users to selectively examine intermediate
data of computation; (b) data provenance capability, crash culprit
determination, tracing and (c) capability to fix code at runtime
by the user, avoiding a program re-run from scratch. Unlike PAW,
BigDebug is a single-engine system and works only on top of
Apache Spark. Moreover, debugging is only one of the several
uses of the manual recalibration of PAW.

Overview of PAW. PAW implements a novel workflowmodel
[4, 5]. AworkflowW is a directed, acyclic graph (DAG)G = (V ,E).
The verticesV represent data processing tasksT and the edges E
represent the flow of data. Each task is a set of inputs, outputs and
an operator. Data and operators need to be accompanied by a set

Demonstration

 

 

Series ISSN: 2367-2005 642 10.5441/002/edbt.2018.74

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.74


cdr resultextract_ts calc_num

filter_test

filter_regionfilter_train LO_join

antennas

LO_join filter_region

calc_train_sum

calc_test_sum

join4 calc_ratio filter_peaks

DataFilter PeakDet

Di
st
rC
om

p

week_aggr

Figure 1: ‘Peak Detection’ of mobile calls workflow

O
ptim

izer
Executor

Decision	Making

Versions	Space	
Generator

Planner

Cost	
Estimator Enforcer

Cost	
Models

Monitor

Processing	
Environm

ent
Profiling

Implemen
tations

GUI

Meta	
language	

History
Logs

Data
Storages

Execution	
Engines

O
perators	Library

Interface

Visualization	
of	interm.	
results

Figure 2: The architecture of PAW

of metadata, i.e., properties that describe them. Such properties
include input data types and parameters of operators, the loca-
tion of data objects or operator invocation scripts, data schemas,
implementation details, engines etc. PAW is a part of the system
‘Adaptable Scalable Analytics Platform’ (ASAP) [3], but it can
also stand as an independent tool for workflow management and
optimization. Figure 2 depicts the architecture of PAW, as well as
its interaction with the rest of ASAP. ASAP components include
execution, visualization of results, online adaptation etc. PAW
enables workflow design by users with various expertise, the
automation of workflow analysis in order to clarify and specify
execution semantics, single and multiple workflow optimization
with respect to time efficiency, over a diverse collection of data
stores and processing engines, monitoring of workflow execution
and manual and automatic workflow recalibration.

2 MOTIVATING EXAMPLE
Figure 1 shows a real-world analytics workflow from a telecom-
munication company, which involves processing of the anonymised
Call Data Records (CDR), collected in Rome for 2015 year and
stored in HDFS, to populate a report on a dashboard. The report
lists peaks in calls and their ratios to an averaged number of
calls over a training period (one month). Peaks are defined by
“differences from typical”. The workflow extracts the day of the
week and the hour of the day from the timestamp of each call
record (extract_ts). The task calc_num counts the number of calls
at one-hour intervals. Then, two filters split the data to training

and test datasets. Further, the analysis is limited to specific geo-
graphical regions and, then, the number of calls in the training
period is averaged over each mobile tower region, day in a week
and hour in a day (week_aggr); this is the typical distribution of
calls. Next, calc_test_sum and calc_train_sum produce the sum of
calls in each day of the test and training datasets. Then, the test
and training data are joined and the ratio of calls to the average
number is produced. The filter_peaks finds ratios that are over a
specific limit. These peaks is the sought information.

Initially, this workflow comprised three complex UDFs, (DataFil-
ter, DistrComp and PeakDet), implemented in PySpark. Later on,
for optimization needs [6], they were decomposed to smaller ba-
sic tasks, the operators of which have implementations in Spark
and PostgreSQL. It is quite common that industrial workflows,
like this one, are versioned and updated with time, resulting in
a design that may not be optimal for the exploration procedure
that the analytics expert needs to follow. In this example, the
expert needs to explore the peaks one by one. This requires a
complete restart of the workflow changing each time the search
regions, a parameter of the filter_region tasks. This problem can
be solved with recalibration methods that allow for the re-usage
of the intermediate results produced by the tasks leading to the
filter_region tasks, without re-executing the first. Also, recali-
bration methods would enable the expert to monitor the result
of filter_region, visualized on a geographical map, so that she
can observe faster call congestions and decide to change the
search region. Furthermore, methods for automatic recalibration
enable the expert to predefine conditions on intermediate results
and, moreover, predefine decisions to be taken according to the
outcome of condition evaluation.

3 WORKFLOW RECALIBRATION
We propose three techniques that perform recalibration in an
online manner, i.e. during workflow processing.

Recovery and monitoring points. This technique offers to
the user manual recalibration. It enables the user to monitor
intermediate results, make workflow changes and if the changes
are in the already executed workflow part, then re-execute only
the changed part, avoiding to repeat computations; if changes
affect only the non-executed part then workflow changes are
applied and execution continues.

Conditional points. This automatic technique allows the
execution of alternative predefined workflow branches.

Goto points. This automatic technique conditionally changes
an executed workflow part to a predefined alternative and re-
executes it.

643



cdr resultextract_ts calc_num

filter_test

filter_regionfilter_train LO_join

antennas

LO_join filter_region

calc_train_sum

calc_test_sum

join4 calc_ratio filter_peaks

DataFilter PeakDet

monitoring	
point

monitoring	
point

recovery	
point

recovery	
point

week_aggr

Di
st
rC
om

p

Figure 3: ‘Peak Detection’ workflow augmented with recovery and monitoring points

Figure 4: Monitoring intermediate results of ‘Peak Detec-
tion’ in PAW

3.1 Recovery and monitoring points
This recalibration technique allows the user to change a workflow
during its execution and avoids to unnecessarily repeat compu-
tations in the already executed workflow part. It involves the
employment of two novel types of tasks: recovery andmonitoring
points. A recovery point rpT is a task that stores the result of task
T . Amonitoring pointmpT is a task that invokes the visualization
of the result of taskT or part of it. We use the phrase intermediate
result to refer to the result of a task T that has been executed,
while the whole workflow execution is not yet finished. The vi-
sualization of intermediate results assists the user in making a
recalibration decision.

Recalibration using this technique is performed in four steps:
(1) the user augments a workflow with recovery and monitoring
points and starts the workflow execution; (2) when the execu-
tion reaches a recovery point the system stores the intermediate
results of the preceding task, required for a possible re-execution
of the workflow part following this recovery point; (3) when the
execution reaches a monitoring point the user observes interme-
diate results of the preceding task; the workflow keeps executing
after the monitoring point, while the user observes the interme-
diate results; (4) the user changes the workflow part following
a recovery point and performs a re-execution of the workflow
from this recovery point and on.

When the user changes the workflow and re-executes it, PAW
determines which intermediate results are required to re-execute
the changed workflow part that follows a specific recovery point
(or points). It prepares this workflow part as a new materialized
workflow with these intermediate results as input datasets and
runs it. The execution of the previous (original) workflow is
aborted.

Figure 3 displays the workflow from the motivating example
augmented with recovery and monitoring points. The user ob-
serves the result of filter_regions at monitoring points, decides

to change the parameters of filter_regions and re-executes the
workflow from the recovery points. So the most time-consuming
part of DataFilter is not re-executed.

Figure 4 displays a ‘Peak Detection’ workflow in the interface
of PAW. Green and yellow tasks are executed and currently exe-
cuting, respectively. Using the geographical map on the bottom
the user monitors intermediate results at the monitoring point
marked with a blue stroke.

3.1.1 Implementations of points. Monitoring points invoke
the visualization of the result of the preceding task. PAW includes
monitoring points for specific operators, such as implementa-
tions of k-means, for which the result is visualized as a map of
centroids or the histogram of cluster sizes. It also provides three
basic monitoring operators, for the visualization of: geographical,
numerical and categorical data. PAW includes recovery points
for HDFS, Elasticsearch and PostgreSQL and operator-specific
monitoring points for k-means and tf-idf.

3.1.2 Partial execution. We propose two improvements of the
recovery and monitoring points technique:

Execution of a task until a deadline or a milestone is
reached.The preceding task of amonitoring point is executed for
a predefined time (deadline) or until it has processed a predefined
amount of the input data (milestone). The partial intermediate
result of the task is received by the following monitoring point,
which invokes its visualization. This partial intermediate result
is observed by the user, who decides on recalibration faster.

Execution on a part of a dataset. Data processing between
recovery and monitoring points is made on a part of the input
dataset. This enables the user to observe intermediate results on
a part of the input data, and take the recalibration decision faster.

There is no general method for preparing operators so that
they produce partial intermediate results. However, in some cases
we can have a general methodology. For example, we can break
up a query into multiple queries by dividing the input data in
chunks, and then combine the results after the execution of all
statements. PAW has several SQL query operators, which can be
split up in this way.
SELECT ∗ FROM db
WHERE f i e l d BETWEEN 1 AND 10 0 0 0 ;
SELECT ∗ FROM db
WHERE f i e l d BETWEEN 10000 AND 20 0 0 0 ;
. . .

3.2 Conditional points
PAW includes a new type of task that realizes the conditional
structure of the form if-then-else. The latter allows the design of a
workflow with several alternative workflow parts. Depending on
the intermediate results of the task preceding the if-then-else task,

644



input	
data

data	
preparation

branch_A output	
data

if-then-else
point

branch_B output	
data

Figure 5: A workflow with an if-then-else point

input	
data

data	
preparation

data	
processing

… output	
data

goto	label goto	
condition

alternative	
branch

output	
data

Figure 6: A workflow recalibrated with a goto point

a workflow branch is chosen for execution, over another one.
These workflow branches are not yet executed. Figure 5 displays
a workflow that has been augmented with one if-then-else point
and two following workflow branches. The if-then-else task has
two outputs; the boolean condition evaluates to true or false,
depending on which PAW executes one of two branches.

The operator of the if-then-else point is implemented for any
particular data. For example, for tf-idf PAW has an if-then-else
task that evaluates if the weight of some word is above a certain
value. Additional conditional points can be added through the
interface of PAW.

3.3 Goto points
The workflow is augmented with two tasks: goto label and goto
condition points, and an alternative workflow part related to the
goto label point (Fig. 6). When the workflow execution reaches
the goto condition point and if this task triggers ‘goto’ to goto
label, then it re-executes the workflow from that point choosing
for execution the alternative workflow part. Therefore, this tech-
nique is a combination of the recovery and monitoring points and
conditional techniques.

The goto condition task has two outputs and a boolean condi-
tion evaluating to true or false, depending on which PAW con-
tinues execution or jumps to the goto label alternative workflow
branch. The implementation of goto condition is similar to the
if-then-else point.

4 DEMONSTRATION
In the following, we describe the proposed demonstration.

System setup. PAW is demonstrated on a cluster, with the
following configuration: The cluster consists of 4 server-grade
physical nodes. Each one of those is equipped with a 3rd genera-
tion i5 CPU (@ 2.90 GHz) and 16GB of physical memory and an
array of two HDDs on RAID-0. The operating system is Debian 6
(squeeze) Linux. For the time being, four software platforms are
running: Hadoop (CDH 4.6.0), Spark (1.4.1), Elasticsearch (5.1)
and Weka (3.6.13).

Workloads. The demonstration uses synthetic and real work-
flows on real data. The real workflows and data come from the
two use cases of ASAP [3] and belong to the domains of telecom-
munications and web analytics. One of the telecommunication
workflows is described as a motivating example (Section 2). The
web analytics use case involves anonymization of web content
(WARC files) stored in ElasticSearch. The workflows are imple-
mented in Spark and run over varying data set sizes ranging from
1 million to 4 billion rows. There are two types of workflows:
one models entity recognition/disambiguation and k-means, and

another models continuous processing of incoming data, e.g.,
subscription/notification at scale.

Demonstration scenarios. The demonstration focuses on
the recalibration functionality of PAW. It includes four types of
scenarios that aim to show each a distinct view of the recalibra-
tion benefits and create discussion on the potential of recalibra-
tion of analytics workflows. The demonstration is interactive
with the audience. The participants are invited to experience all
functionalities of PAW, create workflows from scratch or change
existing ones, watch the processing of the workflow, as well as
review the internals of the platform, e.g. internal workflow repre-
sentation. Even more, the participants are guided to play with the
recalibration of workflows, by adding recovery and monitoring
points, goto and if-then-else points, and change the workflow
while monitoring intermediate results in GUI of PAW.

Scenarios A. These demonstrate the recovery and monitor-
ing points technique. Specifically, they show real necessities to
change workflows during execution. We show real workflows
which need infusion of new tasks or alteration of task parameters
during the execution.

Scenarios B. These also demonstrate the recovery and mon-
itoring points technique. Specifically, they show how the user
can design a workflow in a gradual and modular manner, while
he is testing and debugging already created parts by monitoring
intermediate results. We show how this workflow design process
benefits exploratory data analysis.

Scenarios C. These demonstrate the conditional technique for
workflows with a natural conditional branching, for which data
analysis based on some conditions follows different paths, and
the selection between these alternative paths should be made at
runtime.

Scenarios D. These demonstrate the goto technique usingwork-
flows that benefit from the goto point in order to find anomalies
in data, narrow or refocus the search or analysis, as well as meet
deadlines and milestones of analysis.

REFERENCES
[1] M. Filatov and V. Kantere. PAW: A Platform for Analytics

Workflows. In EDBT, 2016.
[2] M. Filatov and V. Kantere. Multi-workflow optimization in

PAW. In EDBT, 2017.
[3] Asap. http://www.asap-fp7.eu/.
[4] V. Kantere andM. Filatov. A framework for big data analytics.

In C3S2E, 2015.
[5] V. Kantere and M. Filatov. Modelling processes of big data

analytics. InWISE, 2015.
[6] K. Doka, M. Filatov, V. Kantere and N. Papailiou Optimizing,

Planning and Executing Analytics Workflows over Multiple
Engines. In MEDAL, 2016.

[7] B. Ludascher, et al: Scientific Workflow Management and
KEPLER System, Concurrency and Computation: Practice &
Experience. SI on Scientific Workflows, 2005.

[8] Taverna. http://www.taverna.org.uk/.
[9] D.Erwin et al.: UNICORE Plus Final Report − Uniform Inter-

face to Comp. Resources. The UNICORE Forum, 2003.
[10] M. Gulzar, M. Interlandi, T. Condie and M. Kim: BigDebug:

Interactive Debugger for Big Data Analytics in Apache Spark.
in FSE, 2016.

645


	Demonstrations
	Recalibration of Analytics WorkflowsVerena Kantere, Maxim Filatov, Maxim Filatov, Vasiliki Kantere, Verena Kantere


