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Algorithm 1: CEP Query Evalution

Input: Query Tree Tq and an event stream S

Output: A set of query matches

1 Q ← (P, Θ, ω, s) ; // CEP Query

2 ®E ← { ®E1, ®E2, . . . , ®Ek }, k = |P | ; // Event sequences for Tq
3 for each e ∈ S do
4 for each ®Ei ∈ ®E do
5 if isCompatible( ®Ei ,e ) then
6 ®Ei = ®Ei ∪ e ; // Step 1

7 if isCompatible( ®Ek ,e ) then
8 ExecuteJoins( ®E , Θ); // Step 2

9 ExecuteKleenePlus( ®E , Θ); // Step 3

produces the matches only when an event of type c arrives. Hence,

we execute the query tree for a trigger event. By execution, we

mean executing the joins between events within each ®Ei using

the predicates Θ and timestamps t . This step (lines 7-8) assembles

all the events, in a batch manner, for each ®Ei that can produce

the set of matches.

Step 3. For a p+i ∈ P , we need to compute all the combinations for

the events in p+i /
®Ei , i.e. a power set of events in ®Ei . For instance,

in Fig. 1 and using Query 1, each a event has 2
|2 | − 1 matches for

two b events. This step (line 9) groups all the combinations by

following the one or more semantics of the Kleene+ operator.

2.4 Detailed Analysis
We now present the details of the two main processes of Algo-

rithm 1, i.e. joining the set of events and computing the power

set of events for the Kleene+ operator.

Execution of Joins. Let ®Ei and ®Ej are two event sequences

with theta-join ®Ei Zt
Θ
®Ej over the timestamp t and predicates

Θ. Hence, we have joins on multiple relations for the Step 2.

The generic cost of such joins, i.e. pairwise join, is O(| ®Ei | | ®Ej |)

and the problem of its e�cient evaluation resembles the tradi-

tional theta-joins with inequality predicates [8]. The wide range

of methods for this problem includes: the textbook merge-sort,

hash-based, band-join and various indices such as Bitmap [7].

These techniques are mostly focused on equality joins using a sin-

gle join relation, however. The inequality joins on multiple join

relations are notoriously slow and multi-pass projection-based
strategies [3, 8] are usually employed. These strategies, however,

require multiple sorting operations, each for a distinct relation,

and are only optimised for the static datasets, where indexing

time is not of much importance. Considering this, we employ

the general nested-loop join for our preliminary algorithm. Our

experimental analysis showcase that even such a naive algorithm

provides competitive performance.

Execution of Kleene+ Operator. For Step 3, we need to create

all the possible combinations of matches over the joined events.

That is, enumerating the powerset of event sequences’ with p+

bindings. A traditional solution in this context would be to gen-

erate Gray code sequence of events with p+ bindings, where a

new match can be constructed from its immediate predecessor

by adding or removing an event. However, this would require

storing the predecessor matches to produce the next one and

would result in an extra load on the memory resources. To im-

plement Kleene+ operator e�ciently, we use the joined results

(from Step 2) while generating the binary representation of the

Figure 3: Execution of the Kleene+ operator using the Banker’s
sequence and generated binary numbers

possible matches using the Banker’s sequence [10]. That is, we

check the number of events in event sequences’ with p+ bindings

after the join process. For |m | number of such events, we need to

create 1 to 2
m − 1 matches. This means if we generate all binary

numbers from 1 to 2
|m | − 1, and translate the binary represen-

tation of numbers according to the location of the events in the

p+/ ®Ei , we can produce all the matches for the Kleene+ operator

in a batch manner. For instance, consider Fig. 3 (using Query 1),

where there are three b events for the Kleene+ operator. Hence,

we generate binary numbers from 1 to 2
3 − 1. Now equates 1 as

take element at the speci�ed location of the ®E2 and 0 as do not

take the element. Then using the generated binary numbers, we

generate all the combinations of matched events.

Complexity Analysis. Herein, we brie�y present the complex-

ity analysis for the three steps described in Algorithm 1. Step
1 results in a constant time operation since an incoming event

can be directly added to an event sequence. Step 2 has a polyno-

mial time-cost (pair-wise joins) and depends on the number of

patterns P de�ned in a CEP query. For n events in a window and

k = |P |, we have O(nk ). Step 3 requires producing an exponen-

tial number of matches for a Kleene+ operator. For n events in a

window, we have O(2n ). The memory cost for the Algorithm 1 is

linear to the number of events within a window.

3 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental study

on both incremental and recomputation-based methods for CEP.

Our proposed techniques have been implemented in Java and our

system is called RCEP. All the experiments were performed on a

machine equipped with Intel Xeon E3 1246v3 processor and 32

GB of memory. For robustness, each experiment was performed

3 times and we report median values.

Datasets.We employ both real and synthetic datasets to compare

the performance of our proposed techniques.

Synthetic Stock Dataset (S-SD): We use the SASE++ generator,

as used in [14], to produce the synthetic dataset. Each event

carries a timestamp, company-id, volume and the price of a

stock. This dataset enables us to tweak the selectivity measures of

matches
#of Matches
#of events to evaluate the performance of the systems

at di�erent workloads. In total, the generated dataset contains 1

million events.

Real Credit Card Dataset (R-CCD): We use a real dataset of

credit card transactions [2]. Each event is a transaction accompa-

nied by several arguments, such as the time of the transaction,
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