
Short Paper

10.5441/002/edbt.2018.38

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.38

ALGORITHM 3: Smart Counting
Input : collections of intervals R and S
Output : for each r ∈ R , |s : s ∈ S , and r intersects s |

Variables : interval points list L, hash table C
1 |AS | ← 0; . active set counter for intervals from S
2 д ← 0; . global counter

3 L ← start and end points of all intervals in R ∪ S ;
4 sort L;
5 while L is not depleted do
6 p ← next point in L;
7 if p originates from collection R then
8 r ← interval in R where p belongs;
9 if p is a start point then

10 C[r] ← |AS | − д; . initialize counter for r

11 else
12 C[r] ← C[r] + д;
13 output (r; C[r]);
14 delete C[r];

15 else
16 s ← interval in S where p belongs;
17 if p is a start point then
18 |AS | ← |AS | + 1; . increase active set counter

19 д ← д + 1; . increase global counter

20 else
21 |AS | ← |AS | − 1; . decrease active set counter

of these shortcomings, we next present a significantly faster
extension to Algorithm 1.

3.2 The Smart Counting Approach
The main idea behind the Smart Counting extension to Algo-
rithm 1 is to maintain cheap statistics about the intervals from S
instead of keeping track ofAS at every position of the sweep line.
Algorithm 3 is the pseudocode of the Smart Counting approach.
We now discuss its key features.

First, we observe that only the size of active set AS is in fact
needed for the ICS J computation. Although the Simple Count-
ing algorithm presented in Section 3.1 keeps track of the open
intervals from S , the contents of AS are never scanned and only
|AS | is used on Line 10 of Algorithm 2. Hence, we can replace the
hash table of active set AS by a simple size counter |AS |; when
the start point of an interval s ∈ S is encountered, this counter
is increased by 1 (Line 18) while after an end point from S is
accessed the same counter is reduced by 1 (Line 21). Next, we
define a global counter д to keep track of the number of intervals
from S that have opened (regardless whether their end point is
already accessed or not). Similar to |AS |, counter д is increased
by 1 in Line 19 when a start point from collection S is seen but
never decreased which means that д ≥ |AS | always holds.

By combining counters |AS | and д, we are able to compute
the number of intervals from S that opened or were open in-
between the start and the end point of an interval r ∈ R. In
specific, we initialize the dedicated counter C[r] = |AS | when
the start point of r is encountered but then subtract the value of
global counter д (Line 8). Compared to Algorithm 2, notice that
we no longer maintain open intervals from R to active set AR ;
instead we employ hash table C to store the current value of r ’s
dedicated counter. After the end point of interval r is seen, we
just need to add back the current value of д to C[r] and report

Table 1: Characteristics of experimental datasets
FLIGHTS BOOKS GREEND WEBKIT

Cardinality 445;827 2;312;602 110;115;441 2;347;346
Domain duration (secs) 2;750;280 31;507;200 283;356;410 461;829;284
Shortest interval (secs) 1;261 1 1 1
Longest interval (secs) 42;301 31;406;400 59;468;008 461;815;512
Avg. interval duration (secs) 8;791 2;201;320 16 33;206;300
Distinct domain points 41;975 5;330 182;028;123 174;471

result (r ,C[r]) (Lines 12–13). This procedure guarantees that we
will end up with the correct value ofC[r], because the difference
from global counter д corresponds to the number of intervals
from S that opened after r ’s start point. Note that these intervals
overlap with r but were not considered whenC[r] was initialized.

We expect the Smart Counting approach to significantly out-
perform Simple Counting as the cost of maintaining and scanning
active sets AR , AS is completely eliminated. Further, we manage
to avoid the random accesses that incur during the for-loop on
Lines 19–20 of Algorithm 2 when the counters for multiple inter-
vals are concurrently updated. Overall, the cost of Smart Count-
ing (excluding sorting) is O (|R | + |S |) due to the constant-time
cost of processing at each position of the sweep line.

4 EXPERIMENTAL ANALYSIS
4.1 Setup
For our experiments, we implemented all methods in C++ and
compiled them using gcc (v5.2.1). Note that all data (input collec-
tions, active sets, interval points list etc.) resided in main memory.
Methods. Besides gapless hash map, the authors in [13] also
discussed a lazy optimization for plane-sweep based Algorithm 1,
which buffers consecutive start points in list L from the same
input (e.g., R). When producing I J results, a single scan over the
active set of the other input (i.e., AS) is performed for the entire
buffer. By restricting buffers to fit inside L1 cache or even the
cache registers, this technique reduces cache misses. To enhance
ICS J computation, we applied this lazy optimization on Naïve
and Simple Counting. For the latter, we buffer consecutive start
points from S allowing us to increaseC[r] for each r ∈ AR by the
buffer size instead of 1 as in Lines 19–20 of Algorithm 2. On the
other hand, lazy optimization has no effect on Smart Counting.
Datasets. Table 1 details our 4 real-world experimental datasets.
FLIGHTS records domestic flights in USA during January 2016
(https://www.bts.gov); valid times indicate the duration of a flight.
BOOKS records the transactions at Aarhus public libraries in 2013
(https://www.odaa.dk); valid times indicate the periods when a
book is lent out. GREEND [10, 13] records power usage informa-
tion in households across Austria and Italy from January 2010 to
October 2014; valid times indicate the period of a measurement.
WEBKIT records the file history in the git repository of the We-
bkit project from 2001 to 2016 (https://webkit.org); valid times
indicate the periods when a file did not change.
Tests. We ran interval count semi-joins using a uniformly sam-
pled subset of each dataset as outer input R and the entire dataset
as inner S ; for this purpose, we varied ratio |R |/|S | inside {0.25, 0.5,
0.75, 1}. To assess the performance of the methods, we measured
their total execution time which breaks down to the time spent
(i) to generate and sort the list of interval points L, denoted by
Sorting, and (ii) to compute the ICS J result, denoted by Joining.

4.2 Experiments
Figures 2 and 3 report the results of our experimental analysis. In
specific, Figure 2 reports the total execution time of each method

	Interval Count Semi-JoinsPanagiotis Bouros, Nikos Mamoulis

