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ABSTRACT
For Big Data analytics, working in low dimensionalities is bene-

ficial for high performance. Instead of projecting onto a single

low dimensionality, we examine, both analytically and empiri-

cally, the effects on the ‘learning utility’ of the original dataset

when combining several very low-dimensional random projec-

tions. The embedding proposed exhibits many favorable traits to

existing low-dimensional methodologies, such as low runtime

and equivalent or better embedding quality.

1 INTRODUCTION
Random linear projections are well studied owing to the Johnson-

Lindenstrauss (JL) lemma [11]. The JL lemma states that any n
point-set in high-dimensional Euclidean space can be projected

intoO (logn) dimensions while accurately preserving all pairwise

distances. The lemma is tight, in the sense that Ω(logn) dimen-

sions are necessary –see [3] and [10] for lower bounds. Although

these lower bounds suggest that reducing the dimensionality of

the input data further is not feasible while preserving its metric

structure, this could be possible by combining the information

from several very low-dimensional random projections. So here

we examine the following: Given any Euclidean set of n points

P in Rd
and a target dimensionality t which is smaller than

O (logn), is it possible to preserve pairwise distances by com-

bining multiple random projections? How many independent

random projections would be required? We study this particular

question both from a theoretical and a practical perspective. On

a theoretical aspect, we derive bounds on the expected number

of random projections needed to accurately answer proximity

queries (Theorem 3.1). From a practical perspective, we propose

an embedding, VLR-Map, that learns the k-Neighborhood struc-

ture of the data-points.

2 RELATEDWORK
Several approaches exist in the literature that use several ran-

dom projections for data analysis [2, 5, 8, 12, 13]. We enumerate

a representative list of these efforts. The power of several one-

dimensional random projections has been exploited by Kleinberg

in an algorithm for nearest-neighbor search [12]. Several one-

dimensional random projections of the input data are used as

proximity tests for a given query point, which is the underly-

ing idea for constructing efficient data-structures for nearest-

neighbor search. The use of multiple random projections into

an arbitrary small number of dimensions for nearest neighbor

search has been also studied by [2], in which the author projects

randomly the original data in several independent trials and then
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builds a KD-tree data structure for each instance of the projected

data. The set of these KD-trees are used for approximately an-

swering nearest-neighbor queries. Designing a family of locality

sensitive hashing (LSH) functions shares conceptual similarities

to the framework proposed here [8, 13]. LSH principles also use

random projections and aggregate the projections. Finally, data

embedding techniques also follow a similar methodology. For

example, Boostmap [5] learns a data embedding using triplets

of inequalities; the learning process is driven by AdaBoost [7].

Boostmap works effectively in practice, but does not offer any

formal analytical guarantees on the quality of its embedding,

unlike the present work.

3 OUR APPROACH
The intuition behind the algorithm proposed is as follows: Al-

though a single very-low-dimensional random projection might

not be useful for approximately preserving all pairwise distances

of a given set of points, it might be the case that several very-low-
dimensional random projections are sufficient, when combined

appropriately. There are several questions to be addressed: (1)

Howmany dimensions should be chosen when projecting a given

dataset? (2) How many different random projections are needed?

(3) How should we combine these random projections? In the

related literature there do not exist any satisfying answers to

the first question, so far. However, we will see shortly, that as

Theorem 3.1 suggests, one can set the number of dimensions t
to be Ω(1/ε2), where ε > 0 is the desired accuracy. Theorem 3.1

also provides a rigorous answer to the second question. Now, we

turn our attention to the third question.

For the sake of presentation, assume that we want to preserve

the distance between two input points p1 ∈ P and p2 ∈ P with

respect to a query point q ∈ Rd
. The proposed algorithm con-

structs several independent low-dimensional random projections

using random matrices G1,G2, . . . ,Gl . We view each random

projection as a voter that advocates on the proximity of p1 (or p2)
to q: each random projection votes for (or against) the validity

of the predicate {

p1 − q

2 < 

p2 − q

2} by checking whether

the corresponding projected points satisfy the above predicate.

If


p1 − q

2 ≪ 

p2 − q

2, then it is easy to show that p1 will be

closer to q than p2 in the projected space with at least constant

probability [11]. An unbiased way to combine the votes of all

random projections is to take their majority vote. More precisely,

if at least half of the random projections vote that p1 is closer to
q than p2 is, then the algorithm reports that p1 is closer to q, or
vice versa.

To complete the description of the above algorithm, we have to

specify the required number of independent random projections.

Given P, the following theorem bounds the number of random

projections that are needed for the algorithm to be effective with

probability 1 − δ . The proof of the theorem below (given in the

appendix) is based on concentration of measure arguments ap-

propriately combined with ε-net arguments. In more detail, we

build a very dense net
1 N , i.e., (ε/

√
d )-net, on the unit ball of

1
In a metric space M = (X , d ) and ε > 0, an ε -net is a subset N of X so that for

every x ∈ X there existsw ∈ N so that d (x, w ) ≤ ε .
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Rd
and bound the probability that for each pair of points in N

their norms are preserved for the majority of random projections.

Although ε-net arguments of this type can be encountered pre-

viously in the relevant literature, the next theorem we state is

novel, and appears, to the best of our knowledge, for the first

time here.

Ourmain theorem states that if we drawO (d log(d )+log(1/δ ))
independent random projections then, with probability at least

1 − δ , proximity queries between any two points of P can be

answered correctly for well-separated points.

Theorem 3.1. Let A ∈ Rd×n = [p1, p2, . . . , pn], 0 < δ < 1 and
0 < ε < 1/2. Fix any integer t = Ω(1/ε2) and let G1,G2, . . . ,Gl
be an i.i.d. sequence of t ×d random-sign matrices rescaled by 1/

√
t .

If

l ≥ Ω

(
d ln(d/ε2)

ε2t
+ ln(1/δ )

)
(1)

then with probability at least 1−δ the following holds: Let pi , pj ∈ A
and given any query q ∈ Rd with (1 + γ ) 

pi − q

2 ≤




pj − q



2

where γ > 6ε then 

Gk (pi − q)

2 <



Gk (pj − q)




2 holds for the
majority of indices k ∈ [l].

Remark 1. When we are only interested in answering near-
est neighbour queries between points in P, the parameter d in
Equation (1) can be replaced with n. Indeed, repeat the proof of
Theorem 3.1 by building an ε-net on the span of P.

Theorem 3.1 provides a guarantee on the preservation of near-

est neighbor queries and as a direct consequence, it preserves

the kNN metric structure of the input dataset. The kNN preser-

vation property implies that the accuracy of the proposed kNN

classification method converges to the accuracy of the kNN clas-

sifier in the original high dimensionality, as progressively more

independent projections are used.

Discussion: Theorem 3.1 suggests that it is possible to bound the

distortion even for very-low-dimensional projections. The result

may appear pessimistic at first glance because it recommends a

prohibitive number, for practical consideration, of O (d log(d ))
independent projections. It is important to consider that the

analysis is necessarily pessimistic, because it is not based on

the characteristics of a particular distribution or structure, but

is generic. That is why the bounds may seem large. However,

conditioned on the event that we possess a family of projections

that satisfy the conclusion of Theorem 3.1, a Chernoff bound

implies that only a constant number of projections are required.

Lemma 3.2. Sample S indices from {1, 2, . . . , l } uniformly at

random with replacement. If S ≥ 2(1+2η)2 ln(1/θ )
4η2 , then with proba-

bility at least 1 − θ , 0 < θ < 1, the sample S will return the same
answer as the majority over all {Gi }i ∈[l ].

Proof. Let Ii be the indicator random variable correspond-

ing to the success of the i-th sample from S . By hypothesis,

E[Ii ] = 1/2 + η. The multiplicative Chernoff bound implies

that Pr

(∑S
i=1 Ii < (1 − ζ ) (1/2 + η)S

)
≤ exp(−ζ 2S/2) for every

ζ ≥ 0. Set ζ = 1− 1

1+2η which implies that (1−ζ ) (1/2+η)S = S/2,

also S ≥ 2 ln(1/θ )/ζ 2 implies that exp(−ζ 2S/2) ≤ θ . □

Lemma 3.2 suggests that in practice there is no need to aggre-

gate over all projections, but only over a small number of them.

This is verified in the experimental section, in which we demon-

strate that in practice substantially fewer number of projections

are required for datasets with particular structure (i.e., real-world

datasets). For all our experiments, we set an upper bound of

l = 70 independent projections which preserved accurately the

neighborhood structure. In fact, in the experimental Section 5

one can see that using multiple but lower-dimensional projec-

tions is typically better than having a single higher-dimensional

projection with the same storage space. The intuition, here, is

that introducing randomness is a favorable component in classifi-

cation, similar, for example, to the approach that random forests

also follow.

4 VLR-MAP
Using the previous theoretical results, we now present VLR-Map,

standing for Very-Low Random Projection Map. It capitalizes on

very-low-dimensional projections which, when combined, yield

an effective embedding. The power of the embedding proposed,

lies on its simplicity of implementation and low runtime cost.

At its core, VLR-Map learns a low-dimensional embedding by

drawing independent random projections, until the distances

of the kNN neighbors over all points are sufficiently preserved

through a voting process in the low-dimensional space.

Training the embedding:Assume a set of t×d random-projection

matrices G1,G2, . . . ,Gl and an integer 1 ≤ k < n representing

the number of nearest neighbors. For each point p ∈ P, we de-
fine the i-th nearest neighbor of p ( w.r.t. P) as γi (p) for every
1 ≤ i ≤ k < n. Define the following, T(q, pi , pj ) equals 1 if



q − pi 

2 <



q − pj




2 and −1, otherwise. Similarly, for every

random projection s = 1, 2, . . . , l , define

T̃

(s )
(q, pi , pj ) :=




1 if


Gs (q − pi )

2 <




Gs (q − pj )



2

−1 otherwise

In essence, T̃

(s )
(q, pi , pj ) gives us the vote of the projection ma-

trix Gs regarding the proximity between the vectors q, pi and pj .
Now, given several different projections/voters, one can define

the majority vote over them:

Maj(q, pi , pj ) :=



pi if
1

l
∑l
s=1 T̃

(s )
(q, pi , pj ) ≥ 0

pj otherwise

Given a query q, Maj(q, pi , pj ) reports which point between pi
and pj is nearest to q. Following the above discussion, we define

the misclassification rate for a given set of random projections

given by Eqn. (2).

Errk (A) =
1

n
(
k
2

) ∑
p∈P

k−1∑
i=1

k∑
j=i+1

1γi (p)=Maj(p,γi (p),γj (p)), (2)

where 1x is the indicator function, i.e., 1x equals to 1 if x is true,

and zero otherwise.

The equation measures the average misclassification rate of

each point p ∈ P between all pairs of points in the kNN set and

will be used as the measure of quality of any embedding.

Given the original high-dimensional pointsP, VLR-Map learns

the minimum number of random projections that are required to

approximately preserve the nearest neighbors using very simple

voting principles. We are only interested in preserving the near-

est neighbor set of P, so VLR-Map draws independent random

projections until the misclassification rate in the kNN neigh-

borhood is sufficiently small. We measure the error using the

distance ordering over all pairs of points of the original kNN

neighborhood , i.e., the ordering of the distances between any

two nearest neighbor points of p γi (p) and γj (p) for 1 ≤ i, j ≤ k .
VLR-Map is scalable because its complexity is essentially linear

to the dataset size; the algorithm has an O (nk2) cost per iteration
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and the bound of Theorem 3.1 points to the fact that the algo-

rithm will terminate after a finite number of iterations. In the

experimental section, we provide further empirical validation on

the quality and runtime of our technique and compare it with

other embedding methodologies.

Answering kNN queries: After execution of VLR-Map, the re-

sulting set of projected instances of P can be used for answering

proximity queries. Given a query point q ∈ Rd
and any two

points pi , pj ∈ P we can test whether q is closer to p1 or p2 by
using Maj(q, pi , pj ). A crucial computational feature when evalu-

ating Maj(·, ·, ·) is that it can be effectively approximated by ran-

dom sampling as previously explained in Lemma 3.2. In practice,

a constant number of projections are sufficient for approximately

answering proximity queries. So, for any any unlabeled query

point q, the algorithm will provide a label based on the consensus

voting from all the very-low dimensional classifiers.

5 EXPERIMENTS
We examine the performance and quality of the algorithms pre-

sented on several publicly available datasets. [4, 15]. All the

datasets are high-dimensional (with dimensionalities varying

from 100+ to 10,000), and while they are not very big datasets,

they serve well for showcasing the differences in performance

and accuracy of the techniques compared. We compare the em-

bedding quality of our approachwith traditional random-projection

approaches which project on a higher dimensionality that uses

the same total space as our methodology. We show that our ap-

proach exhibits better classification accuracy and briefly analyze

this result.

5.1 Validation of Main Theorem
First, we provide empirical validation for our main result of The-

orem 3.1. Recall that the Theorem states essentially that as we

increase the number of independent projections, preservation of

nearest neighbor structure will be progressively better. Figure 1

plots the embedding error when preserving the 3-NN structure as

we progressively increase the number of independent projections.

For clarity, we plot the results on four datasets: Email, Gisette,
USPS and MUSK. The results for the other datasets exhibit similar

pattern and are omitted.
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Figure 1: Empirical validation of Theorem 3.1. When project-
ing to 10 dimensions (right) instead of 20 (left) an equivalent
NN-error can be achieved by using additional independent pro-
jections.

We use two target dimensions, t = 20 and t = 10 and average

the results over ten independent executions. Observe that Fig-

ure 1 validates the main result, because by using a lower target

dimensionality of t = 10 an equivalent error of the higher target

dimensionality t = 20 can still be achieved through the use of

additional projections.

Therefore, the power of the methodology proposed lies in its

simplicity; by using and combining additional very-low-dimensional

projections we can substantially influence the quality of the em-

bedding and of the distance preservation. It is important to un-

derscore that because the individual projections are independent

of each other, the classifiers operating on each of the projections

are totally segregated and could be run in parallel. Because each

classification is independent of the others (aside from the small

voting phase), given sufficient CPUs/cores, the overall runtime of

our approach should remain approximately constant, even under

increasing cardinality of projections/classifiers.

5.2 Random Projection Methodologies
We compare the classification error of various methodologies

based on random projections: VLR-Map, a kNN classifier using

a single projection onto t dimensions (sRPt ), a kNN classifier

with a single projection onto t · l dimensions (sRPl ·t ) and locality-
sensitive-hashing (LSH) [8]. sRPl ·t is included in the comparisons

to compare the performance of VLR-Map with the traditional

single random projection methodology which uses the same space
(sRPl ·t has the same number of coordinates with our approach).

The comparison with LSH is also done under fair settings; the

number of hash functions equals the number of projections l of
VLR-Map, and the number of bins for each hash function equals

the projected dimensionality t . Finally, for reference, we also

include the classification accuracy of the kNN classifier on the

original high-dimensional points (kNN). We report the results for

k = 3 nearest neighbors and target dimensionality of t = 30

in Table 1. The experiments indicate that our approach can, in

fact, achieve comparable (or sometimes even better) performance

than the kNN classifier which operates in the original data dimen-

sionality. An advantage of our framework is that it is computa-

tionally lighter than a traditional kNN classifier, because in very

low dimensional spaces (in which our framework operates) the

nearest-neighbor search can be executed efficiently using data

structures, such as KD-trees. However, in higher-dimensional

spaces, the performance of these techniques degrades rapidly as

validated both analytically and empirically in many studies [9].

More importantly, the results suggest that our approach outper-
forms the traditional projection methodology which uses the same
space (i.e., a single random projection at dimensionality t · l ). One
can think of this as quite analogous to the concept behind random

forests [6]. Having multiple random classifiers (unweighted in

our case) can boost classification and also introduce robustness.

Finally, in Table 2 we report the runtime for one experiment

on three datasets for the various techniques based on random

projections. VLR-Map and sRPt ·l have equivalent runtime, while

LSH is costlier.

6 CONCLUSION
Our main theorem highlights that it is feasible to combine many

very-low-dimensional projections and guarantee a bounded dis-

tortion on the original distances. From a practical viewpoint, the

embedding proposed, VLR-Map, exhibits many favorable traits,

such as: i) simplicity of implementation, and, ii) scalability: sig-

nificantly reduced run-time compared to state-of-art embedding

techniques with comparable accuracy.
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Classification Error on test data (%)

Method 3-NN sRPt VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH

no. projections l = 10 30 50 70
MNIST 2.95 9.25 4.29 3.23 10.14 3.73 3.11 3.77 3.61 3.12 4.64 3.5 3.15 8.95

COIL 1.15 2.3 0.92 1.23 0.69 0.85 1.15 1.85 0.38 1.15 5.0 0.77 1.23 11.47

Email 18 19.84 13.71 15.76 26.73 12.91 16.04 26.78 12.38 16.38 26.69 12.27 16.6 26.69

lights 1.9 6 .06 2.41 2.49 3.96 2.02 2.33 3.96 2.33 2.25 3.96 2.3 2.33 3.81

PIE 11.7 22.5 12.2 12.02 16.49 10.1 11.51 18.36 9.8 11.98 19.76 9.49 11.79 22.21

USPS 5.7 11.5 6.53 5.7 6.77 5.23 5.47 12.5 4.97 5.53 45.33 4.67 5.87 71.53

GISETTE 3.0 25.1 13.17 6.07 2.6 7.8 3.9 2.6 6.7 3.6 2.6 6.07 3.3 2.6

MUSK 4.21 9.33 4.98 5.82 9.47 4.91 5.89 10.25 4.98 5.47 12.00 4.42 5.12 16.07

Table 1: VLR-Map offers overall better accuracy (on t dimensions using l projections) than LSH or a single projection that uses that same
space (sRPt ·l ). Red color denotes better values (smaller classification error).

sRPt ·l VLR-Map LSH

MNIST 0.87 1.22 1.95

USPS 0.06 0.10 0.85

MUSK 0.01 0.04 0.34

Table 2: Time comparison (in sec) between a single random pro-
jection (sRPt ·l ), VLR-Map ( l = 30 and t = 10) and LSH. VLR-Map
and single random projection exhibit equivalent runtime, while
LSH computations are more expensive.
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Proof. of Theorem 3.1: Assume two points x, y of the pointset A and a query point

q ∈ Rd . The goal is to decide whether q is nearest to x or to y. Without loss of generality, we

can assume that q is the origin by linearity (otherwise apply the argument below to the vectors

x − q and y − q). So, it suffices to argue that one can check the distances of x and y.

Let G be a t × d random-sign matrix rescaled by 1/
√
t , i.e., a matrix whose entries are i.i.d.

uniformly distributed r.v. on {±1}. For any 0 < ε < 1/2 and z ∈ Rd , the following bound is

well-known [1]

P *
,

������

∥Gz∥2
2

∥z∥2
2

− 1

������
> ε+

-
≤ exp(−CJLε2t ) (3)

where C
JL

> 0 is an absolute constant. More precisely, C
JL

is the constant of the Johnson-

Lindenstrauss lemma with random sign matrices. For any z1, z2 ∈ Sd−1 , define the following

event

Ej (z1, z2) :=
{����


Gj z1





2

2

− 1
���� < ε and

����



Gj z2





2

2

− 1
���� < ε

}
.

It follows by (3) that for every j = 1, . . . , l : P
(
Ecj (z1, z2 )

)
≤ 2exp(−C

JL
ε2t ). Moreover,

let us define the event Maj(z1, z2 ) = {Ej (z1, z2 ) holds for ≥ ⌈l/2⌉ indices j . }. Let us first

bound the probability

P (Maj(z1, z2)c ) =
l∑

s=⌈l /2⌉

P
(
Ej (z1, z2)c for exactly s indices

)

≤

l∑
s=⌈l /2⌉

(
l
s

)
P (E1 (z1, z2)c )s ≤

l∑
s=⌈l /2⌉

(
l
s

)
2
s
exp(−CJLε2st )

≤

l∑
s=⌈l /2⌉

(
l
s

)
2
l
exp(−CJLε2 ⌈l/2⌉t )

≤2l exp(−CJLε2 ⌈l/2⌉t )
l∑
s=0

(
l
s

)
≤ 2

2l
exp(−CJLε2t l/2).

Now, we bound the probability that the majority of random projections {Gj } preserves the

norms of every pair of points in N , where N is an (ε/
√
d )-net of Sd−1 . Recall that |N | ≤

(3
√
d/ε )d [14]. Namely, we bound the following P (∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )) = 1−

P (∃z1, z2 ∈ N , Maj(z1, z2 )c ) . The last quantity can be bounded as follows:

P (∃z1, z2 ∈ N , Maj(z1, z2)c ) ≤
∑

z1,z2∈N

P (Maj(z1, z2)c )

≤ |N |222l exp(−CJLε2t l/2) ≤ (

√
d

3ε
)2d 22l exp(−CJLε2t l/2)

= exp(−l (CJLε2t/2 − ln(4)) + 3d ln(d/ε2)),
where in the first inequality we used the union bound and the final inequality by (3). Assume

that ε2t > 2 ln(4)/C
JL

(t = Ω(1/ε2 ) by assumption), hence if l ≥ 4d ln(d/ε2 )
C
JL
ε2t−2 ln(4)

+ ln(1/δ )

then

P (∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )) ≥ 1 − δ .
From now on, assume that the following event holds{

∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )c
}
. (4)

Next we prove that (assuming (4)) if (1 + γ ) ∥x∥
2
≤ 

y

2 , then the majority of the fixed

projections {Gi }i∈[l ] will satisfy ∥Gi x∥2 < 

Gi y

2 .
Indeed, let xN and yN be the net points that are nearest to x/ ∥x∥

2
and y/ 

y

2 , respec-

tively. Namely, it holds that ∥x/ ∥x∥
2
− xN ∥2 ≤ ε/

√
d and



y/ 

y

2 − yN 

2 ≤ ε/
√
d .

Conditioning on the event in Eq. (4) implies that for the majority of {Gj }j∈[l ]




Gjx



2 = ∥x∥2




Gjx/ ∥x∥2 − GjxN + GjxN



2

≤ ∥x∥
2
(


Gj




2 ∥x/ ∥x∥2 − xN ∥2 +



GjxN




2)

≤ ∥x∥
2
(


Gj




2 ε/
√
d + 1 + ε ) ≤ (1 + 2ε ) ∥x∥

2
,

where the first inequality is triangle inequality combined with standard matrix norms, the sec-

ond inequality follows by Eq. (4) and the definition of xN and the last inequality follows since




Gj



2 ≤




Gj



F ≤

√
d .

Similarly, for the majority of the indices j ,




Gjy



2 =



y

2



Gjy/ 

y

2 − GjyN + GjyN




2
≥ 

y

2 (




GjyN



2 −




Gj



2



y/ 

y

2 − yN 

2)

≥ 

y

2 (1 − ε −



Gj




2 ε/
√
d ) ≥ (1 − 2ε ) 

y

2 .

Therefore, we conclude that the ratio



Gj y




2 /



Gj x




2 is at least
(1−2ε ) ∥y∥

2

(1+2ε )∥x∥
2

≥
(1−2ε )
(1+2ε ) (1+

γ ) > 1 for the majority of random projections {Gj }j∈[l ] as γ > 6ε . □
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