SlickDeque: High Throughput and Low Latency Incremental Sliding-Window Aggregation

Anatoli U. Shein
Dept. of Computer Science
University of Pittsburgh
aus@cs.pitt.edu

Panos K. Chrysanthis
Dept. of Computer Science
University of Pittsburgh
panos@cs.pitt.edu

Alexandros Labrinidis
Dept. of Computer Science
University of Pittsburgh
labrinid@cs.pitt.edu

ABSTRACT
Online analytics, in most advanced scientific and business applications, rely heavily on the efficient execution of large numbers of Aggregate Continuous Queries (ACQs). Incremental sliding-window computation is used in the state-of-the-art ACQ processing algorithms (FlatFIT, TwoStacks, and DABA) to avoid the re-evaluation of the aggregate value of the window from scratch on every update. FlatFIT and TwoStacks aim to increase throughput, and DABA to minimize latency, while all process invertible and non-invertible aggregates uniformly. In this paper, we propose a novel algorithm, SlickDeque, that distinguishes the execution between invertible and non-invertible aggregates and offers better throughput and latency for both types. In addition, our method requires less memory and efficiently supports multi-ACQ processing. We theoretically show the time and space complexity advantages of SlickDeque and experimentally validate them using a real workload. Specifically, our approach maintains 283% lower latency spikes on average while achieving up to 19% throughput improvement in a single query environment and up to 345% improvement in a multi-query environment over the state-of-the-art approaches along with requiring up to 5 times less memory.

1 INTRODUCTION
Motivation Data stream processing has gained momentum in many applications that require quick responses based on incoming high velocity data flows. A representative example is a stock market application, where multiple clients monitor the price fluctuations of the stocks. In this setting, a system needs to be able to efficiently answer analytical queries (e.g., average stock revenue, profit margin per stock, etc.) for different clients, each one with (possibly) different timing requirements. Efficient data stream processing is also important in monitoring applications in the fields of health care, science, social media, and network control.

Data Stream Management Systems (DSMS) [1–3, 22, 30] have been proposed as the most suitable systems for handling such data flows on-the-fly and in real time. In a DSMS, clients register their analytical queries on incoming data streams. These queries continuously aggregate streaming data, and as such they are called Aggregate Continuous Queries (ACQs). ACQs are typically associated with a range (r) and a slide (s) (also referred to as window and shift [15]), which can be either count or time-based. A slide denotes the period at which an ACQ updates its answer; a range is the window for which the statistics are calculated.

An ACQ requires the DSMS to keep state over time while performing aggregations. Normally, DSMSs only keep the window of the most recent data, and produce the answers by running aggregate queries over it. It has been shown that in sliding-window stream processing, it is beneficial to use incremental evaluation, which involves storing and reusing calculations performed over the unchanged parts of the window, rather than performing the re-evaluation of the entire window after each update [10, 20]. Incremental evaluation typically runs partial aggregations on the data and produces the answer by performing the final aggregation over the partial results [18, 19].

Problem Statement Handling of aggregate operations that are both invertible and non-invertible proved to be essential in domains such as finance and science. Invertible operations include Sum, Product, Count, Average, and Standard Deviation, while non-invertible operations include Max, Min, Range, Alphabetical Max (for strings), ArgMax of Cosine, and ArgMin of x^2. It was shown previously that invertible operations can be processed efficiently by maintaining a running Sum (or other aggregation), and invoking the inverse operation (such as Subtract) on every expiring tuple, however non-invertible operations require more effort to be processed efficiently and remain a challenge.

The current state-of-the-art solutions for processing ACQs, FlatFIT [26] and TwoStacks [28], aim to increase throughput and DABA [28], to minimize latency. These solutions process invertible and non-invertible aggregates uniformly, which negatively affects their performance with increasing workloads. To address the aforementioned shortcomings, in this paper we propose a novel solution named SlickDeque, which handles aggregate operations differently based on their invertibility property. The invertible operations are processed using SlickDeque (Inv), our new modified Panes (Inv) approach, while non-invertible ACQs are processed with SlickDeque (Non-Inv), our novel deque-based algorithm that intelligently maintains and utilizes intermediate partial aggregates allowing a greater level of reuse of previously calculated results. The separation based on invertibility leads to exceptional throughput and latency for both invertible and non-invertible operations in systems with heavy workloads.

We consider also multi-query, multi-tenant environments, where large numbers of ACQs with different ranges and slides operate on the same data stream, calculating similar aggregations.

Contributions We make the following contributions:

- We propose a novel solution for processing ACQs, SlickDeque, which processes invertible and non-invertible operations differently. SlickDeque is applicable for both single query and multi-query environments. (Section 3)
- We theoretically evaluate SlickDeque and show that it achieves better time and space complexities compared to the state-of-the-art FlatFIT, TwoStacks, and DABA solutions. To our knowledge, there are no prior algorithms that can achieve the same time and space complexities without loss of query generality in terms of supported aggregate operations. (Section 4)
- We experimentally evaluate SlickDeque based on a real dataset and show that it significantly outperforms state-of-the-art techniques in all tested scenarios by increasing the ACQ
throughput by up to 19% in a single query environment and by up to 345% in a multi-query environment, while maintaining 283% lower latency spikes on average and reducing memory consumption by up to 5 times. We also show that our approach becomes superior to the state-of-the-art approaches in Fig. 3, maintaining 283% lower latency spikes on average and reducing memory consumption by up to 345% in a multi-query environment, while main-

2 BACKGROUND & RELATED WORK

In this section we briefly review the underlying concepts of our work, which are the incremental sliding-window computation techniques. These could be broadly divided into partial aggregation and final aggregation. We also review other related work.

2.1 Partial aggregation

Partial aggregation can be thought of as the buffering of partial results until the query result needs to be returned by the final aggregation. Since partial aggregation allows some buffering before the result needs to be processed by a more expensive final aggregator and each buffered partial can be reused multiple times as part of final aggregation, the use of the CPU and memory resources to maintain the partials can be amortized. The following techniques aiming to reduce the number of partials were proposed for partial aggregations.

Panes [19] was proposed as the first partial aggregation technique for processing ACQs efficiently. The idea behind it is to partition the incoming datastream into "panes" (we refer to them as partials), and maintain just one aggregate value for each partial. This way every incoming tuple will affect the aggregate value for just the current partial, and when the whole aggregate is due to be reported, the answer is assembled by performing the final aggregation over all the partials in the current window. Therefore, each new partial will be reused multiple times for different final aggregations. For example, in Fig. 1 partial P3 is used 3 times as part of the final aggregations F1, F2, and F3.

Paired Window technique, or simply Pairs [18], was introduced to reduce by a factor of 2 the number of partials in a window in cases where the range is not divisible by the slide, reducing the memory consumption and accelerating the final aggregations. As illustrated in Fig. 2, two fragment lengths are used, \(f_1 \) and \(f_2 \), where \(f_2 = \text{range} \times \text{slide} \) and \(f_1 = \text{slide} - f_2 \).

Cutty-slicing was proposed as part of the Cutty optimizer [8], and it starts each new partial only at positions that signify the beginning of new windows. This way the final aggregation can execute in the middle of the partial aggregation calculation by accessing the current value in the partial (Fig. 3). This reduces the number of partials per window by a factor of two compared to Pairs but it comes at a cost: additional punctuations have to be sent over the data stream to the execution module to indicate the beginnings of the new partials, which reduces the effective bandwidth of the stream and can slow down the system, especially if the workload includes a large number of queries with small windows.

2.2 Final Aggregation

The goal of final aggregation is to produce the result of a query by utilizing the partials. Initially it was performed by simply iterating over them and constructing the answer [18, 19]. For example the Panes technique (which we consider Naive in this work) in Fig. 1 performs a final aggregation \(F1 \) by iterating over partials P2, P3, P4, and P5. Naturally, such a solution quickly became outdated due to the increasing workloads that created bottlenecks in the final aggregator. To improve this, several final aggregation techniques have been proposed [5, 21, 26–29, 31].

Panes (Inv) [19] (or Panes for Invertible (Differential) Aggregate Queries) was proposed to efficiently process invertible aggregates, and it works by maintaining a running aggregate (e.g. running Sum), and invoking the inverse operation (e.g. Subtract) on every expiring tuple. This algorithm (with minor differences) was also proposed as R-Int [5] and Subtract-on-Event [28]. In this paper we extend this approach into SlickDeque (Inv), which can do multi-query processing by maintaining a running aggregate for each query with a distinct range registered on the data stream.

Despite being very effective, Panes (Inv) is only applicable for invertible operations. In order to allow greater generality in query processing, the following techniques have been introduced.

FlatFAT [29] (or Flat Fixed-sized Aggregator) is a final aggregation approach which stores tuples in a pre-allocated pointer-less
Figure 5: B-Int Technique
tree-based data structure (Fig. 4), and was later extended [8] to allow partial aggregation and multi-query processing by allowing to store partial aggregates as tree leaves. Each internal node of the tree contains an aggregate of its two children. New partials are inserted into the leaves of the binary tree left-to-right. The leaves form a circular array, meaning that after inserting a value to the rightmost leaf, the next insert will go into the leftmost one. Each insert triggers the update procedure, which is performed by walking the tree bottom-up and updating all internal nodes. An example of an update operation on leaf 15 is illustrated with green squares in Fig. 4. The look-up of the answer in FlatFIT is performed by returning the root node value if a query requires the result for the maximum window, or by aggregating a minimum set of internal nodes that covers the required range of leaves. The example of answering a query with a range of 11 partials starting from leaf 15 is shown with red triangles in Fig. 4.

B-Int [5] (or Base Intervals) is another final aggregation technique that uses a multi-level data structure that consists of dyadic intervals of different lengths. On the first level, the intervals are of a length of one partial, on the next level the interval length is two partials, on the third level the length is four partials, and so on. The top level has just one interval of the maximum supported range length. The whole data structure is organized in a circular fashion, so that the rightmost interval on any level is followed by the leftmost interval from the same level (Fig. 5). Similarly to FlatFIT, when producing the final aggregate, B-Int determines the minimum number of intervals needed to represent the desired range, and aggregates them. For example, in Fig. 5 B-Int aggregates all intervals marked with color to get the answer for the specified query range. Another tree-like approach similar to FlatFIT and B-Int is [6].

FlatFIT [26] (or Flat and Fast Index Traverser) was proposed with a goal of increasing the throughput of ACQ processing. FlatFIT achieves acceleration by dynamically storing the intermediate results and their corresponding pointers, which indicate how far ahead FlatFIT can skip in its calculation. It uses two circular arrays, Pointers and Partials, interconnected with their indices and a stack, Positions, for keeping indices that are currently processed. The FlatFIT algorithm is applicable in a multi-query environment, where it achieves a high throughput by allowing additional partial result reuse between all ACQs on the stream.

TwoStacks [28] was shown to also achieve a high throughput by using an old trick from functional programming to implement a queue with two stacks, F (front) and B (back), where all insertions push a value, val, and an aggregation, agg, of everything below it onto B, and evictions pop from F. When F is empty, the algorithm flips B onto F, making it a calculation heavy step that introduces latency spikes to processing. To produce the final aggregation, the tops of both the F and B stacks are aggregated.

DABA [28] (or De-Amortized Bankers Algorithm) was proposed as an alternative to TwoStacks that reduces the latency spikes while maintaining high throughput. The algorithm uses a principle of the Functional Okasaki Aggregator to de-amortize the TwoStacks algorithm. DABA uses two queues, vals and aggs, as shown in Fig. 6 implemented as chunked-array queues with six ordered pointers which make up the F and B stacks similarly to TwoStacks. However after each insertion and eviction event, a function fixup is called which re-balances the pointers and fixes the consistency of the aggs queue.

Currently, neither TwoStacks nor DABA are known to support multi-query execution as opposed to the other above algorithms.

2.3 Shared Processing of ACQs

Since the ACQs are executed periodically (unlike one-shot queries), several processing schemes, as well as ACQ optimizers, take advantage of the shared processing of ACQs [8, 14, 18], which reduces the long-term overall processing costs by sharing partial results. To show the benefits of sharing in such scenarios, consider the following example:

Example 1 (Fig. 7) Assume two ACQs monitor Max stock value over the same data stream. The first ACQ has a slide of 2 tuples and a range of 6 tuples, the second one has a slide of 4 tuples and a range of 8 tuples. That is, the first ACQ is computing partial aggregates every 2 tuples, and the second is computing the same partial aggregates every 4 tuples. Clearly, the calculation producing partial aggregates only needs to be performed once every 2 tuples, and both ACQs can use these partial aggregates for their corresponding final aggregations. The first ACQ will then run each final aggregation over the last three partial aggregates, and the second ACQ will run each final aggregation over the last 4 partial aggregates.

Partial results sharing is applicable for all matching aggregate operations, such as Max, Product, Sum, etc. and for different but compatible aggregate operations, for example Sum, Count and Average can share results by treating Average as \(\frac{\text{sum}}{\text{count}} \).

To determine how many partial aggregations are needed after combining \(n \) ACQs into a shared execution plan, we first find the
length of the new composite slide, which is the Least Common
Multiple (LCM) of the slides of the combined ACQs (in Example 1
it is four). Each slide is then repeated \(\text{LCM/slide} \) times to fit
the length of the composite slide, and all slide multiples are
marked within the composite slide as edges. If slides consist of
several fragments due to the partial aggregation, all fragments
are also marked within the composite slide as edges. The more
common edges are present in the composite slide, the more partial
aggregations can be shared.

In this work we combine all compatible ACQs into one shared
plan to achieve maximum sharing, which, in a general case, provides
the most computational resource savings. Although, in specific cases it was shown that aiming for maximum sharing is not always beneficial [13, 14, 24, 25].

2.4 Other Related Work

Work similar to sliding-window aggregation exists in Temporal
Database Systems, which store the entire stream of tuples and allow aggregations over any continuous segments of the stream, which are called Historical Windows. In contract, DSMSS generally support windows that end at or near the most recent results are referred to as Suffix Windows in Temporal Databases. In Temporal Databases, Red-black trees [17, 21], SB-trees, B-trees [31], and Skylines [23] are used for aggregations. Due to the tree-based na-
tures of these algorithms their update complexities are \(O(\log(s)) \), where \(s \) is the size of the entire stream history.

Several approximate calculation approaches were proposed to save time and space by giving up accuracy [4, 7, 9, 11]. Our approach focuses solely on computing exact answers since it is crucial for many applications (e.g., financial, medical, etc.).

3 SlickDeque

In this section we describe our new algorithm, SlickDeque, that significantly speeds up the final aggregation calculations in a sliding-window environment by employing different processing schemes for invertible and non-invertible aggregations.

3.1 Algebraic Properties and Assumptions

One of the important metrics that allows the evaluation of the difficulty of incremental evaluation of a particular query is the algebraic properties of the underlying aggregate operation. Based on classification from [12], all aggregate operations are divided into three broad categories: *distributive*, *algebraic*, and *holistic*.

- **Distributive** aggregation means that the aggregation for the set \(S \) can be computed from two of the same aggregations of subsets \(S_1 \) and \(S_2 \), where subsets \(S_1 \) and \(S_2 \) were constructed by splitting \(S \) in two. For example, if we have a set of 10 numbers and the Sum of the first 7 is 20, and the Sum of the 3 remaining is 15, then we can get the Sum of all 10 numbers by adding 20 and 15. Therefore, Sum is a distributive aggregation.

- **Algebraic** aggregation means that the aggregation can be computed from a number of distributive aggregations, e.g., Average, which is calculated from Sum and Count. The list of common distributive aggregations includes Count, Sum, Sum of Squares, Product, and Max. By combining these distributive aggregations we can calculate some commonly used algebraic aggregations such as: Average (Count and Sum), Standard Deviation (Sum of Squares, Sum, and Count), Geometric Mean (Product and Count), and Range (Max and Min).

- **Holistic** aggregations are neither distributive nor algebraic, e.g., Median, Top-K, Quantile, Collect Distinct. Holistic ag-
 gregations are out of the scope for this work since they require specifically tailored algorithms which cannot be generalized.

In this paper we will focus on optimizing the distributive aggregations; calculating the algebraic aggregations follows trivially. Distributive aggregations can be further classified by their math-
ematical properties: *associativity*, *invertibility*, and *commutativity*. Below we provide brief definitions of these properties.

- An operation \(\odot \) is *associative* if \(x \odot (y \odot z) = (x \odot y) \odot z \) is true for all \(x, y, z \).

- An operation \(\odot \) is *invertible* if there exists an operation \(\ominus \) such that \((x \odot y) \ominus y = x \) for all \(x, y \), and \(\odot \) is feasibly inexpensive.

 - Note: if operation \(\odot \) is non-invertible, then \(x \odot y = z \), where \(z \in \{x, y\} \). This is only true for non-holistic operations (which we target in this work).

- An operation \(\odot \) is *commutative* if \(x \odot y = y \odot x \) is true for all \(x, y \).

Query Operation Assumptions In terms of query operation generality, our proposed approach, SlickDeque, is no different from the state-of-the-art approaches, which all support non-invertible and non-commutative operations while requiring the operations to be associative. In general, all operations that can be executed on a window of values are associative. The common non-associative operations such as subtraction \((x-y-z) \), division \((x/y/z) \), exponentiation \((x^z) \), and some binary operations such as NAND and NOR, are generally impractical when executed on sets of values larger than two. The difference of our proposed SlickDeque approach is that it has separate processing algorithms for the invertible operations (e.g., Sum, Product, Count, etc.) and non-invertible operations (e.g., Max, Min, Range, Alphabetical Max (for strings), ArgMax of Cosine, ArgMin of \(x^2 \), etc.), which allows us accelerated processing of both.

Window Structure Assumptions In non-FIFO window structures, the events of insertion and expiration are not synchronized, which can cause window overflow situations when there are not enough expiring tuples (or partial aggregates) to make room in the window for the insertions. All of the compared approaches, including ours, are able to handle such cases by performing dy-
namic resize operations. However in this paper we are focusing on the FIFO window environment which is the most common way to processing sliding-window aggregations in practice.

Arrival Order Assumptions Similarly, all of the aforementioned algorithms allow updates on multiple partial aggregates already stored within the window. However in this paper we focus on the classic streaming scenario when all new partial aggregates are processed by the final aggregator one-by-one as they become available. In such settings the arriving tuples have to be in-order or slightly out-of-order. As long as the out-of-order tuples are within the same partial aggregation, the final result will not be affected. If, however, some tuples fall outside of their partial, inconsistencies in the final result may arise. The mechanism that all systems uses to cope with such extreme situations is outside of the scope of this paper.

3.2 The SlickDeque Algorithm

In this subsection we provide the algorithm and implementation details for our approach followed by the clarifying examples. We
Algorithm 1 SlickDeque (Inv) Pseudocode

1: Input: A set of aggregate continuous queries \(Q \), invertible aggregate operation \(\oplus \), the initial value for \(\oplus \) \(\text{initVal} \), the inverse operation \(\ominus \), and partial aggregation technique PAT

2: Output: Continuous answers to queries in \(Q \) according to their specifications.

3: Phase 1 (Preparation)

4: sharedPlan = buildSharedPlan(\(Q \), PAT)

5: wSize = sharedPlan.wSize

6: partials = new array[wSize]

7: answers = new map(queryRange \(\rightarrow \) answer)

8: for i=0 to wSize do

9: partials[i] = initVal

10: end for

11: for each query q \(\in Q \) do

12: answers.insert(q.range, initVal)

13: end for

14: currPos = 0

15: Phase 2 (Execution)

16: while results are expected do

17: length = sharedPlan.getNextPartialsLength()

18: newPartial = partialAggregator.aggregate(length, PAT)

19: for each (qR → ans) pair in answers do

20: startPos = currPos - qR

21: if startPos < 0 then

22: startPos += wSize

23: end if

24: ans = ans @ newPartial @ partials[startPos]

25: end for

26: queriesToAnswer = sharedPlan getNextSetOfQueries()

27: for each query q in queriesToAnswer do

28: send answers.getVal(q.range) as answer to q

29: end for

30: partials[currPos] = newPartial

31: currPos++

32: if currPos == wSize then

33: currPos = 0

34: end if

35: end while

break down our algorithm description based on invertibility of the aggregate operator.

SlickDeque for Invertible Aggregates

For processing invertible aggregates we propose SlickDeque (Inv), a modified Panes (Inv) extended for processing multiple ACQs. Pseudocode for it is depicted in Algorithm 1. The algorithm consists of two major phases: Preparation and Execution.

The Preparation Phase given a set of queries, \(Q \), and one of the partial aggregation techniques (PAT) discussed in Section 2.1 (e.g., Pairs) as an input, SlickDeque (Inv) builds a shared execution plan by executing the buildSharedPlan function (line 4). The sharedPlan is constructed as discussed in Section 2.1, and includes a full list of partials (or edges) augmented with their lengths and lists of queries to be evaluated for each partial. The buildSharedPlan function identifies the query with the longest range in terms of the number of partials, and saves the range as the member wSize of the sharedPlan (line 5). wSize signifies the necessary window length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Inv) initializes its data structures: a circular array, partials, (line 6) and a map, answers, (line 7). The partials array is initialized to a length equal to wSize, and is used to store partial aggregates. The answers map maintains the mappings of all queries with unique ranges to their current answers. Queries operating over the same range can share results even if they have different slides. Both the partials array and the values of the answers map are initialized (lines 8-13) with the initial value for the operation \(\oplus \), initVal, supplied as input. For example, initVal is \(-\infty\) for the Max operation.

The currPos variable signifies the current position within the partials array (line 14). It starts at 0 initially and increases to wSize − 1 during execution, after which it wraps back to 0. The arriving partial aggregates will be inserted into the partials array always at the currPos.

The Execution Phase is implemented as a loop that continuously returns all query results while they are expected. At the beginning of the loop (lines 17-18), SlickDeque (Inv) gets the next partial’s length from the sharedPlan, and passes it to the newPartial Aggregator which uses the provided PAT technique to produce the newPartial value.

Next, SlickDeque (Inv) loops over all range-to-answer mappings (qR → ans) in the answers map (lines 19-25). The loop starts by identifying the start position, startPos, for each mapping within the partials array from which the values need to be aggregated. startPos is identified by rewinding currPos back by query range, qR, length.

Since SlickDeque (Inv) only works for the invertible queries, it utilizes both the aggregate operation \(\oplus \) (e.g., Sum if query is seeking Sum), and an inverse operation \(\ominus \) (e.g., Subtract if the original operation is Sum). This way each answer, ans, is updated by executing the aggregate operation \(\oplus \) with the newly calculated newPartial value and the inverse operation \(\ominus \) with expiring partials[startPos] value (line 24).

Next, the answers to all queries scheduled at the current position need to be produced (lines 26-29). After receiving the queriesToAnswer (a subset of \(Q \)) from the sharedPlan, SlickDeque (Inv) loops over them while sending back the corresponding answers pulled from the answers map. Then, the Partial value is inserted into the circular partials array at currPos, and currPos is moved one position forward (lines 30-34).

The following Example 2 (illustrated in Fig. 8) should clarify the above algorithm. In order to make the explanation more intuitive we execute the two queries, Q1 and Q2, on the same incoming datastream using two algorithms: Naive and SlickDeque (Inv), and we illustrate each step of their calculations side-by-side.

Example 2 Assume we have queries Q1 and Q2, which are seeking the Sum over the ranges of 3 and 5 tuples, respectively, both with a slide of 1 tuple. The slide size is set to one tuple in this example for simplicity, which means that there is no partial aggregation and the answers to both queries need to be calculated after every new tuple arrival. Since the range of Q2 is 5, which is greater than the range of Q1, and the slides of Q1 and Q2 are the same, the shared execution plan has a wSize of 5 tuples.

Both Naive and SlickDeque (Inv) algorithms use the partials array in order to maintain incoming partial aggregates (in this case just tuples). The difference is that Naive produces answers to queries by iterating over this array, while SlickDeque (Inv) utilizes the additional answers map (Introduced above).

In the partials array we mark the positions that have been modified by the algorithm in each step. The current position (currPos) at each step is bolded in Fig. 8 for convenience. The tuples enter the system in the order: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization in Step 0, in Step 1 the first tuple, 6, arrives. Both algorithms store the new tuple at the currPos in the partials array, and Naive iterates over indexes 3, 4, and 0 in order
Figure 8: Example 2 processing of invertible aggregate queries Q1 and Q2 using Naive and SlickDeque (Inv) algorithms.

SlickDeque for Non-Invertible Aggregates

For processing non-invertible aggregates we propose a novel algorithm, SlickDeque (Non-Inv), which accelerates the processing of ACQs by intelligently maintaining and utilizing a deque data structure consisting of nodes allocated in chunks interconnected with pointers. For simplicity of explanation we assume that each node is allocated on a separate chunk. The benefits of allocating multiple nodes per chunk are explained in Section 4.2. Pseudocode for SlickDeque (Non-Inv) is depicted in Algorithm 2, and similarly to SlickDeque (Inv) it consists of two major phases: Preparation and Execution.

The Preparation Phase

Similarly to SlickDeque (Inv), the execution starts by building a sharedPlan by executing the function buildSharedPlan (line 4). It is constructed using one of the partial aggregation techniques as discussed in Section 2.1, and it includes a full list of partials augmented with their lengths and lists of queries that need to be evaluated for each partial. The query with the longest range in terms of the number of partials is identified and saved as the member wSize of the sharedPlan, signifying the necessary window length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Non-Inv) defines node, Node, structure that has members pos and val, and initializes deque, d, composed of nodes, Node, (lines 6-7). SlickDeque utilizes the currPos variable to signify the sequential number of the current partial aggregate. It starts at 0 initially and increases to wSize – 1 during execution, after which it wraps back to 0.

The Execution Phase

is implemented as a loop that continuously returns all query results while they are expected, and identically to SlickDeque (Inv), it begins by generating a newPartial. The if-statement on line 13 is removing the expired node (if present) from the head of the deque, d. The while-loop after that (line 16) is executing operation ⊕ on two values: the value of the tail node and of the new partial. If the new partial is returned by the operation, the tail node is removed from the deque (it will never be a query answer), and the next one is tested, otherwise the loop stops. The new node is then added to the deque with currPos as the position and newPos as the value (line 19).

Next, set queriesToAnswer (a subset of Q scheduled at this position) is accessed from the sharedPlan, and the answers for its queries are produced in the for-loop below. Naturally, when the sharedPlan was constructed, all queries in each queriesToAnswer set were ordered descendingly by their range. We utilize this ordering to answer all queries by looping over the deque only once, since the larger ranges always correspond to the deque nodes closest to the head. Therefore, the position i within the deque is defined outside the loop and initialized to the head of the deque (line 21).

The loop starts by identifying the startPos of the aggregation for each query, q, by subtracting q’s range from currPos (line 23). If startPos is negative it means that this range crosses a boundary between two windows, and thus the boolean boundaryCrossed is set to true and startPos is increased by the wSize. Otherwise boundaryCrossed is set to false.

Then, based on whether the current range crosses the window boundary or not, one of the two subsequent Answer Loops is executed (lines 29-39), iterating over nodes from the current position i until the answer node is identified based on the pos member of each node, and returned as an answer to the query, q. The next iteration (to answer the next query) will continue working from the position i forward, until all queries are processed. After returning all required answers the currPos is moved one position forward (lines 42-45).

The following Example 3 (illustrated in Fig. 9) should clarify the above algorithm. To make the explanation more intuitive we again execute the two queries Q1 and Q2 on the same incoming datastream using Naive and SlickDeque (Non-Inv), and illustrate each step of their processing side-by-side.
Algorithm 2 SlickDeque (Non-Inv) Pseudocode

1. **Input:** A set of aggregate continuous queries \(Q \), non-invertible aggregate operation \(\oplus \), and partial aggregation technique PAT
2. **Output:** Continuous answers to queries in \(Q \) according to their specifications.

Phase 1 (Preparation)
3. \(\text{sharedPlan} = \text{buildSharedPlan}(Q, \text{PAT}) \)
4. \(\text{wSize} = \text{sharedPlan.wSize} \)
5. Node with members \(\text{pos} \) and \(\text{val} \)
6. Deque \(d \) composed of nodes of type Node
7. \(\text{currPos} = 0 \)

Phase 2 (Execution)
8. while results are expected do
9. \(\text{length} = \text{sharedPlan.getNextPartialsLength()} \)
10. if \(\text{d.size} > 0 \) AND \(\text{d.front.pos} == \text{currPos} \) then
11. \(\text{d.pop_front()} \)
12. end if
13. while \(\text{d.size} > 0 \) AND \(\text{d.back.val} \neq \text{newPartial} \) do
14. \(\text{d.pop_back()} \)
15. end while
16. for each query \(q \) in queriesToAnswer = \(\text{sharedPlan.getNextSetOfQueries()} \) do
17. \(i = \text{d.firstNode} \)
18. boundaryCrossed = \(q \)-range
19. if \(\text{startPos} < 0 \) then
20. \(\text{startPos} += \text{wSize} \)
21. boundaryCrossed = true
22. end if
23. if boundaryCrossed \(= \text{false} \) then
24. //Answer Loop 1
25. while \(i \).pos < \text{startPos} OR \(i \).pos > \text{currPos} do
26. \(i = i.nextNode \)
27. end while
28. else
29. //Answer Loop 2
30. while \(i \).pos < \text{startPos} AND \(i \).pos > \text{currPos} do
31. \(i = i.nextNode \)
32. end while
33. end if
34. send \(i \).val as answer to \(q \)
35. end for
36. \(\text{currPos}++ \)
37. if \(\text{currPos} == \text{wSize} \) then
38. \(\text{currPos} = 0 \)
39. end if
40. \(\text{end while} \)

Example 3 Assume we have queries \(Q_1 \) and \(Q_2 \), which are seeking Max over the ranges of 3 and 5 tuples respectively, both with a slide of 1 tuple. The slide size is again set to one tuple for simplicity, which means that there is no partial aggregation and the answers to both queries need to be calculated after every new tuple arrival. As before, the range of \(Q_2 \) (5) is greater than the range of \(Q_1 \) (3), and the slides of \(Q_1 \) and \(Q_2 \) are the same, the shared execution plan has a \(w \) of size of 5 tuples.

While \(\text{Naive} \) uses the circular \(\text{partials} \) array to maintain the incoming partials (in this case just tuples), \(\text{SlickDeque (Non-Inv)} \) only utilizes deque in its operation. In both \(\text{partials} \) and deque we mark the positions modified in each step. The tuples enter the system in the same order as in Example 2: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization step, in Step 1 the first tuple, 6, arrives. \(\text{Naive} \) stores it at the \(\text{currPos} \) in the \(\text{partials} \) array, and iterates over the last 3 indexes (3, 4, and 0) to answer \(Q_1 \), and over the entire array to answer \(Q_2 \). Both answers in this case are 6.

\(\text{SlickDeque (Non-Inv)} \) places a new node with \(\text{pos} = 0 \) (which is \(\text{currPos} \)) and \(\text{val} = 6 \), at the head of the deque, and since its \(\text{pos} \) value is both within the last 3 and 5 positions from \(\text{currPos} \), its \(\text{val} \) is returned as the answer to both \(Q_1 \) and \(Q_2 \).

In Step 2, the new partial, 5, is placed into the \(\text{currPos} \), and \(\text{Naive} \) iterates again over the past 3 tuples to answer \(Q_1 \) and over the whole window to answer \(Q_2 \), and returns the Max value from all values visited, which is 6. Our algorithm on the other hand, places the new tuple 5 as a \(\text{val} \) of the new node (with \(\text{pos} = 1 \)) at the end of the deque, and returns 6 (the \(\text{val} \) of the head node of the deque) as an answer to both queries.

Skipping ahead, in Step 4 \(\text{SlickDeque (Non-Inv)} \) removes the tail node of the deque since the newly arrived tuple, 1, is greater than 0, which is the \(\text{val} \) of the tail node, and adds the new node with \(\text{pos} = 3 \) and \(\text{val} = 1 \) at the end of the deque. Since \(Q_2 \) has a larger range, it is scheduled to be processed first. Its \(\text{startPos} \) is identified: \(3 - 5 = -2 \), and since -2 is negative, the window boundary is crossed. Therefore \(\text{startPos} \) is moved to \(-2 + 5 = 3 \), and the Answer Loop 2 is executed returning the \(\text{val} \) of the head node, 6. The \(\text{startPos} \) of \(Q_1 \) is \(3 - 3 = 0 \), and since 0 is not negative, the window boundary is not crossed. Thus, the answer is produced by iterating using Answer Loop 1, which returned 5, the \(\text{val} \) of the second node from the head.

Skipping further, in Step 6 \(\text{SlickDeque (Non-Inv)} \) removes the head node of the deque (with \(\text{pos} = 0 \) and \(\text{val} = 6 \)) which expires at this step since the \(\text{currPos} \) is 0. Also, since the newly arrived tuple, 4, is greater than 3, the last node of the deque is removed, and the new node with \(\text{pos} = 0 \) and \(\text{val} = 4 \) is added at the end.

Figure 9: Example 3 processing of non-invertible aggregate queries \(Q_1 \) and \(Q_2 \) using \(\text{Naive} \) and \(\text{SlickDeque} \) algorithms.
of the deque. Q2 and Q1 are then both processed by executing the Answer Loop 2 and returning 5 and 4 respectively.

Note that this example also shows the advantage of SlickDeque (Non-Inv) over Naive by showing that Naive had to execute 48 Max operations total, while SlickDeque (Non-Inv) executed 11.

4 COMPLEXITY ANALYSIS

In this section, we calculate the time and space complexities of Naive, B-Int, FlatFAT, FlatFIT, TwoStacks, DABA, and SlickDeque. These are summarized in Table 1.

4.1 Time Complexities

We evaluate each algorithm’s time complexity in terms of the number of aggregate operations it performs per slide to return all query answers given a window size of \(n \) partial aggregates. This metric was chosen because the aggregate operations are (1) applied directly to the input data, (2) constitute the bulk of all performed operations, and (3) their number correlates best with the actual query performance. In order to cover the entire complexity space, we calculate amortized complexities as well as worst-case complexities. Amortized complexities are important to us because they correlate with ACQ processing throughputs, while worst-case ones reflect possible latency spikes.

In addition to providing calculations for a single query environment (where only one query covering the entire window is executed each slide), we also evaluate a multi-query environment with the maximum number of queries (which we refer to as a max-multi-query environment). This way, a single query environment can be thought of as a lower bound of complexity per slide, while a max-multi-query environment (which executes all queries covering all possible ranges from 1 to the window length \(n \) each slide), can be thought of as the upper bound. It is clear that in most cases the complexity of the general case (with any other numbers of queries) lays between these bounds.

Naive has an exact time complexity (with matching amortized and worst cases) because it always executes the same number of operations per slide. In a single query environment, its complexity is \(n - 1 \) (asymptotically \(n \)) because it simply iterates over all \(n \) partials and aggregates them.

In a max-multi-query environment, Naive needs to return \(n \) answers each slide for ranges from 1 to \(n \), yielding \(0 \) to \(n - 1 \) operations, respectively. By summing up this arithmetic sequence we get \(\frac{n^2 - n}{2} \) (asymptotically \(n^2 \)).

FlatFAT has an exact time complexity of \(\log_2(n) \) in a single query environment since each new partial updates the binary tree in a bottom-up fashion from the leaf to the root. Since the number of levels in a binary tree is \(\log_2(n) + 1 \), FlatFAT needs exactly \(\log_2(n) \) operations to calculate the query answer. In a max-multi-query environment it is intuitive that the upper bound of the time complexity is \(n \cdot \log_2(n) \), since FlatFAT needs to iterate over \(n \) different query ranges at each slide and each range would require \(\log_2(n) \) operations at most to return the result. The exact complexity per slide can be produced by iterating over all possible ranges and summing their required numbers of operations, which equates to: \(n \cdot \log_2(n) - \frac{n}{2} + \frac{5\log(n)}{2} + \frac{3}{2} \). For simplicity, we use the asymptotic equivalent of this complexity: \(n \cdot \log(n) \).

B-Int similarly to FlatFAT is of a binary nature, and is only different in how it handles updates and look-ups. In [29] B-Int has been shown to have the same asymptotic time complexity as FlatFAT, with B-Int being slower by a constant factor, which we confirm in this work as well.

FlatFIT executes different numbers of operations for different slides, unlike Naive, FlatFAT, and B-Int, which causes spikes in latency. The execution of FlatFIT follows a cyclical pattern which repeats every \(n + 1 \) slides, where \(n \) is the window size. In a single query environment, the so-called window reset event happens once per such period and constitutes the worst-case complexity per slide. During the window reset the indexes of the entire data structure are updated in \(n - 1 \) steps. The window reset operation is surrounded by two slides that require just one operation, and the rest of the slides in a period require two operations each. By summing everything, we have the amortized complexity for the natural period of FlatFIT: \((n - 1) + 2(n - 2) + 2 = 3(n - 1) \), equating to \(3n \) operations for the period of \(n \) slides, which in turn makes the amortized complexity asymptotically constant and equal to \(3 \) operations per slide.

In a max-multi-query environment. FlatFIT keeps the data structure maximally updated by answering queries over all possible ranges each slide, which allows it to calculate the query answers with just one or zero operations each. Due to this, the window reset event happens only once at the beginning of the execution phase, and therefore in this scenario the operational complexity of the FlatFIT algorithm is not amortized and yields \(n - 1 \) operations per slide (asymptotically \(n \)).

TwoStacks also executes different numbers of operations for different slides, which introduces latency spikes similarly to FlatFIT. During insertions, each new partial is added to the B stack and one aggregate operation is performed to determine the new aggregate value of the entire stack \(B \). After that, another operation is performed using the top values of both the \(F \) and \(B \) stacks to return the query answer, which makes the complexity of insertions \(2 \) operations. The majority of evictions are free since they are done by just popping the node from the \(F \) stack. When \(F \) becomes empty, however, \(B \) is flipped onto \(F \) by popping values one-by-one from \(B \) and inserting them into \(F \) while performing one aggregate operation per insertion (to populate \(\text{agg} \) values on \(F \)). The flip procedure (\(n \) operations) clearly constitutes the worst-case complexity per slide. To calculate the amortized complexity we add all operations per one full iteration of the algorithm: \(n \) insertions (1 operation each), \(n \) queries (1 operation each), and one eviction that causes stack flip procedure (\(n \) operations), totaling \(3n \) operations per \(n \) slides. Thus, the amortized complexity of the algorithm in constant and equals \(3 \) operations per slide.

DABA was proposed to alleviate latency spikes in TwoStacks by making its worst-case time complexity constant (though it still performs different numbers of operations each slide). By doing

<table>
<thead>
<tr>
<th>Table 1: Algorithmic Complexities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Naive</td>
</tr>
<tr>
<td>FlatFIT</td>
</tr>
<tr>
<td>B-Int</td>
</tr>
<tr>
<td>FlatFIT</td>
</tr>
<tr>
<td>TwoStacks</td>
</tr>
<tr>
<td>FlatFIT</td>
</tr>
<tr>
<td>DABA</td>
</tr>
<tr>
<td>SlickDeque</td>
</tr>
<tr>
<td>DABA</td>
</tr>
</tbody>
</table>

*true only when \(n \) is a power of 2, otherwise \(3n \).
that DABA sacrifices its amortized time complexity (and consequently its throughput). Per one full window iteration DABA executes 2 flip actions, n shift actions, and n answer look-up actions (costing 1 operation each), and also n insert actions and n answer look-up actions (cost operation apiece), totaling 5n operations per n slides, which yields the amortized complexity of 5 operations. DABA’s worst-case complexity can be attributed to a step that performs the following sequence of actions: Evict, Flip, Shrink, Insert, Shrink, Query, which costs 8 operations total. Similarly to TwoStacks DABA does not currently support multi-query processing.

SlickDeque for Invertible Operations has an exact time complexity of just 2 operations per slide in a single query environment, since after each arrival of the new partial aggregate, the query answer is updated twice: once by executing an aggregate operation with the incoming partial, and once by executing the inverse operation with the expiring partial. In a max-multi-query environment SlickDeque (Inv) has to perform 2n operations, since one aggregate operation and one inverse operation need to be executed on each of the answers to n queries, which makes the algorithm’s exact time complexity 2n.

SlickDeque for Non-Invertible Operations executes variable numbers of operations per slide. As opposed to FlatFIT, TwoStacks, and DABA which are input agnostic and have their worst-case steps executed periodically, SlickDeque (Non-Inv) depends on the input, and the probability of ever executing its worst-case step is minuscule as we point out below.

Intuitively, in the long-running environment with a non-infinite window, each partial can cause at most two operations: one when it is inserted (invokes its comparison with the tail of the deque), and one when it is deleted by another incoming partial (invokes comparison of the incoming partial with the next item on deque). Clearly, the only two situations when a partial performs less than two operations in its lifetime are (1) if it becomes the first element of the deque after its insertion (either by removing all other partials or by being inserted into an empty deque), or (2) if it expires before being removed by another partial. If both situations happen to the same partial it will be involved in 0 operations in its lifetime. Also, it is impossible to execute a full window iteration without hitting one of the two situations by one of the partials at least once, since we cannot have an element in a deque that would both not get removed by another incoming partial as well as not expired after a full window iteration. Thus, the amortized complexity of this algorithm depends on the input, however it is always less than 2 operations.

The worst time complexity of this algorithm happens when the input (except the last partial of the window) is ordered in the opposite way of the aggregate operator order, e.g., if Max is processed and the entire input is ordered descendingly, forcing the deques to fill up, after which the next input partial has the largest value so far. This causes the new element to perform n operations while deleting all nodes on the deque. Fortunately, such a situation is highly unlikely on most inputs (1 in n! chance in the uniform case). Consider the state-of-the-art DABA algorithm that we showed to have a worst-case complexity of 8 operations. In order for SlickDeque (Non-Inv) to have a step with the same complexity there should be at least 9 ordered partials in the input. The probability of receiving 9 values ordered in a specific way in a row is 1 out of 9! (equals 362880), which is highly unlikely.

In a max-multi-query environment, to process all queries scheduled at a slide, the deque is traversed from the head while answering each query. Clearly, if the number of nodes in the deque is smaller than the number of different queries to answer, some nodes will have answers to multiple queries. Thus, the worst case would again be when the input forced the deque to completely fill up, for which the probability is again 1 in n!. In such a case, iterating over the entire deque at each step will take n operations (and at worst 2 operations per step as shown in the single query environment), so the complexity of the worst-case becomes 2n. In the best case, the deque would have only one node each slide that would answer all queries, which would make complexity just 2 operations total.

Summary The differentiated processing of invertible and non-invertible operations allows SlickDeque to utilize optimizations tailored towards each type that are not available in the general case. Thus, SlickDeque is superior in the time complexity for both invertible and non-invertible cases compared to all other algorithms. However, in the worst-case complexity per slide, theoretically SlickDeque has a small possibility (1 in 362880 based on the input) to be outperformed by DABA.

4.2 Space Complexities

Naive has the space complexity of n since it stores partials only once and does not keep any additional structures. This complexity stands despite the number of registered queries, since additional queries do not require any additional structures.

FlatFIT and B-Int both have the space complexity of $2^\lceil \log(n) \rceil + 1$. Due to their binary nature, they are more space efficient when the window size is a power of two, in which case they consume 2n of memory: n for all leaf nodes and n − 1 for all tree nodes above leaves. The first position within a flat array is normally left unused in order to simplify the addressing of nodes within the tree. In cases where the window size is not a power of two, **FlatFIT and B-Int** round it up to the closest power of two, which is mathematically expressed as: $2^\lceil \log(n) \rceil$. Therefore, the space complexity of these algorithms yields $2^\lceil \log(n) \rceil + 1$. The window rounding manifests the worst-case space complexity of 2n.

FlatFIT needs two pre-allocated arrays of size n to operate and a stack that can grow up to 2 values total in a single query environment and in a max-multi-query environment. This results in an asymptotic space complexity of FlatFIT 2n. However, in terms of space complexity, single query and max-multi-query environments do not bound FlatFIT. In a general case where we have more than one query and less than the maximum queries registered, the stack might have to store up to n/2 values (case with two queries) at most. However, each additional query (of a different range) after that cuts the maximum stack memory consumption in half. Therefore, if the number of queries is q, the space complexity of FlatFIT becomes 2n for q = 1 and q = n, and $2n + \frac{q}{2}$ for the rest of the possible values of q.

TwoStacks uses stack structures with nodes containing two values, however both stacks combined can never have more than n nodes total by the nature of the algorithm, which makes its space complexity 2n.

DABA similarly to TwoStacks maintains the front and back stacks with nodes consisting of both values and aggregates, however it is implemented on top of the doubly linked list of chunks. The space complexity of DABA depends on the number of underlying chunks, specifically, having less chunks that are bigger in size saves space on pointers (left and right), but wastes space on overlaps (periodically window slides between chunks during...
the execution leaving up to two chunks’ worth of space wasted). If the window is split into \(k\) chunks, then DABA’s space complexity is: \(2n + 4k + 4n/k\). If we take a derivative with respect to \(k\), equate it to zero, and solve for \(k\), we conclude that the minimum space complexity for DABA is achieved by setting \(k \leq \sqrt{n}\), and it equals \(2n + 4\sqrt{n}\) (asymptotically \(2n\)).

SlickDeque for invertible operations stores partial aggregates similarly to Naive. In addition, it stores the answer for each query with a unique range, making its single query space complexity \(n + 1\), and max-multi-query \(2n\).

SlickDeque for non-invertible operations performs node allocations in chunks to reduce the space required by pointers similarly to DABA, causing an overallocation of up to two chunks’ worth of space (at the beginning and at the end of the deque). The space complexity of SlickDeque (Non-Inv) does not depend on the number of registered queries, but depends on the input. In the worst-case, the input forces the deque to become full. In such a case, having \(n\) nodes with two values each, and \(k\) chunks with two pointers each, the space consumption becomes \(2n + 4k + 4n/k\). By taking a derivative with respect to \(k\), equating it to zero, and solving for \(k\), we conclude that \(k\) should be set to \(\sqrt{n}\) to minimize the worst-case complexity, which becomes \(2n + 4\sqrt{n}\) (asymptotically \(2n\)). Similarly to the time complexity, the chance of the worst-case happening in normal conditions is very low: just 1 in \(n!\). In the best case, however, each incoming partial forces the deque to eliminate all of its nodes, making the space complexity constant (2).

Summary SlickDeque shows a clear advantage over the rest of the algorithms in terms of space complexity. SlickDeque (Inv) shares the space complexity of \(n\) with Naive, while the rest of the algorithms have a complexity of at least \(2n\), and the complexity of SlickDeque (Non-Inv) is always less or equal than \(2n\) (based on the input). This means that only Naive can possibly outperform it, however the probability of that happening is low (just 1 in \(n!/2\), and even then, Naive is still not a feasible solution because of its high time complexity.

5 EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation that confirms the theoretical superiority of SlickDeque in practice, by comparing it to other final aggregation approaches.

5.1 Experimental Testbed

Platform In order to test the performance of our sliding-window aggregation technique, we built an experimental platform in C++ (compiled with G++ 5.4.1). Specifically, we implemented a stand-alone stream aggregator platform and programmed the Naive, FlatFIT, B-Int, FlatFIT, TwoStacks, DABA, and SlickDeque (Inv and Non-inv) algorithms within the same codebase, sharing data structures and function calls to enable a fair comparison. Although all of the compared algorithms can be easily ported to any commercial general purpose stream processing system, we chose to go with a stand-alone platform to carry out our evaluation in an isolated environment in order to avoid any potential system interference and overheads. In the future we are planning to repeat our evaluation on a production system.

Dataset We utilized the DEBS12 Grand Challenge Dataset [16] which contains events generated by sensors of large hi-tech manufacturing equipment. Each tuple in this dataset incorporates 3 energy readings and 51 values signifying various sensor states. The records were sampled at the rate of 100Hz, and the whole dataset includes ~33 million unique events, which we made into a dataset of 134 million tuples.

Workload Clearly, the performance of the final aggregation techniques heavily depends on the window size, i.e., the larger the window size the longer it takes to process updates to it. Thus, we varied the window size from 1 tuple to 134 million tuples, which is the maximum window size with our dataset. Given that the goal of our evaluation is just to compare different final aggregation techniques, we eliminated any side effects (i.e., overheads or benefits) induced by partial aggregation by setting all query slides to one tuple.

Evaluation Metrics We chose to compare the algorithms using throughput, latency, and memory requirement. **Throughput** is measured as the number of query results returned per second in a single query environment, while in a multi-query environment it is measured as the number of queries of a shared execution plan processed per second. **Latency** is measured in terms of the total time it took to calculate and return the answer to each query. **Memory Requirement** is measured by the maximum resident set size of processes running the corresponding techniques.

5.2 Experimental Results

We ran our experiments on an Intel(R) i7-4770 CPU @ 3.40GHz with 16 GB of RAM. For robustness, all the results were averaged over three independent runs of each experiment aggregating three different energy readings from the DEBS12 dataset.

Exp 1: Single Query Throughput

Exp1(a) Invertible Aggregates (Fig. 10) In this experiment we varied the window size from 1 to 134 million tuples where each window is a power of two, and ran a query calculating the invertible aggregation Sum over the entire window after each new tuple arrival. From the results in Fig. 10 we clearly see that there are two groups of algorithms based on their behavior with increasing window size: (1) with constant throughput (SlickDeque, FlatFIT, TwoStacks, and DABA), and (2) with steadily degrading throughput (FlatFIT, B-Int, and Naive). Notice that the throughput rates are similar to what we expected from the theoretical analysis of the algorithms in Section 4.

Fig. 10 shows that SlickDeque’s throughput is on average 15% higher than the throughput of the second best algorithm (FlatFIT on windows 1 through 16, and FlatFIT on the rest) with a maximum of 19%. We also observed that SlickDeque starts outperforming other algorithms on windows as small as 4 tuples and increases its gain rapidly. FlatFIT showed to be more beneficial than SlickDeque only on window sizes from 1 to 4 tuples, however this benefit is negligible (1% at max).

Exp1(b) Non-Invertible Aggregates (Fig. 11) In this experiment we replaced the calculation of Sum with the non-invertible aggregation Max, that again runs over the entire window after each tuple arrival. Similarly to Exp1(a), we see that the throughput of some algorithms is practically unaffected by the increasing window size. The results are depicted in Fig. 11. Once again, the throughput rates correspond to what we expected from the theoretical analysis of the algorithms.

In this experiment SlickDeque’s throughput is on average 7% higher than the throughput of the second best algorithm with a maximum of 10%, and SlickDeque starts outperforming all other algorithms on windows as small as 16 tuples. FlatFIT showed to be more beneficial than SlickDeque only on window sizes from 1 to 8 tuples with an advantage of 7% at max.

406
Exp 2: Max-Multi-Query Throughput

Exp2(a) Invertible Aggregates (Fig. 12)
In this experiment we ran a maximum number of queries calculating Sum value over the ranges from 1 to the window size after each new tuple arrives. In this context increasing the window also increases the number of queries that are processed after each slide, enabling higher reuse of unchanged partial results among them. Thus, in Fig. 12 we see that the throughput gradually increases until the moment when the overhead of dealing with the large window outweighs the benefit of sharing between queries.

In this setting, our approach demonstrated superior scalability yet again by yielding throughput that is on average 45% higher than the throughput of the second best technique with a maximum of 60%. Notice that SlickDeque performs the best on window sizes from 4 tuples to 134 million tuples and only underperforms compared to other algorithms on window sizes 1 and 2 by 3% and 2%, respectively.

Exp2(b) Non-Invertible Aggregates (Fig. 13)
In this experiment we ran the maximum number of queries calculating Max over all ranges from 1 to the entire window after each tuple arrival. The results are depicted in Fig. 12, and are close to our results in experiment Exp2(a).

In this setting SlickDeque yielded throughput on average 266% higher than the throughput of the second best technique with a maximum of 345%. SlickDeque showed to perform the best on windows from 4 tuples to 134 million tuples while falling behind Naive and FlatFAT on windows 1 and 2 by 7% on average.

Summary In all throughput experiments SlickDeque exhibits the best results, while being slightly outperformed on small window sizes (between 1 and 8 tuples) when the overhead of maintaining its structure outweighed the benefit of using it.

Exp 3: Query Processing Latency (Fig. 14)
In this experiment we fixed our window size at 1024 tuples and ran all algorithms on the first million tuples of the DEBS data set while recording how long it took to return an answer to each query. We executed a single query processing Sum (invertible) in the first test, and Max (non-invertible) in the second test. We dropped the highest 0.005% latencies from all algorithms as outliers. The latency results of both tests were nearly identical for all algorithms except SlickDeque, thus we combined them in Fig. 14, where only SlickDeque has separate entries for invertible and non-invertible cases.

Fig. 14 shows that both invertible and non-invertible SlickDeque versions exhibited the lowest latency in all the following categories: Min, Max, Average, Median, 25th Percentile, and 75th Percentile. Across all of the abovementioned categories, SlickDeque outperformed the second best algorithm by 8% on average and 17% at most (for the non-invertible version), and by 75% average and 548% at most (for the invertible version). Also, SlickDeque outperformed the second best DABA algorithm by 283% on average in terms of the lowest max latency spike.

Exp 4: Memory Requirement (Fig. 15)
In this experiment we again varied the window size from 1 tuple to 134 million tuples (but also included window sizes that are not powers of two). We executed a query calculating the invertible Sum aggregation in the first experiment, and the non-invertible Max aggregation in the second. We measured the maximum
We showed experimentally that SlickDeque demonstrates excellent scalability by matching the number of operations required for a continuous query to recompute over single- and multi-query environments. Its power is the differentiatation of the compute operations based on their invertibility, which allows SlickDeque to use optimizations tailored towards each type and that are not available in the general case.

We theoretically showed that SlickDeque significantly decreases the number of operations required for a continuous query to return results while reducing its space requirement. As far as we know, there are no prior algorithms that can achieve the same time and space complexities without loss of query generality. We showed experimentally that SlickDeque achieves up to 3.5x higher throughput compared to the state-of-the-art algorithms, while maintaining up to 5.5x lower latency and utilizing up to 5x less memory. Our next step is to evaluate SlickDeque in dynamic and multi-node environments on production systems.

Acknowledgments Research reported in this publication was partially supported by the National Institutes of Health under Award U01HL137159 and gift from EMC. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or EMC.

REFERENCES