
L-Store: A Real-time OLTP and OLAP System*

Mohammad Sadoghi†, Souvik Bhattacherjee‡, Bishwaranjan Bhattacharjee#, Mustafa Canim#

†Exploratory Systems Lab
†University of California, Davis

‡University of Maryland, College Park
#IBM T.J. Watson Research Center

ABSTRACT
To derive real-time actionable insights from the data, it is impor-
tant to bridge the gap between managing the data that is being
updated at a high velocity (i.e., OLTP) and analyzing a large
volume of data (i.e., OLAP). However, there has been a divide
where specialized solutions were often deployed to support ei-
ther OLTP or OLAP workloads but not both; thus, limiting the
analysis to stale and possibly irrelevant data. In this paper, we
present Lineage-based Data Store (L-Store) that combines the real-
time processing of transactional and analytical workloads within
a single unified engine by introducing a novel update-friendly
lineage-based storage architecture. By exploiting the lineage, we
develop a contention-free and lazy staging of columnar data from
a write-optimized form (suitable for OLTP) into a read-optimized
form (suitable for OLAP) in a transactionally consistent approach
that supports querying and retaining the current and historic data.

1 INTRODUCTION
We are witnessing an architectural shift and divide in database
community. The first school of thought emerged from an academic
conjecture that “one size does not fit all” [37] (i.e., advocating
specialized solutions), which has lead to manifolds of innovations
over the last decade in creating specialized and subspecialized
database engines geared toward various niche workloads and ap-
plication scenarios [5, 9, 12, 22, 28, 29, 37, 38]. This school has
motivated major commercial database vendors such as Microsoft
to focus on building novel specialized engines offered as loosely
integrated engines, namely, Hekaton in-memory engine [9] and
Apollo column store engine [19], within a single umbrella of data-
base portfolio. Notably, recent efforts are focused on a tighter
real-time integration of Hekaton and Apollo engines [17]. It has
inspired Oracle to push the boundary of the basic premise that
“one size does not fit all” as far as data representation is concerned
and has led Oracle to develop a dual-format technique [15] that
maintains two tightly integrated representation of data (i.e., two
copies of the data) in a transactionally consistent manner.

However, the second school of thought, supported by both aca-
demia (e.g., [2, 6, 7, 13, 16, 24]) and industry (e.g., SAP [10],
IBM DB2 BLU [29], and IBM Wildfire [4]) have revisited the
aforementioned fundamental premise and advocates a generalized
solution. Proponents of this idea, rightly in our view, make the
following arguments. First, there is a tremendous cost in building
and maintaining multiple engines from both the perspective of
database vendors and users of the systems (e.g., application devel-
opment and deployment costs). Second, there is a compelling case
to support real-time decision making on the latest version of the
data [27] (likewise supported by [15, 17]), which may not be fea-
sible across loosely integrated engines that are connected through

*Work by S. Bhattacherjee was performed as part of a summer internship at IBM T.J.
Watson Research Center under M. Sadoghi’s mentorship.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the extract-transform load (ETL) process. Closing this gap may be
possible, but its elimination may not be feasible without solving
the original problem of unifying OLTP and OLAP capabilities or
without being forced to rely on ad-hoc approaches to bridge the
gap in hindsight. We argue that the separation of OLTP and OLAP
capabilities defers solving the actual challenge of real-time analyt-
ics. Third, combining real-time OLTP and OLAP functionalities
remains as an important basic research question, which demands
deeper investigation even if it is purely from the theoretical stand-
point.

In this dilemma, we support the latter school of thought (i.e.,
advocating a generalized solution) with the goal of undertaking
an important step to study the entire landscape of single engine
architectures and to support both transactional and analytical work-
loads holistically (i.e., “one size fits all”). In this paper, we present
Lineage-based Data Store (L-Store) with a novel update-friendly
lineage-based storage architecture to address the conflicts between
row- and column-major representation. This is achieved by devel-
oping a contention-free and lazy staging of columnar data from
write optimized into read optimized form in a transactionally con-
sistent manner without the need to replicate data, to maintain
multiple representation of data, or to develop multiple loosely
integrated engines that sacrifices real-time capabilities.

To further disambiguate our notion of “one size fits all”, in
this paper, we restrict our focus to real-time relational OLTP and
OLAP capabilities. We define a set of architectural characteris-
tics for distinguishing the differences between existing techniques.
First, there could be a single product consisting of multiple loosely
integrated engines that can be deployed and configured to support
either OLTP or OLAP. Second, there could be a single engine
as opposed to having multiple specialized engines packaged in
a single product. Third, even if we have a single engine, then
we could have multiple instances running over a single engine,
where one instance is dedicated and configured for OLTP work-
loads while another instance is optimized for OLAP workloads,
in which these instances are assumed to be connected using an
ETL process. Finally, even when using the same engine running a
single instance, there could be multiple copies or representations
(e.g., row vs. columnar layout) of the data, where one copy (or
representation) of the data is read optimized while the second
copy (or representation) is write optimized.

In short, we develop L-Store, an important first step towards
supporting real-time OLTP and OLAP processing that faithfully
satisfies our definition of generalized solution, and, in particular,
we make the following contributions:

• Introducing an update-friendly lineage-based storage architec-
ture that enables a contention-free update mechanism over a
native multi-version, columnar storage model in order to lazily
and independently stage stable data from a write-optimized
columnar layout (i.e., OLTP) into a read-optimized columnar
layout (i.e., OLAP)
• Achieving (at most) 2-hop away access to the latest version of

any record (preventing read performance deterioration for point
queries)

Industrial and Applications Paper

 

 

Series ISSN: 2367-2005 540 10.5441/002/edbt.2018.65

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.65


Columnar Storage
Base Pages
(read-only)

Tail Pages
(append-only)

Range 
Partitioning

Pa
ge

 D
ir

ec
to

ry

Record
(spanning over a set of aligned columns)

Base Record
(read-only)

Tail Record
(latest version)

Figure 1: Overview of the lineage-based storage architecture.

• Contention-free merging of only stable data, namely, merging
of the read-only base data with recently committed updates
(both in columnar representation) without the need to block
ongoing or new transactions by relying on the lineage
• Contention-free page de-allocation (upon the completion of

the merge process) using an epoch-based approach without the
need to drain the ongoing transactions
• A first of its kind comprehensive evaluation to study the lead-

ing architectural storage design for concurrently supporting
short update transactions and analytical queries (e.g., an in-
place update with a history table architecture and the commonly
employed main and delta stores architecture)

2 UNIFIED ARCHITECTURE
The divide in the big data community is partly attributed to the
storage conflict pertaining to the representation of transactional
and analytical data. In particular, transactional data requires write-
-optimized storage, namely the row-based layout, in which all
columns are co-located (and preferably uncompressed for in-place
updates). This layout improves point update mechanisms, since
accessing all columns of a record can be achieved by a single I/O
(or few cache misses for memory-resident data). In contrast, to
optimize the analytical workloads (i.e., reading many records), it
is important to have read-optimized storage, i.e., columnar layout
in highly compressed form. The intuition behind having columnar
layout is due to the observation that most analytical queries tend
to access only a small subset of all columns [1]. Thus, by storing
data column-wise, we can avoid reading irrelevant columns (i.e.,
reducing the raw amount of data read) and avoid polluting proces-
sor’s cache with irrelevant data, which substantially improve both
disk and memory bandwidth, respectively. Furthermore, storing
data in columnar form improves the data homogeneity within each
page, which results in an overall better compression ratio.

2.1 L-Store Storage Overview
To address the dilemma between write- and read-optimized lay-
outs, we develop L-Store. As demonstrated in Figure 1, the high-
level architecture of L-Store is based on a native multi-version,
columnar layout (i.e., data across columns are aligned to allow
implicit re-construction), where records are (virtually) partitioned
into disjoint ranges (also referred to as update range). Records
within each range span a set of read-only, compressed pages,
which we refer to them as the base pages. More importantly, for
every range of records, and for each updated column within the
range, we maintain a set of append-only pages to store the lat-
est updates, which we refer to them as the tail pages. Anytime
a record is updated in base pages, a new record is appended to
its corresponding tail pages, where there are explicit values only
for the updated columns (non-updated columns are preassigned
a special null value when a page is first allocated). We refer to
the records in base pages as the base records and the records in
tail pages as the tail records. Each record (whether falls in base

or tail pages) spans over a set of aligned columns (i.e., no join is
necessary to pull together all columns of the same record).1

A unique feature of our lineage-based architecture is that tail
pages are strictly append-only and follow a write-once policy. In
other words, once a value is written to tail pages, it will not be
over-written even if the writing transaction aborts. The append-
only design together with retaining all versions of the record
substantially simplifies low-level synchronization and recovery
protocol and enables efficient realization of multi-version concur-
rency control. Another important property of our lineage-based
storage is that all data are represented in a common unified form;
there are no ad-hoc corner cases. Records in both base and tail
pages are assigned record-identifiers (RIDs) from the same key
space. Therefore, both base and tail pages are referenced through
the database page directory using RIDs and persisted identically.
Therefore, at the lower-level of the database stack, there is abso-
lutely no difference between base vs. tail pages or base vs. tail
records; they are presented and maintained identically.

To speed up query processing, there is also an explicit linkage
(forward and backward pointers) among records. From a base
record, there is a forward pointer to the latest version of the record
in tail pages. The different versions of the same records in tail
pages are chained together to enable fast access to an earlier
version of the record. The linkage is established by introducing a
table-embedded indirection column that stores forward pointers
for base records and backward pointers for tail records (i.e., RIDs).

The final aspect of our lineage-based architecture is a periodic,
contention-free merging of a set of base pages with its correspond-
ing tail pages. This is performed to consolidate base pages with
the recent updates and to bring base pages forward in time (i.e.,
creating a set of merged pages). Each merged page independently
maintains its lineage information, i.e., keeping track of all tail
records that are consolidated onto the page thus far. By main-
taining explicit in-page lineage information, the current state of
each page can be determined independently, and the base page
can be brought up to any desired snapshot. Tail pages that are al-
ready merged and fall outside the snapshot boundaries of all active
queries are called historic tail-pages. These pages are re-organized,
so that different versions of a record are stored contiguously in-
lined. Delta-compression is applied across different versions of
tail records, and tail records are ordered based on the RIDs of their
corresponding base records. Below, we describe the unique design
and algorithmic features of L-Store that enables efficient transac-
tional processing without performance deterioration of analytical
processing; thereby, achieving a real-time OLTP and OLAP.

2.2 Lineage-based Storage Architecture
In L-Store, the storage layout is natively columnar and applies
equally to both base and tail pages. A detailed view of our lineage-
based storage architecture is presented in Figure 2. In general, one
can perceive tail pages as directly mirroring the structure and the
schema of base pages. As we pointed out earlier, conceptually for
every record, we distinguish between base vs. tail records, where
each record is assigned a unique RID. But it is important to note
that the RID assigned to a base record is stable and remains con-
stant throughout the entire life-cycle of a record, and all indexes
only reference base records (base RIDs); consequently, eliminat-
ing index maintenance problem associated when update operation
results in creation of a new version of the record [33, 34]. When a
reader performing index lookup, it always lands at a base record,
and from the base record it can reach any desired version of the
record by following the table-embedded indirection to access the
latest (if the base record is out-of-date) or an earlier version of
the record. However, when a record is updated, a new version is

1Fundamentally, there is no difference between base vs. tail record, the distinction is
made only to ease the exposition.

541



Read Optimized
(compressed, read-only pages)

Write Optimized
(uncompressed, append-only updates)

Columnar Storage
(page-based)

Indirection Column
(uncompressed, in-place update)

Base Pages
(read-only)

Tail Pages
(append-only)

Range 
Partitioning

Corresponding 
Columns

Pre-allocated Space
(on-demand allocated 

append-only region)

Updated Columns

Forward Pointer to the
Latest Version of the Record

Indirection Column
(back pointer to the previous version)

Start Time 
Column

Start Time Column
(implicit end time of the previous version)

Schema Encoding
Column

Schema Encoding Column
(keeping track of changed column)

Last Updated Time  
Column

(populated after merge)

Base 
Record

Tail
Record

Figure 2: Detailed, unfolded view of lineage-based storage architecture (a multi-version, columnar storage model).

created. Thus, a new tail record is created to hold the new ver-
sion, and the new tail record is assigned a new tail RID that is
referenced by the base record (as demonstrated in Figure 2).

Each table in addition to having the standard data columns has
several meta-data columns. These meta-data columns include the
Indirection column, the Schema Encoding column, the Start Time
column, and the Last Updated Time column. An example of table
schema is shown in Table 1.

The Indirection column exists in both the base and tail records.
For base records, the Indirection column is interpreted as a forward
pointer to the latest version of a record residing in tail pages,
essentially storing the RID of the latest version of a record. If
a record has never been updated, then the Indirection column
will hold a null value. In contrast, for tail records, the Indirection
column is used to store a backward pointer to the last updated
version of a record in tail pages. If no earlier version exists, then
the Indirection column will point to the RID of the base record.

The Schema Encoding column stores the bitmap representation
of the state of the data columns for each record, where there is
one bit assigned for every column in the schema (excluding the
meta-data columns), and if a column is updated, its corresponding
bit in the Schema Encoding column is set to 1, otherwise is set to
0. The schema encoding enables to quickly determine if a column
has ever been updated or not for base records. In tail records,
the encoding tracks which columns have been updated and have
explicit values as opposed to those columns that have not been
updated and have an implicit special null values (denoted by ∅).
An example of Schema Encoding column is provided in Table 1.

The Start Time column stores the time at which a base record
was first installed in base pages (the original insertion time), and
for a tail record, the Start Time column holds the time at which
the record was updated, which is also the implicit end time of the
previous version of the record. The Start Time column is essen-
tial for distinguishing between different version of the record. In
addition, to the Start Time column, for base records, we maintain
an optional Last Updated Time column, which is only populated
after the merge process is taken place and reflects the Start Time
of those tail records included in merged pages. Also note that the
initial Start Time column for base records is always preserved
even after the merge process for faster pruning of those records
that are not visible to readers because they fall outside the reader’s
snapshot. Lastly, we may add the Base RID column optionally to
tail records to store the RIDs of their corresponding base records;
this is utilized to improve the merge process. Base RID is a highly
compressible column that would require at most two bytes when
restricting the range partitioning of records to 216 records.

3 FINE-GRAINED MANIPULATION
The transaction processing can be viewed as two major challenges:
(1) how data is physically manipulated at the storage layer and
how changes are propagated to indexes and (2) how multiple

RID Indirection Schema Encoding Start Time Key A B C

Partitioned base records for the key range of k1 to k3
b1 t8 0000 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 k2 a2 b2 c2
b3 t7 0001 15:05 k3 a3 b3 c3

Partitioned base records for the key range of k4 to k6
b4 ⊥ 0000 16:20 k4 a4 b4 c4
b5 ⊥ 0000 17:21 k5 a5 b5 c5
b6 ⊥ 0000 18:02 k6 a6 b6 c6

Partitioned tail records for the key range of k1 to k3
t1 b2 0100* 13:04 ∅ a2 ∅ ∅
t2 t1 0100 19:21 ∅ a21 ∅ ∅
t3 t2 0100 19:24 ∅ a22 ∅ ∅
t4 t3 0001* 13:04 ∅ ∅ ∅ c2
t5 t4 0101 19:25 ∅ a22 ∅ c21
t6 b3 0001* 15:05 ∅ ∅ ∅ c3
t7 t6 0001 19:45 ∅ ∅ ∅ c31
t8 b1 0000 20:15 ∅ ∅ ∅ ∅

Table 1: An example of the update and delete procedures (con-
ceptual tabular representation).
transactions (where each transaction consists of many statements)
can concurrently coordinate reading and writing of the shared
data. The focus of this paper is on the former challenge, and
we defer the latter to our discussion on the employed low-level
synchronization and concurrency control in Section 5.

Without loss of generality, from the perspective of the storage
layer, we focus on how to handle a single point update or delete
in L-Store (but note that we support multi-statement transactions
through L-Store’s transaction layer as demonstrated by our evalua-
tion). Furthermore, in our technical report [31], we discuss how
our model can easily be extended to deal with insertion as well.
Each update may affect a single or multiple records. Since records
are (virtually) partitioned into a set of disjoint ranges as shown in
Table 1, each updated record naturally falls within only one range.
Now for each range of records, upon the first update to that range,
a set of tail pages are created (and persisted on disk optionally)
for the updated columns and are added to the page directory, i.e.,
lazy tail-page allocation. Consequently, updates for each record
range are appended to their corresponding tail pages of the up-
dated columns only; thereby, retraining all versions of the record,
avoiding in-place updates of modified data columns, and cluster-
ing updates for a range of records within their corresponding tail
pages.

To describe the update procedure in L-Store, we rely on our
running example shown in Table 1. When a transaction updates
any column of a record for the first time, two new tail records
(each tail record is assigned a unique RID) are created and ap-
pended to the corresponding tail pages. For example, consider
updating the column A of the record with the key k2 (referenced
by the RID b2) in Table 1. The first tail record, referenced by the
RID t1, contains the original value of the updated column, i.e., a2,
whereas implicit null values (∅) are preassigned for remaining
unchanged columns. Taking a snapshot of the original changed
values becomes essential in order to ensure contention-free merg-
ing as discussed in Section 4.1. The second tail record contains
the newly updated value for column A, namely, a21, and again

542



Read Optimized
(compressed, read-only pages)

Indirection Column
(unaffected by the merge process)

⋈ =

Asynchronous Lazy Merge 
(committed, consecutives updates)

Merge Queue
(tail pages to be merged)

In-page, Independent 
Lineage Tracking

Consecutive Set of 
Committed Updates

Figure 3: Lazily, independently merging of tail & base pages.

Indirection Column
(unaffected by the 

de-allocation process)

Epoch-based De-allocation
(determined by the 

longest running query)

In-page, Independent 
Lineage Tracking

(reflect the number of 
updates applied to a page)

Base Pages
(older versions, removed 
from the page directory)

Base Pages
(merged pages that are 
compressed, read-only)

Tail Pages
(unaffected by the 

de-allocation process)

Page Directory

Figure 4: Epoch-based, contention-free page de-allocation.
implicit special null values for the rest of the columns; a column
that has never been updated does not even have to be materialized
with special null values. However, for any subsequent updates,
only one tail record is created, e.g., the tail record t3 is appended
as a result of updating the column A from a21 to a22 for the record
b2.

In general, updates could either be cumulative or non-cumulative.
The cumulative property implies that when creating a new tail
record, the new record will contain the latest values for all of the
updated columns thus far. For example, consider updating the
column C for the record b2. Since the column C of the record
b2 is being updated for the first time, we first take a snapshot of
its old value as captured by the tail record t4. Now for the cu-
mulative update, a new tail record is appended that repeats the
previously updated column A, as demonstrated by the tail record
t5. If non-cumulative update approach was employed, then the tail
record would consists of only the changed value for column C and
not A. It is important to note that cumulation of updates can be
reset at anytime. In the absence of cumulation, readers are simply
forced to walk back the chain of recent versions to retrieve the
latest values of all desired columns. Thus, cumulative update is an
optimization that is intended to improve the read performance.

As part of the update routine, the embedded Indirection column
(forward pointers) for base records is also updated to point to the
newly created tail record. In our running example, the Indirection
column of the record b2 points to the tail record t5. Also after
updating the column C of the record b3, the Indirection column
points to the latest version of b3, which is given by t7. Likewise,
the Indirection column in the tail records point to the previous
version of the record. It is important to note that the Indirection
column of base records is the only column that requires an in-place
update in our architecture. However, as discussed in our low-level
synchronization protocol (cf. Section 5), this is a special column
that lends itself to latch-free synchronization.

Furthermore, indexes always point to base records (i.e., base
RIDs), and they are never directly point to any tail records (i.e.,
tail RIDs) in order to avoid the index maintenance cost that arise
in the absence of in-place update mechanism [33]. Therefore,
when a new version of a record is created (i.e., a new tail record),
first, all indexes defined on unaffected columns do not have to
be modified and, second, only the affected indexes are modified
with the updated values, but they continue to point to base records
and not the newly created tail records. Suppose there is an index
defined on the column C (cf. Table 1). Now after modifying the
record b2 from c2 to c21, we add the new entry (c21,b2) to the
index on the column C.2 Subsequently, when a reader looks up
the value c21 from the index, it always arrives at the base record
b2 initially, then the reader must determine the visible version of
b2 (by following the indirection if necessary) and must check if

2Optionally the old value (c2, b2 ) could be removed from the index; however, its
removal may affect those queries that are using indexes to compute answers under
snapshot semantics. Therefore, we advocate deferring the removal of changed values
from indexes until the changed entries fall outside the snapshot of all relevant active
queries.

the visible version has the value c21 for the column C, essentially
re-evaluating the query predicates.

There are two other meta-data columns that are affected by
the update procedure. The Start Time column for tail records
simply holds the time at which the record was updated (an implicit
end of the previous version). For example, the record t7 has a
start time of 19:45, which is also the implied end time of the
first version of the record b3. The Schema Encoding column is a
concise representation that shows which data columns have been
updated thus far. For example, the Schema Encoding of the tail
record t7 is set to “0001”, which implies that only the column C
has been changed. To distinguish between whether a tail record
is holding new values or it is the snapshot of old values, we add
a flag to the Schema Encoding column, which is shown as an
asterisk. For example, the tail record t6 stores the old value of the
column C, which is why its Schema Encoding is set to “0001*”.
The Schema Encoding can also be maintained optionally for base
records as part of the update process or it could be populated only
during the merge process.

Notably, when there are multiple individual updates to the
same record by the same transaction, each update is written as
a separate entry to tail pages. Each update results in a creation
of a new tail record and only the final update becomes visible to
other transactions. The prior entries are implicitly invalidated and
skipped by readers. Also delete operation is simply translated into
an update operation, in which all data columns are implicitly set to
∅, e.g., deleting the record b1 results in creating the tail record t8.
An alternative design for delete is to create a tail record that holds
a complete snapshot of the latest version of the deleted record.

4 REAL-TIME STORAGE ADAPTION
To ensure a near optimal storage layout, outdated base pages are
merged lazily with their corresponding tail pages in order to pre-
serve the efficiency of analytical query processing. Recall that
the base pages are read-only and compressed (read optimized)
while the tail pages are uncompressed3 that grow using a strictly
append-only technique (write optimized). Therefore, it is nec-
essary to transform the recent committed updates accumulated
in tail pages that are write optimized into read optimized form.
A distinguishing feature of our lineage-based architecture is to
introduce a contention-free merging process that is carried out
completely in the background without interfering with foreground
transactions. Furthermore, the contention-free merging procedure
is applied only to the updated columns of the affected update
ranges. There is even no dependency among columns during the
merge; thus, the different columns of the same record can be
merged completely independent of each other at different points
in time. This is achieved by independently maintaining in-page
lineage information for each merged page. The merge process is
conceptually depicted in Figure 3, in which writer threads (i.e.,
update transactions) place candidate tail pages to be merged into

3Even though compression techniques such as local and global dictionaries can be
employed in tail pages, but these directions are outside the scope of the current work.

543



the merge queue while the merge thread continuously takes pages
from the queue and processes them.

4.1 Contention-free, Relaxed Merge
In L-Store, we abide to one main design principle for ensuring
contention-free processing that is “always operating on stable
data”. The inputs to the merge process are (1) a set of base pages
(committed base records) that are read-only,4 thus, stable data
and (2) a set of consecutive committed tail records in tail pages,5
thus, also stable data. The output of the merge process (that is also
relaxed) is a set of newly consolidated base pages (also referred to
as merged pages) with in-page lineage information that are read-
only, compressed, and almost up-to-date, thus, stable data. To
decouple users’ transactions (writers) from the merge process, we
also ensure that the write path of the ongoing transactions does not
overlap with the write path of the merge process. Writers append
new uncommitted tail records to tail pages, but as stated before
uncommitted records do not participate in the merge. Writers also
perform in-place update of the Indirection column within base
records to point to the latest version of the updated records in tail
pages, but the Indirection column is not modified by the merge
process. In contrast, the write path of the merge process consists
of creating only a new set of read-only base pages.

Merge Algorithm The details of the merge algorithm, con-
ceptually resembling the standard left-outer join, consists of (1)
identifying a set of committed tail records in tail pages; (2) loading
the corresponding outdated base pages; (3) consolidating the base
and tail pages while maintaining the in-page lineage; (4) updating
the page directory; and (5) de-allocating the outdated base pages.
The pseudo code for the merge is shown in Algorithm 1, where
each of the five mentioned steps are also highlighted.
Step 1: Identify committed tail records in tail pages: Select a set
of consecutive fully committed tail records (or pages) since the
last merge within each update range.
Step 2: Load the corresponding outdated base pages: For a se-
lected set of committed tail records, load the corresponding out-
dated base pages for the given update range (limit the load to only
outdated columns). This step can further be optimized by avoiding
to load sub-ranges of records that have not yet changed since the
last merge. No latching is required when loading the base pages.
Step 3: Consolidate the base and tail pages: For every updated
column, the merge process will read n outdated base pages and
applies a set of recent committed updates from the tail pages and
writes outm new pages.6 First the Base RID column of the com-
mitted tail pages (from Step 1) are scanned in reverse order to find
the list of the latest version of every updated record since the last
merge (a temporary hashtable may be used to keep track whether
the latest version of a record is seen or not). Subsequently, apply-
ing the latest tail records in a reverse order to the base records
until an update to every record in the base range is seen or the
list is exhausted, skipping any intermediate versions for which
a newer update exists in the selected tail records. If a latest tail
record indicates the deletion of the record, then the deleted record
will be included in the consolidated records. The merged pages
will keep track of the lineage information in-page, i.e., tracking

4The Indirection column is the only column that undergoes in-place update that also
never participates in the merge process.
5Note that not every committed update has to be applied as the merge process is
relaxed, and the merge eventually process all committed tail records.
6At most up to one merged page per column could be left underutilized for a range
of records after the merge process. To further reduce the underutilized merged pages,
one may define finer range partitioning for updates (e.g., 212 records), but operate
merges at coarser granularity (e.g., 216 records). This will provide the benefit of
locality of access for readers given smaller range size of 212, yet it provides a better
space utilization and compression for newly created merge pages when larger ranges
are chosen (cf. Section 4.3).

Algorithm 1: Merge Algorithm
Input :Queue of unmerged committed tail pages (mergeQ)
Output :Queue of outdated and consolidated base pages to be deallocated

(deallocateQ)
1 while true do
2 // Step 1
3 // wait until the the concurrent merge queue is not empty
4 if mergeQ is not empty then
5 // Step 2
6 // fetch references to a set of committed tail pages
7 batchTailPagec mergeQ.dequeue()
8 // create a copy of corresponding base pages
9 batchConsPage← batchTailPage.getBasePageCopy()

10 decompress(batchConsPage)
11 // track if it has seen the latest update of every record
12 HashMap seenUpdatesH
13 //reading a set of tail pages in reverse order
14 // Step 3
15 for i = 0; i <batchTailPage.size; i ← i + 1 do
16 tailPage← batchTailPages[i]
17 for j = k − 1; j ≥ tailPage.size; j ← j − 1 do
18 record[j]← jth record in the tailPage
19 RID← record[j].RID
20 if seenUpdatesH does not contain RID then
21 seenUpdatesH.add(RID)
22 // copy the latest version of record into consolidated pages
23 batchConsPage.update(RID, record[j])
24 end
25 if if all RIDs OR all tail pages are seen then
26 compress(batchConsPage)
27 persist(batchConsPage)
28 stop examining remaining tail pages
29 end
30 end
31 end
32 // Step 4
33 // fetch references to the corresponding base pages
34 batchBasePagec batchTailPage.getBasePageRef()
35 // update page directory to point to the consolidated base pages
36 PageDirect.swap(batchBasePage, batchConsPage)
37 // Step 5
38 // queue outdated pages for deallocation once readers prior merge are drained
39 deallocateQ.enqueue(batchBasePage)
40 end
41 end

how many tail records have been consolidated thus far. Any com-
pression algorithm (e.g., dictionary encoding) can be applied on
the consolidated pages (on column basis) followed by writing the
compressed pages into newly created pages. Moreover, the old
Start Time column is remained intact during the merge process
because this column is needed to hold the original insertion time
of the record.7 Therefore, to keep track of the time for the consoli-
dated records, the Last Updated Time column is populated to store
the Start Time of the applied tail records. The Schema Encoding
column may also be populated during the merge to reflect all the
columns that have been changed for each record.
Step 4: Update the page directory: The pointers in the page di-
rectory are updated to point to the newly created merged pages.
Essentially this is the only foreground action taken by the merge
process, which is simply to swap and update pointers in the page
directory – an index structure that is updated rarely only when
new pages are allocated.
Step 5: De-allocate the outdated base pages: The outdated base
pages are de-allocated once the current readers are drained natu-
rally via an epoch-based approach. The epoch is defined as a time
window, in which the outdated base pages must be kept around
as long as there is an active query that started before the merge
process. Pointers to the outdated base pages are kept in a queue to
be re-claimed at the end of the query-driven epoch-window. The
pointer swapping and the page de-allocation are illustrated in
Figure 4. ■

7The Start Time column is also highly compressible column with a negligible space
overhead to maintain it.

544



RID Indirection
Schema

Encoding
Start
Time

Last
Updated

Time
Key A B C

Partitioned base records for the key range of k1 to k3; Tail-page Sequence Number (TPS) = 0
b1 t8 0000 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 k2 a2 b2 c2
b3 t7 0001 15:05 k3 a3 b3 c3

Relevant tail records (below TPS ≤ t7 high-watermark) for the key range of k1 to k3
t5 t4 0101 19:25 ∅ a22 ∅ c21
t7 t6 0001 19:45 ∅ ∅ ∅ c31

Resulting merged records for the key range of k1 to k3; TPS = t7
b1 t8 0000 10:02 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 19:25 k2 a22 b2 c21
b3 t7 0001 15:05 19:45 k3 a3 b3 c31

Table 2: An example of the relaxed and almost up-to-date
merge procedure (conceptual tabular representation).

An example of our merge process is shown in Table 2 based on
our earlier update example, in which we consolidate the first seven
tail records (denoted by t1 to t7) with their corresponding base
pages. The resulting merged pages are shown, where the affected
records are highlighted. Note that only the updated columns are
affected by the merge process (and the Indirection column is not
affected). Furthermore, not all updates are needed to be applied,
only the latest version of every updated record needs to be consoli-
dated while the other entries are simply discarded. In our example,
only the tail records t5 and t7 participated in the merge, and the
rest were discarded.

Merge Correctness Analysis A key distinguishing feature of
our lineage-based storage architecture is to allow contention-free
merging of tail and base pages without interfering with concurrent
transactions. To formalize our merge process, we prove that merge
operates only on stable data while maintaining in-page lineage
without any information loss and that the merge does not limit
users’ transactions to access and/or modify the data that is being
merged.

LEMMA 4.1. Merge operates strictly on stable data.

PROOF. By construction, we enforced that merge “always op-
erate on stable data”. The inputs to the merge process are (1) a
set of base pages consisting of committed base records that are
read-only, i.e., stable data and (2) a set of consecutive committed
tail records in tail pages, thus, also stable data. The output of the
merge process is a set of newly merged pages that are read-only,
i.e., stable data as well. Hence, the merge process strictly takes as
inputs stable data and produces stable data as well. □

LEMMA 4.2. Merge safely discards outdated base pages with-
out violating any query’s snapshot.

PROOF. In order to support snapshot isolation semantics and
time travel queries, we need to ensure that earlier versions of
records that participate in the merge process are retained. Since
we never perform in-place updates and each update is transformed
into appending a new version of the record to tail pages, then as
long as tail pages are not removed, we can ensure that we have
access to every updated version. But recall that outdated base
pages are de-allocated using our proposed epoch-based approach
after being merged. Also note that base pages contain the original
values of when a record was first created. Therefore, any original
values that later were updated must be stored before discarding
outdated base pages after a merge is taken place. In another words,
we must ensure that outdated base pages are discarded safely.

As a result, the two fundamental criteria, namely, relaxing the
merge (i.e. constructing an almost up-to-date snapshot) and oper-
ating on stable data, are not sufficient to ensure the safety property
of the merge. The last missing piece that enables safety of the
merge is accomplished by taking a snapshot of the original values
when a column is being updated for the first time (as described in
Section 3). In other words, we have further strengthened our data
stability criterion by ensuring even stability in the committed his-
tory. Hence, outdated base pages can be safely discarded without
any information loss, namely, the merge process is safe. □

RID Indirection
Schema

Encoding
Start
Time

Last
Updated

Time
Key A B C

Recently merged records for the key range of k1 to k3; TPS = t7
b1 t8 0000 10:02 10:02 k1 a1 b1 c1
b2 t12 0101 13:04 19:25 k2 a22 b2 c21
b3 t11 0001 15:05 19:45 k3 a3 b3 c31

Partitioned tail records for the key range of k1 to k3
t1 b2 0100* 13:04 ∅ a2 ∅ ∅
t2 t1 0100 19:21 ∅ a21 ∅ ∅
t3 t2 0100 19:24 ∅ a22 ∅ ∅
t4 t3 0001* 13:04 ∅ ∅ ∅ c2
t5 t4 0101 19:25 ∅ a22 ∅ c21
t6 b3 0001* 15:05 ∅ ∅ ∅ c3
t7 t6 0001 19:45 ∅ ∅ ∅ c31
t8 b1 0000 20:15 ∅ ∅ ∅ ∅
t9 t5 0010* 13:04 ∅ ∅ b2 ∅
t10 t9 0010 21:25 ∅ ∅ b21 ∅
t11 t7 0001 21:30 ∅ ∅ ∅ c32
t12 t10 0110 21:55 ∅ a23 b21 ∅

Table 3: An example of the indirection interpretation and lin-
eage tracking (conceptual tabular representation).

THEOREM 4.3. The merge process and users’ transactions do
not contend for base and tail pages or the resulting merged pages,
namely, the merge process is contention-free.

PROOF. As part of ensuring contention-free merge, we have
already shown that merge operates on stable data (proven by
Lemma 4.1) and that there is no information loss as a result of the
merge process (proven by Lemma 4.2). Next we prove that the
write path of the merge process does not overlap with the write
path of users’ transactions (i.e., writers). Recall that writers append
new uncommitted tail records to tail pages, but as stated before,
uncommitted records do not participate in the merge. Writers also
perform in-place update of the Indirection column within base
records to point to the latest version of the updated records in tail
pages, but the Indirection column is not modified by the merge
process. In contrast, the write path of the merge process consists of
creating only a new set of read-only merged pages and eventually
discarding the outdated base pages safely.

Therefore, we must show that safely discarding base pages does
not interfere with users’ transactions. In particular, as explained in
Lemma 4.2, if the original values were not written to tail records
at the time of the update, then during the merge process, we were
forced to store them somewhere or encounter information loss. It
is not even clear where would be the optimal location for storing
the original values. A simple minded approach of just adding
them to tail pages would have broken the linear order of changes
to records such that the older values would have appeared after
the newer values, and it would have interfered with the ongoing
update transactions. But, more importantly, the need to store the
old values at any location would have implied that during the
merge process multiple coordinated actions were required to en-
sure consistency across modification to isolated locations; hence,
breaking the contention-free property of the merge. Therefore,
by storing the original updated values at the time of update, we
trivially eliminate all the potential contention during the merge
process in order to safely discarding outdated base pages.

As a result, users’ transactions are completely decoupled from
the merge process, and users’ transactions and the merge process
do not contend over base, tail, or merged pages. □

4.2 Maintaining In-Page Lineage
The lineage of each base page and consequently merged pages
is maintained within each page independently as a result of the
merge process. In-page lineage information is instrumental to de-
couple the merge and update operations and to allow independent
merging of the different columns of the same record at different
points in time. In-page lineage information is captured using a
rather simple and elegant concept, which we refer to as tail-page
sequence number (TPS) in order to keep track of how many up-
dated entries (i.e., tail records) from tail pages have been applied
to their corresponding base pages after a completion of a merge.

545



Original base pages always start with TPS set to 0, a value that is
monotonically increasing after every merge. Again to ensure this
monotonicty property, as stressed earlier, always a consecutive set
of committed tail records are used in the merge process.

TPS is also used to interpret the indirection pointer (also a
monotonically increasing value) by readers after the merge is
taken place. Consider our running example in Table 2. After the
first merge process, the newly merged pages have TPS set to 7,
which implies that the first seven updates (tail records t1 to t7) in
the tail pages have been applied to the merged pages. Consider the
record b2 in the base pages that has an indirection value pointing
to t5 (cf. Table 2), there are two possible interpretations. If the
transaction is reading the base pages with TPS set to 0, then the
5th update has not yet reflected on the base page. Otherwise if the
transaction is reading the base pages with TPS 7, then the update
referenced by indirection value t5 has already been applied to the
base pages as seen in Table 2. Notably, the Indirection column is
updated only in-place (also a monotonically increasing value) by
writers, while merging tail pages does not affect the indirection
value.

More importantly, we can leverage the TPS concept to ensure
read consistency of users’ transactions when the merge is per-
formed lazily and independently for the different columns of the
same records. Therefore, when the merge of columns is decou-
pled, each merge occurs independently and at different points in
time. Consequently, not all base pages are brought forward in
time simultaneously. Additionally, even if the merge occurs for all
columns simultaneously, it is still possible that a reader reads base
pages for the column A before the merge (or during the merge
before the page directory is updated) while the same reader reads
the column C after the merge; thus, reading a set of inconsistent
base and merged pages.

LEMMA 4.4. An inconsistent read with concurrent merge is
always detectable.

PROOF. Since each base page independently tracks its lineage,
i.e., its TPS counter; therefore, TPS can be used to verify the read
consistency. In particular, for a range of records, all read base
pages must have an identical TPS counter; otherwise, the read
will be inconsistent. Hence, an inconsistent read across different
columns of the same record is always detectable. □

THEOREM 4.5. Constructing consistent snapshots with con-
current merge is always possible.

PROOF. As proved in Lemma 4.4, the read inconsistency is
always detectable. Furthermore, once a read inconsistency is en-
countered, then each page is simply brought to the desired query
snapshot independently by examining its TPS and the indirection
value and consulting the corresponding tail pages using the logic
outlined earlier. Hence, consistent reads by constructing consistent
snapshots across different columns of the same record is always
possible. □

TPS, or an alternative but similar counter conceptually, could
be used as a high-water mark for resetting the cumulative updates
as well. Continuing with our running scenario, in which we have
the original base pages with the TPS 0 (as shown in Table 2),
the merged pages the with TPS 7 (as shown in Table 3). For
simplicity, we assume the cumulation was also reset after the 7th
tail record. For the record b2, we see that the indirection pointer
is t12, for which we know that the cumulative update has been
reset after the 7th update. This means that the tail record t12 does
not carry updates that were accumulated between tail records 1
to 7. Suppose that the record was updated four times, where the
update entries in the tail pages are 3rd , 5th , 10th , and 12th tail
records. The tail record t5 is a cumulative and carries the updated

values from the tail record t3. However, the tail record t10 is not
cumulative (reset occurred at the 8th update), whereas the tail
record t12 is cumulative, but carries updates only from the tail
record t10 and not from t5 and t3. Suppose that a transaction is
reading the base pages with the TPS 0, then to reconstruct the full
version of the record b2, it must read both the tail records t5 and
t12 (while skipping 3rd and 10th ). But if a transaction is reading
from the merged pages with the TPS 7, then it is sufficient to
only read the tail record t12 to fully reconstruct the record because
the 3rd and 5th updates have already been applied to the merged
pages.

4.3 Record Partitioning Trade-offs
When choosing the range of records for partitioning (i.e., update
range) there are several dimensions that needs to be examined. An
important observation is that regardless of the range size, recent
updates to tail pages will be memory resident and no random disk
I/O is required. This trend is supported by continued increase
in the size of main memory and the fact that the entire OLTP
database is expected to fit in the main memory [9, 17].

In our evaluation, we did an in-depth study of the impact of
the range size, and we observed that the key deciding factor is
the frequency at which the merges are processed. How frequent
a merge is initiated is proportional to how many tail records are
accumulated before the merge process is triggered. We further
experimentally observed that the update range sizes in the order of
212 to 216 exhibit a superior overall performance vs. data fragmen-
tation depending on the workload update distribution. Because
for a smaller update range size, we may have many correspond-
ing half-filled tail pages, but as the range size increases, the cost
of half-filled tail pages are amortized over a much larger set of
records.8 Furthermore, the range size affects the clustering of
updates in tail pages. For larger the range size, it is more likely
that cache misses occur when scanning the recent update that are
not merged yet. Again, considering that recent cache sizes are in
order of tens of megabytes, the choice of any range value between
212 to 216 is further supported. As noted before, one may choose
a finer range partitioning for handling updates (i.e., update range),
e.g., 212, to improve locality of access while choosing coarser
virtual range sizes when performing merges, essentially forcing
the merge to take-in as input a set of consecutive update ranges
that have been updated, e.g., choosing 24 consecutive 212 ranges
in order to merge 212 × 24 = 216 records.

For example, suppose the scan operation (even if there are
concurrent scans) may access 2 columns, assume each column
is 23 bytes long. We further assume that the merge can keep up,
namely, even for 216 update range size, the number of tail records
yet to be merged is less than 216 (as shown in Section 6, such
merging rate can be achieved while executing up to 16 concurrent
update transactions). The overall scan footprint (combining both
base pages and tail pages) is approximately 216 × 23 × 2 × 2 = 221
(2 MB), which certainly fits in today’s processor cache (in our
evaluation, we used Intel Xeon E5-2430 processor, which has 15
MB cache size). Thus, even as scanning base records, if one is
forced to perform random lookup within a range of 216 tail records,
the number of cache misses are limited compared to when the
range size was beyond the cache capacity.

Another criteria for selecting an effective update range size is
the need for RID allocation. In L-Store, upon the first update to
a range of records (e.g., 212 to 216 range), we pre-allocate 212 to
216 unused RIDs for referencing its corresponding tail pages. Tail
RIDs are special in a sense they are not added to indexes and no
unique constraint is applied on them. Once the tail RID range is
8To reduce space under-utilization, tail pages could be smaller than base pages, for
instance, tail pages could be 4 KB while base pages are 32 KB or larger.

546



fully used, then either a new unused RID range is allocated or an
existing underutilized tail RID range can be re-assigned (partially
used RID range must satisfy TPS monotonicity requirement).
Furthermore, in order to avoid overlapping the base and tail RIDs,
one could assign tail RIDs in the reverse order starting from 264;
therefore, tail RIDs will be monotonically decreasing, and the
TPS logic must be reversed accordingly. The benefit of reverse
assignment is that while scanning page directory for base pages,
there is no need to first read and later skip tail page entries (read
optimization).

5 FAST TRANSACTIONAL CAPABILITIES
In order to support concurrent transactions where each transac-
tion may consists of many statements, any database engine must
provide necessary functionalities to ensure the correctness of con-
current reads and writes of the shared data. Furthermore, trans-
action logging is required in order to recover the system from
crash and media failure. In this section, we focus on low-level
synchronization protocol and logging requirements. In terms of
concurrency protocol for transaction processing, any existing pro-
tocols can be leveraged because L-Store primarily focuses on
the storage architecture. In particular, we relied on our recently
proposed optimistic concurrency model in [32] that supports full
ACID properties for multi-statement transactions, and we also
employed the speculative reads proposed in [18]. The details of
the concurrency protocol is presented in our technical report [31].

Low-level Synchronization Protocol In terms of low-level
latching, our lineage-based storage has a set of unique benefits,
namely, readers do not have to latch the read-only base pages
or fully committed tail pages. Also there is no need to latch par-
tially committed tail pages when accessing committed records.
More importantly, writers never modify base pages (except the
Indirection column) nor the fully committed tail pages, so no
latching is required for stable pages. The Indirection column is
at most 8-byte long; therefore, writers can simply rely on atomic
compare-and-swap (CAS) operators to avoid latching the page.

As part of the merge process, no latching of tail and base pages
are required because they are not modified. The only latching
requirement for the merge is updating the page directory to point
to the newly created merged pages. Therefore, every affected page
in the page directory are latched one at a time to perform the
pointer swap or alternatively atomic CAS operator is employed
for each entry (pointer swap) in the page directory. Alternatively,
the page directory can be implemented using latch-free index
structures such as Bw-Tree [20].

Recovery and Logging Protocol Our lineage-based storage ar-
chitecture consists of read-only base pages (that are not modified)
and append-only updates to tail pages (which are not modified
once written). When a record is updated, no logging is required
for base pages (because they are read-only), but the modified tail
pages requires redo logging. Again, since we eliminate any in-
place update for tail pages, no undo log is required. Upon a crash,
the redo log for tail pages are replayed, and for any uncommit-
ted transactions (or partial rollback), the tail record is marked as
invalid (e.g., tombstone), but the space is not reclaimed until the
compression phase.

The one exception to above rule for logging and recovery is the
Indirection column, which is updated in-place. There are two pos-
sible recovery options: (1) one can rely on standard undo-redo log
for the Indirection column only or (2) one can simply rebuild the
Indirection column upon crash. The former option can further be
optimized based on the realization that tail pages undergo strictly
redo policy and aborted transactions do not physically remove
the aborted tail records as they are only marked as tombstones.
Therefore, it is acceptable for the Indirection column to continue
pointing to tombstones, and from the tombstones finding the latest

committed values. As a result, even for the Indirection column
only the redo log is necessary. For the latter recovery option, as
discussed earlier, to speedup the merge process, we materialize
the Base RID column in tail records that can be used to populate
the Indirection column after the crash. Alternatively, even without
materializing an additional RID column, one can follow back-
pointers in the Indirection column of tail records to fetch the base
RID because the very first tail record always points back to the
original base record.

The merge process is idempotent because it operates strictly
on committed data and repeated executions of the merge always
produce the exact same results given a set of base pages, their
corresponding tail pages, and a merge threshold that dictates how
many consecutive committed tail records to be used in the merge
process. Therefore, only operational logging is required for the
merge process. Also updating the entries in the page directory
upon completion of the merge process simply requires standard
index logging (both undo-redo logs). If crash occurs during the
merge, simply the partial merge results can be ignored and the
merge can be restarted.

6 EXPERIMENTAL EVALUATION
In order to study the impact of high-throughput transaction pro-
cessing in the presence of long-running analytical queries, we
carried out a comprehensive set of experiments. These experi-
ments were performed using an existing micro benchmark pro-
posed in [18, 32], i.e., a comprehensive transactional YCSB-like
benchmark [8], for the sake of a fair comparison and evaluation.
This benchmark allows us to study different storage architectures
by narrowing down the impact of concurrency with respect to
the active data set by adjusting the degree of contention between
readers and writers.

6.1 Experimental Setting
We evaluate the performance of various aspects of our real-time
OLTP and OLAP system. Our experiments were conducted on
a two-socket Intel Xeon E5-2430 @ 2.20 GHz server that has 6
cores per socket with hyper-threading enabled (providing a to-
tal of 24 hardware threads). The system has 64 GB of memory
and 15 MB of L3 cache per socket. We implemented a complete
working prototype of L-Store and compared it against two dif-
ferent techniques, (i) In-place Update + History and (ii) Delta +
Blocking Merge, which are described subsequently. The prototype
was implemented in Java (using JDK 1.7). Our primary focus
here is to simultaneously evaluate read and write throughputs of
these systems under various transactional workloads concurrently
executed with long-running analytical queries, which is the key
characteristic of any real-time OLTP and OLAP system.

Our employed micro benchmark defined in [18, 32] consists
of three key types of workloads: (1) low contention, where the
active set is 10M records; (2) medium contention, where the ac-
tive set is 100K records; and (3) high contention, where the active
set is 10K records. It is important to note that the data size is
not limited to the active set and can be much larger (millions or
billions of records). Similar to [18, 32], we consider two classes
of transactions. (1) Read-only transactions executed under snap-
shot isolation semantics that scan up to 10% of the data to model
TPC-H style analytical queries. (2) Short update transactions
executed under committed read semantics to model TPC-C and
TPC-E transactions, in which each short update transaction con-
sists of 8 read and 2 write statements over a table schema with
10 columns. In addition, we vary the ratio of read/writes in these
update transactions to model different customer scenarios with
different read/write degrees. By default, transactional through-
put of these schemes are evaluated while running (at least) one
scan thread and one merge thread to create the real-time OLTP

547



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(a) Low Contention.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(b) Medium Contention

0

0.5

1

1.5

2

0 5 10 15 20 25

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(c) High Contention

Figure 5: Scalability under varying contention level.

and OLAP scenario. Unless stated explicitly, the percentage of
reads and writes in the transactional workload is fixed at 80% and
20%, respectively. On average 40% of all columns are updated
by the writers. Lastly, the page size is set to 32 KB for both base
and tail pages because a larger page size often results in a higher
compression ratio suitable for analytical workloads [13].

Next we describe the two techniques that are compared with
L-Store. We point out the primary features of these techniques
and describe it with respect to L-Store. For fairness, across all
techniques, we have maintained columnar storage, maintained
a single primary index for fast point lookup, and employed the
embedded-indirection column to efficiently access the older/newer
versions of the records. Additionally, logging has been turned off
for all systems as logging could easily become the main bottleneck
(unless sophisticated logging mechanisms such as group commits
and/or enterprise-grade SSDs are employed). In the In-place Up-
date + History technique, we are required to write both redo-undo
logs for all updates while for L-Store and Delta + Blocking Merge
only redo log is needed due to their append-only scheme.

In-place Update + History (IUH): A prominent storage orga-
nization is to append old versions of records to a history table and
only retain the most recent version in the main table, updating it
in-place. Such table organization is motivated by commercial sys-
tems such as [26]; thus, our In-place Update + History is inspired
by such table organization that avoids having multiple copies and
representations of the data. However, due to the nature of the
in-place update approach, each page requires standard shared and
exclusive latches that are often found in major commercial big
data systems. In addition to the page latching requirement, if a
transaction aborts, then the update to the page in the main table is
undone, and the previous record is restored. Scans are performed
by constructing a consistent snapshots, namely, if records in the
main table are invisible with respect to query’s read time, then the
older versions of the records are fetched from the history table
by following the indirection column. In our implementation of
In-place Update + History, we also ignored other major costs of
in-place update over the compressed data, in which the new value
may not fit in-place due to compression and requires costly page
splits or shifting data within the page as part of update transactions.
We further optimized the history table to include only the updated
columns as opposed to inserting all columns naively.

Delta + Blocking Merge (DBM): This technique is inspired
by [14], where it consists of a main store and a delta store, and
undergoes a periodic merging and consolidation of the main and
delta stores. However, the periodic merging requires the draining
of all active transactions before the merge begins and after the
merge ends. Although the resulting contention of the merge ap-
pears to be limited to only the boundary of the merge for a short
duration, the number of merges and the frequency at which this
merge occurs has a substantial impact on the overall performance.
We optimized the delta store implementation to be columnar and
included only the updated columns [27]. Additionally, we applied
our range partitioning scheme to the delta store by dedicating a
separate delta store for each range of records to further reduce the
cost of merge operation in presence of data skew. The partitioning

L-Store IUH DBM
Scan Performance (in secs.) 0.24 0.28 0.38

Table 4: Scan performance for different systems.

allow us to avoid reading and writing the unchanged portion of
the main store.

6.2 Experimental Results
In what follows, we present our comprehensive evaluation results
in order to compare and study our proposed L-Store with respect
to state-of-the-art approaches.

Scalability under contention: In this experiment, we show
how transaction throughput scales as we increase the number of
update transactions, in which each update transaction is assigned
to one thread. For the scalability experiment, we fix the number of
reads to 8 and writes to 2 for each transaction against a table with
active set of N = 10 million rows. Figure 5(a) plots the transaction
throughput (y-axis) and the number of update threads (x-axis).
Under low contention, the throughput for L-Store and In-place Up-
date + History scales almost linearly before data is spread across
the two NUMA nodes. The Delta + Blocking Merge approach how-
ever does not scale beyond a small number of threads due to the
draining of active transaction before/after of each merge process,
which brings down the transaction throughput noticeably. With
increasing number of threads, the number of merges and the drain-
ing of active transactions become more frequent, which reduces
the transaction throughput significantly. The In-place Update +
History approach has lower throughput compared to L-Store due
to the exclusive latches held for data pages that block the readers
attempting to read from the same pages. The presence of a single
history table also results in reduced locality for reads and more
cache misses.

In addition, we study the impact of increasing the degree of
contention by varying the size of the active set. For a fixed degree
of contention, we vary the number of parallel update transactions
from 1 to 22. For both medium contention (Figure 5(b)) and high
contention (Figure 5(c)), we observe that L-Store consistently out-
performs the In-place Update + History and Delta + Blocking Merge
techniques as the number of parallel transactions is increased. For
medium contention, we observed a speedup of up to 5.09× com-
pared to the In-place Update + History technique and up to 8.54×
compared to the Delta + Blocking Merge technique. Similarly for
high contention, we observed up to 40.56× and 14.51× speedup
with respect to the In-place Update + History and Delta + Blocking
Merge techniques, respectively. The greater performance gap is
attributed to the fact that in In-place Update + History, latching
contention on the page is increased that is altogether eliminated in
L-Store. In Delta + Blocking Merge, since the active set is smaller,
and all updates are concentrated to smaller regions, the merging
frequency is increased, which proportionally reduces the overall
throughput due to the constant draining of all active transactions.
Finally, due to the smaller active set sizes in the medium- and
high-contention workloads, the cache misses are also reduced as
the cache-hit ratio increases. As a consequence, the transaction
throughput also increases proportionately.

Scan Scalability: Scan performance is an important metric for
real-time OLTP and OLAP systems because it is the basic building
block for assembling complex ad-hoc queries. We measure the

548



0

0.5

1

1.5

2

2.5

4K 8K 16K 32K 64K

Ex
ec
ut
io
n	
Ti
m
e	
(in
	se

co
nd
s)

Number	of	Tail	Records	Processed	per	Merge

Scan	Performance									
(4	Update	Threads)
Scan	Performance								
(16	Update	Threads)

Figure 6: Scan performance.

scan performance of L-Store by computing the SUM aggregation
on a column that is continuously been updated by the concurrent
update transactions. Thus, the goal of this experiment is to deter-
mine whether the merge can keep up with high-throughput OLTP
workloads. As such, this scenario captures the worst-case scan
performance because it may be necessary for the scan thread to
search for the latest values in the merged page or tail pages when
the merge cannot cope with the update throughput. For columns
which do not get updated, the latest values are available in the
base page itself, as described before. In this experiment (Figure 6),
we study the single-threaded scan performance with one dedicated
merge thread. We vary the number of tail records (M) that are
processed per merge (x-axis) and observe the corresponding scan
execution time (y-axis) while keeping the range partitioning fixed
at 64K records. We repeat this experiment by fixing the number
of update threads to 4 and 16, respectively. In general, we observe
that as we increase M , the scan execution time decreases. The
main reasoning behind this observation is that the scan thread
visits tail pages for the latest values less often because the merge
is able to keep up. However, for the smaller values of M , the merge
is triggered more frequently and cannot be sustained. Addition-
ally, the overall cost of the merge is increased because the cost
of merge is amortized over fewer tail records while still reading
the entire range of 64K base records. Notably, if we delay the
merge by accumulating too many tail records, then there is slight
deterioration in performance. Therefore, it is important to balance
the merge frequency vs. the amortization cost of the merge for the
optimal performance, which based on our evaluation, it is when
M is set to around 50% of the range size.

We also compare the single-threaded scan performance (for
low contention and 4K range size) of L-Store with the other two
techniques in the presence of 16 concurrent update threads (as
shown in Table 4). Our technique outperforms the In-place Update
+ History and Delta + Blocking Merge techniques by 14.28% and
36.84%, respectively. It is important to note that smaller update
range sizes, namely, assigning separate tail pages for each 4K base
records instead of 64K base records, increases the overall scan
performance by improving the locality of access within tail pages.
Therefore, as elaborated previously in Section 4.3, it is beneficial
to apply (virtual) fine-grained partitioning over base records (e.g.,
4K records) to handle updates in order to improve locality of
access within tail pages while applying (virtual) coarser-grained
partitioning (e.g., 64K records) when performing the merge in
order to reduce the space fragmentation in the resulting merged
pages.

Impact of varying the workload read/write ratio: Short up-
date transactions update only a few records. A typical transactional
workload comprises of 80% read statements and 20% writes [18].
However, our goal is to explore the entire spectrum from a read-
intensive workload (read/write ratio 10:0) to a write-intensive
workload (read/write ratio 0:10) while fixing the number of update
threads to 16. Figure 7(a) shows transaction throughput (y-axis)
as the ratio of read-only transactions varies in the workload (x-
axis) with low contention. As expected, the performance of all
the schemes increases as we increase the ratio of reads in the
transactions because contention is a function of writes. As we
have more writes in the workload, In-place Update + History tech-
nique suffers from increased contention as acquiring read latches

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Percentage	of	Reads	in	Short	Update	Transactions	

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(a) Low Contention

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

0 20 40 60 80 100

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Percentage	of	Reads	in	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(b) Medium Contention

Figure 7: Impact of varying the read/write ratio of short up-
date transactions.
conflict with the exclusive latches resulting in an extended wait
time. The performance of the Delta + Blocking Merge technique
also exacerbates since increasing the number of writes increases
the number of merges performed. This brings down the perfor-
mance further due to frequent halt of the system while draining
active transactions. However, note that the gap between all of the
schemes is the least when the workload consists of 100% reads. In
summary, the speedup obtained with respect to In-place Update
+ History is up to 1.45× and up to 5.78× with respect to Delta +
Blocking Merge technique. Note, even for 100% read, In-place Up-
date + History continues to pay the cost of acquiring read latches
on each page.

We repeat the same experiment but restrict the active set size
to 100K rows (Figure 7(b)). L-Store significantly outperforms the
other techniques across all workloads while varying the read/write
ratio. But the performance gap is similar with respect to the low
contention scenario when there are no update statements in the
workload. The speedup obtained compared to In-place Update +
History and Delta + Blocking Merge techniques is up to 4.19× and
up to 6.34× respectively.

Impacts of long-read transactions: As mentioned previously,
it is not uncommon to have long-running read-only transactions
in real-time OLTP and OLAP systems. These analytical queries
touch a substantial part of the data compared to the short up-
date transactions, and the main goal is to reduce the interference
between OLTP and OLAP workloads. In this experiment, we in-
vestigate the performance of the different schemes in the presence
of these long-running read-only transactions, which on an average
touch 10% of the base table. We fix the number of concurrent
active transactions to 17 while increasing the number of concur-
rent read-only transactions from 1 to 16 (the short transactions
simultaneously vary from 16 to 1). We also allocated a single
merge thread for L-Store and Delta + Blocking Merge. Figures 8(a)-
8(b) represent the scenario for a low contention workload, while
Figures 8(c)-8(d) represent the scenario for medium contention.

We observe that for both low and medium contention, there is
an increase in throughput for both long-read transactions and short
update transactions when the number of threads are increased.
Moreover, the performance of read-only transaction increases
for the medium contention scenario for all the techniques as the
updates are restricted to a small portion of the data resulting in
a higher read throughput. In other words, majority of the read-
only transactions touch portions of the data in which updates
do not take place resulting in higher throughput. For read-only
transactions, our technique outperforms Delta + Blocking Merge
up to 1.97× and 2.37× for low and medium contention workloads,
respectively. For short update transactions, we outperform In-place
Update + History and Delta + Blocking Merge by at most 5.37×
and 7.91×, respectively, for medium-contention workload. In the
earlier experiments, we had demonstrated that L-Store outperforms
other leading approaches for update-intensive workloads, and
in this experiment, we further strengthen our claim that L-Store
substantially outperforms the leading approaches in the mixed
OLTP and OLAP workload as well, the latter is due to our novel
contention-free merging that does not interfere with the OLTP
portion of the workload.

Impacts of comparing row vs. columnar layouts We revisit
the scan and point query performance while considering both row

549



0

0.2

0.4

0.6

0.8

1 4 8 12 16

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(a) Update throughput with long-read
transactions (Low Cont.).

0

200

400

600

800

1 5 9 13 16

Th
ro
ug
hp
ut
	(t
xn
s/
s)

Number	of	Parallel	Read-only	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(b) Read throughput with short update
transactions (Low Cont.).

0

0.2

0.4

0.6

0.8

1

1 4 8 12 16

Th
ro
ug
hp

ut
	(M

	tx
ns
/s
)

Number	of	Parallel	Short	Update	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(c) Update throughput with long-read
transactions (Med Cont.).

0

200

400

600

800

1000

1 5 9 13 16

Th
ro
ug
hp
ut
	(t
xn
s/
s)

Number	of	Parallel	Read-only	Transactions

L-Store
In-place	Update	+	History
Delta	+	Blocking	Merge

(d) Read throughput with short update
transactions (Med Cont.).

Figure 8: Impact of varying the number of short update vs. long read-only transactions.
L-Store (Column) L-Store (Row)

Scan Performance without updates (in secs.) 0.043 0.196
Scan Performance with updates (in secs.) 0.24 0.66

Table 5: Scan performance based on row vs. columnar lay-
outs.

10% of Columns 20% 40% 80% All Columns
L-Store (Column) 1.46 1.35 1.17 1.08 0.98

L-Store (Row) 1.45 1.45 1.45 1.45 1.45

Table 6: Point query performance vs. percentage of columns
read (M txns/second).

Lineage-based Log-structured
Update throughput (16 threads) with 1 scan thread 0.76M txns/sec 0.15M txns/sec

Scan performance (in sec) with update txns (16 threads) 0.24 0.63

Table 7: Update/Scan performance of lineage-based vs. log-
structured storage architecture.

and columnar storage layouts. To enable this comparison, we ad-
ditionally developed a variation of our L-Store prototype using
row-wise storage layout, which we refer to as L-Store (Row).9
In particular, we compared the single-threaded scan performance
(for low contention and 4K range size) of L-Store using both row
and columnar layouts in the presence of when there is no updates
or when there are 16 concurrent update threads (as shown in Ta-
ble 5). As expected, the scan performance of L-Store (Column) is
substantially higher than L-Store (Row) by a factor of 2.75× and
4.56×, with and without updates, respectively. Also note that we
did not enabled column compression for L-Store (Column), other-
wise even a higher performance gap would be observed because
in column stores, an average of 10× compression is commonly
expected [5, 36].

We further conducted an experiment with only point queries
(on a table with 10 columns), where each transaction now consists
of 10 read statements, and each read statement may read 10%
to 100% of all columns (as shown in Table 6). As expected, the
performance of any column store is deteriorated as more columns
are fetched. When reading only 10-20% of columns, L-Store (Col-
umn) exhibit a comparable throughout as L-Store (Row); however,
as we increase the number of fetched columns, the throughput
is decreased. But, even in the worst case when all columns are
fetched, the throughout only drops by 33%. However, the preva-
lent observation is that rarely all columns are read or updated
in either OLTP or OLAP workloads [1, 5, 36]; thus, given the
substantial performance benefit of columnar layout for predomi-
nant workloads, then it is justified to expect a slight throughput
decrease in rare cases of when point queries are forced to access
all columns.

Impacts of comparing lineage-based vs. log-structured stor-
age architecture For completeness, in our prototype, we also
implemented log-structured merge-tree (LSM) [25] storage archi-
tecture that is predominant in the distributed key-value stores. In
particular, we have based our implementation on LevelDB [21]. In
this experiment, we studied the single-threaded scan performance
(for low contention) of L-Store (i.e., lineage-based storage archi-
tecture) and LSM while having 16 concurrent update threads (as
shown in Table 7). As expected, due to the multi-layered structured
of LSM, the fine-grained read/write access and scan performance
9Notably our proposed lineage-based storage architecture is not limited to any
particular data layout; in fact, our technique can be employed even for non-relational
data such as document or graph data.

of LSM are substantially lower than L-Store. As a result, L-Store
outperforms LSM on update throughput and scan performance by
a factor of 5× and 2.6×, respectively.

7 RELATED WORK
In recent years, we have witnessed the development of many in-
memory engines optimized for OLTP workloads either as research
prototypes such as HyPer [13, 24], ES2 [6], and ExpoDB [11]
or for commercial use such as Microsoft Hekaton [9], Oracle In-
Memory [15], VoltDB [38], and HANA [14, 27]. Most of these
systems are designed to keep the data in row format and in the
main memory to increase the OLTP performance. In contrast, to
optimize the OLAP workloads, columnar format is preferred. The
early examples of these engines are C-Store [36] and MonetDB [5].
Recently, major big data vendors also started integrating columnar
storage format into their existing engines. SAP HANA [10] is de-
signed to handle both OLTP and OLAP workloads by supporting
in-memory columnar format. IBM DB2 BLU [29] introduces a
novel columnar OLAP engine that is memory-optimized and sub-
stantially improves the execution of complex analytical workloads
by operating directly on compressed data. In what follows, we
shift our focus to the recent developments that aim to bring both
OLTP and OLAP capabilities into the same platform.

HyPer, a powerful main-memory system, guarantees the ACID
properties of OLTP transactions and supports running OLAP
queries on consistent snapshot [13]. The design of HyPer leverages
a novel OS-processor-controlled lazy copy-on-write mechanism
enabling to create a consistent virtual memory snapshot. Unlike
L-Store, HyPer resorts to running transactions serially when the
workload is not partitionable. Notably, HyPer recently employed
multi-version concurrency to close this gap [24]. IBM Wildfire is
a variant of DB2 BLU [29] that is integrated into Apache Spark
to support fast ingest by adopting the relaxed last-writer-wins
semantics and offers an efficient snapshot isolation on recent, but
stale, data by relying on periodic shipment and writing of the logs
onto a distributed file system [4]. In the same spirit, BatchDB
is based on primary-secondary replication design to efficiently
isolate OLTP and OLAP workloads by relying on batch migration
of recent updates and executing OLAP queries over recent (but
possibly stale) snapshots [23]. The unified storage architecture
in L-Store eliminates the need for classical log shipment design
and does not restrict reads to stale snapshots. Elastic power-aware
data-intensive cloud computing platform (epiC) was designed to
provide scalable big data services on cloud [6]. epiC is designed
to handle both OLTP and OLAP workloads [7]. However, unlike
L-Store, the OLTP queries in ES2 are limited to basic get, put, and
delete requests (without multi-statements transactional support).
Furthermore, in ES2, it is possible that snapshot consistency is
violated and the user is notified subsequently [6].

Microsoft SQL Server currently consists of three unique en-
gines: the classical SQL Server engine designed to process disk-
based tables in row format, the Apollo engine designed to maintain
the data in columnar format that offers significant performance
gain for OLAP workloads [19], and the completely redesigned
Hekaton in-memory engine designed to excel at OLTP work-
loads [9, 17]. Noteworthy, Microsoft has also recently announced

550



moving towards supporting real-time OLTP and OLAP capabili-
ties [17], which further reinforces our position to support real-time
analytics. To support OLTP and OLAP among loosely integrated
engines, an intricate foreground routine is proposed to enable a
continuous data migration from Hekaton (a row-based engine) into
Apollo (a columnar engine) [17]. In contrast, in L-Store, we rely
on a single unified columnar engine (without the need for main-
taining multiple copies of the data) and, more importantly, our
consolidation is based on a novel contention-free merge process
that is performed asynchronously and completely in the back-
ground, and the only foreground task is pointer swaps in the page
directory for pointing to the newly created merged pages.

Oracle offers a novel dual-format option to support real-time
OLTP and OLAP, where data resides in both columnar and row
formats [15]. To avoid maintaining two identical copies of data in
both columnar and row format, an effective “layout transparency”
abstraction was introduced that maps data into a set of disjoint
tiles (driven by the query workload and the age of data), where
a tile could be stored in either columnar or row format [3]. The
key advantage of the layout-transparent mapping is that the query
execution runtime operates on the abstract representation (lay-
out independent) without the need to create two different sets of
operators for processing the column- and row-oriented data. In
the same spirit, SnappyData proposed a unified runtime engine
to combine streaming, transaction, and analytical processing, but
from the storage perspective, it maintains recent transactional data
in row format while it ages data to a columnar format for analyti-
cal processing [30]. SnappyData employed data aging strategies
similar to the original version of SAP HANA [35].

Contrary to the aforementioned efforts, in L-Store, we strictly
keep only one copy and one representation of data; thus, fun-
damentally eliminating the need to maintain layout-independent
mapping abstraction and storing data in both columnar and row
formats. HANA [14, 27] also strives to achieve real-time OLTP
and OLAP engine. Most notably, we share the same philosophy
governing HANA that aims to develop a generalized solution for
unifying OLTP and OLAP as opposed to building specialized
engines. But what distinguishes our architecture from HANA is
that we propose a unified columnar storage without the need to
distinguishing between a main store and a delta store. We fur-
ther propose a contention-free merge process, whereas in [14],
the merge process is forced to drain all active transactions at the
beginning and end of the merge process, a contention that results
in a noticeable slow down as demonstrated in our evaluation.

8 CONCLUSIONS
We develop Lineage-based Data Store (L-Store) to realize real-time
OLTP and OLAP processing within a single unified engine. The
key features of L-Store can succinctly be summarized as follows.
Recent updates for a range of records are strictly appended and
clustered in its corresponding tail pages to eliminate read/write
contention, which essentially transforms costly point updates into
an amortized, fast analytical-like update query.s L-Store achieves
(at most) 2-hop access to the latest version of any record through
an effective embedded indirection layer. We introduce a novel
contention-free and relaxed merging of only stable data in order
to lazily and independently bring base pages (almost) up-to-date
without blocking on-going and new transactions. Every base page
relies on independently tracking the lineage information in order
to eliminate all coordination and recovery even when merging
different columns of the same record independently. Lastly, a novel
contention-free page de-allocation using epoch-based approach
is introduced without interfering with ongoing transactions. We
demonstrate that L-Store outperforms In-place Update + History by
factor of up to 5.37× for short update transactions while achieving
slightly improved performance for scans. It also outperforms Delta

+ Blocking Merge by 7.91× for short update transactions and up to
2.37× for long-read analytical queries.

9 ACKNOWLEDGMENTS
We wish to thank C. Mohan, K. Ross, V. Raman, R. Barber, R. Sidle, A.
Storm, X. Xue, I. Pandis, Y. Chang, and G. M. Lohman for many insightful
discussions and invaluable feedback in the earlier stages of this work.

REFERENCES
[1] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. Weaving

Relations for Cache Performance. In VLDB ’01.
[2] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2O: a hands-free adaptive

store. In SIGMOD’14.
[3] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the Archipelago Between

Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD’16.
[4] Ronald Barber, et al. Evolving Databases for New-Gen Big Data Applications. In

CIDR’17.
[5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-Pipelining

Query Execution. In CIDR’05.
[6] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi, Hoang Tam Vo,

Sai Wu, and Quanqing Xu. 2011. ES2: A Cloud Data Storage System for Supporting Both
OLTP and OLAP. In (ICDE’11).

[7] Chun Chen, Gang Chen, Dawei Jiang, Beng Chin Ooi, Hoang Tam Vo, Sai Wu, and Quan-
qing Xu. Providing scalable database services on the cloud. In WISE’10.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In SoCC’10.

[9] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server’s Memory-optimized
OLTP Engine. In SIGMOD’13.

[10] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. 2012. The SAP HANA Database – An Architecture Overview. IEEE
Data Eng. Bull.’12

[11] Suyash Gupta and Mohammad Sadoghi. EasyCommit: A Non-blocking Two-phase Com-
mit Protocol. In EDBT’18.

[12] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B.
Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg,
and Daniel J. Abadi. H-Store: a high-performance, distributed main memory transaction
processing system. PVLDB’08.

[13] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP&OLAP Main Memory
Database System Based on Virtual Memory Snapshots. In (ICDE’11).

[14] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb, Jatin
Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander Zeier. Fast Updates on Read-
optimized Databases Using Multi-core CPUs. PVLDB’11

[15] T. Lahiri, et al. Oracle Database In-Memory: A dual format in-memory database. In
ICDE’15.

[16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and
Alfons Kemper. Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using both
Vectorization and Compilation. In SIGMOD’16.

[17] Per-Åke Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal Nowakiewicz, and
Vassilis Papadimos. 2015. Real-time Analytical Processing with SQL Server. PVLDB’15.

[18] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel, and
Mike Zwilling. 2011. High-Performance Concurrency Control Mechanisms for Main-
Memory Databases. PVLDB’11.

[19] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Srikumar Ran-
garajan, Aleksandras Surna, and Qingqing Zhou. SQL Server Column Store Indexes. In
SIGMOD’11.

[20] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The Bw-Tree: A B-tree for
New Hardware Platforms. In ICDE’13.

[21] LevelDB http://leveldb.org/
[22] Jan Lindström, Vilho Raatikka, Jarmo Ruuth, Petri Soini, and Katriina Vakkila. IBM

solidDB: In-Memory Database Optimized for Extreme Speed and Availability. IEEE Data
Eng. Bull.’13.

[23] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. BatchDB: Effi-
cient Isolated Execution of Hybrid OLTP+OLAP Workloads for Interactive Applications.
In SIGMOD ’17.

[24] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast Serializable Multi-Version
Concurrency Control for Main-Memory Database Systems. In SIGMOD ’15.

[25] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Inf.’96.

[26] Oracle Total Recall/Flashback Data Archive.
[27] Hasso Plattner. The Impact of Columnar In-memory Databases on Enterprise Systems:

Implications of Eliminating Transaction-maintained Aggregates. PVLDB’14
[28] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and

S. Mankovskii. Solving big data challenges for enterprise application performance man-
agement. PVLDB’12.

[29] Vijayshankar Raman, et al. DB2 with BLU Acceleration: So Much More Than Just a
Column Store. PVLDB’13

[30] Jags Ramnarayan, Sudhir Menon, Sumedh Wale, and Hemant Bhanawat. SnappyData: A
Hybrid System for Transactions, Analytics, and Streaming: Demo. In DEBS’16.

[31] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and Mustafa
Canim. L-Store: A Real-time OLTP and OLAP System. CoRR’16 abs/1601.04084.

[32] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel, and Ken-
neth A. Ross. Reducing Database Locking Contention Through Multi-version Concurrency.
PVLDB’14.

[33] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhattacharjee.
2013. Making Updates disk-I/O Friendly Using SSDs. PVLDB’13.

[34] Mohammad Sadoghi, Kenneth A. Ross, Mustafa Canim, and Bishwaranjan Bhattacharjee.
Exploiting SSDs in operational multiversion databases. VLDBJ’16.

[35] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof
Bornhövd. Efficient Transaction Processing in SAP HANA Database: The End of a Column
Store Myth. In SIGMOD’12.

[36] Mike Stonebraker, et al. C-Store: A Column-oriented DBMS. In VLDB’05.
[37] Michael Stonebraker and Ugur Cetintemel. “One Size Fits All”: An Idea Whose Time Has

Come and Gone. In ICDE’05.
[38] Michael Stonebraker and Ariel Weisberg. The VoltDB Main Memory DBMS. IEEE Data

Eng. Bull.’13

551


	L-Store: A Real-time OLTP and OLAP SystemMohammad Sadoghi, Souvik Bhattacherjee, Bishwaranja Bhattacharjee, Mustafa Canim

