
Kernel-Based Cardinality Estimation on Metric Data
Michael Mattig Thomas Fober Christian Beilschmidt Bernhard Seeger

Department of Mathematics and Computer Science
University of Marburg, Germany

{mattig, thomas, beilschmidt, seeger}@mathematik.uni-marburg.de

ABSTRACT
The efficient management of metric data is extremely important
in many challenging applications as they occur e.g. in the life
sciences. Here, data typically cannot be represented in a vec-
tor space. Instead, a distance function only allows comparing
individual elements with each other to support distance queries.
As high-dimensional data suffers strongly from the curse of di-
mensionality, distance-based techniques also allow for better
handling of such data. This has already led to the development of
a plethora of metric indexing and processing techniques. So far,
the important problem of cardinality estimation on metric data
has not been addressed in the literature. Standard vector-based
techniques like histograms require an expensive and error-prone
embedding. Thus, random sampling seems to be the best choice
for selectivity estimation so far, but errors are very high for mod-
erately small queries. In this paper, we present a native cardinality
estimation technique for distance queries on metric data based
on kernel-density estimation. The basic idea is to apply kernels to
the one-dimensional distance function among metric objects and
to use novel global and local bandwidth optimization methods.
Our results on real-world data sets show the clear advantage of
our method in comparison to its competitors.

1 INTRODUCTION
Statistics about the distribution of data in a database are used for
two very important aspects of data management: query optimiza-
tion and data exploration. In query optimization, they allow esti-
mating the costs of operations, choosing appropriate algorithms,
and computing the order of joins. For very large databases, where
computations take a very long time, small in-memory statistics
can deliver approximate answers. Those are often sufficient to
determine whether it is worth further investigating the data in a
particular direction.

While one- and multidimensional vector data is very common
in traditional applications, there are many domains for which
data is in a metric space only. This means data is not describable
by a d-dimensional vector, instead there exists only a metric mea-
suring distances between pairs of objects. Examples include the
life sciences, where e.g. proteins are usually described by their
geometrical structure or at least a sequence of amino acids. Mul-
timedia data comes in different datatypes such as JPEG or MPEG
which are also not appropriate for a relational representation.

In such domains there is a severe lack of native statistical sup-
port. Thus, a standard approach is to transform metric data into
a multidimensional vector space and to apply one of the standard
estimation techniques [18]. There are two serious opposing ef-
fects. First, a metric embedding causes in general a considerable
information loss. In order to alleviate this, the number of dimen-
sions needs to be sufficiently high. Second, the well-known curse

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

of dimensionality is already noticeable for a moderate number
of dimensions. Thus, statistics provide only accurate results for
low-dimensional vector spaces [1].

In this paper, we present the first native method for cardinality
estimation of distance queries in metric spaces. The basic idea
is to consider the distances of objects in a metric space and to
use kernel techniques to estimate the underlying distance distri-
bution. By tuning the bandwidth of the kernels and the kernel
function, we obtain a robust estimator for the cardinality of dis-
tance queries in metric spaces. Moreover, our approach is also
beneficial for high-dimensional vector spaces by treating them as
metric spaces, thus considering only the distance among objects,
to overcome the shortcomings of standard vectorial statistics.

The main contributions of this paper are:
• We show the deficiencies of traditional cardinality estima-
tion techniques on metric data sets.
• We present the first effective and efficient method for
cardinality estimation in metric space.
• Extensive experiments on real-world data show the valid-
ity of our approach.

The rest of the paper is structured as follows. Section 2 de-
scribes several applications for cardinality estimation in metric
spaces, formally defines the problem, and emphasizes the dif-
ferences of vector and metric data. Section 3 presents related
work in the areas of cardinality estimation in general, techniques
for embedding metric data into vector space and kernel-based
techniques for cardinality estimation. Section 4 presents our
distance-based kernel estimator approach in metric space. Sec-
tion 5 describes our methods for global and local bandwidth
optimization. Section 6 presents our experimental findings. Fi-
nally, Section 7 concludes the paper.

2 PRELIMINARIES
We first give a formal description of the problem of cardinality
estimation on metric data. Then, we discuss several applications
that greatly benefit from a suitable solution to this problem. Fi-
nally, we discuss the fundamental differences between vector
and metric data that lead to the ineffectiveness of established
methods.

2.1 Problem Specification
Let X be a set of N objects {x1, . . . ,xN } ⊆ X. These objects are
all of a certain type, in particular a type which can differ from
Rn . Moreover a distance function distX : X × X → R+ is given
which fulfills the three properties of a metric, namely

(a) identity of indiscernibles: distX(x ,y) = 0⇔ x = y,
(b) symmetry: distX(x ,y) = distX(y,x) and
(c) triangle inequality: distX(x , z) ≤ distX(x ,y)+distX(y, z),

with x ,y, z ∈ X. We will refer to the combination of X and distX
as metric data. In mathematics the pair (X,distX) is called metric
space.

Cardinality estimation for metric data can be formalized as
follows: Given a distance queryQ = (xQ , rQ), with object xQ ∈ X

Series ISSN: 2367-2005 349 10.5441/002/edbt.2018.31

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.31

and distance rQ ∈ R+, efficiently approximate the cardinality of
the set {x ∈ X | distX(xQ ,x) ≤ rQ }. We will refer to the distance
rQ as query radius. The true cardinality is denoted by c(Q) and
the estimated cardinality by c̃(Q). The goal is to minimize the
error of the estimation, but also the construction costs and the
size, as well as the query time of the estimator. Note that the
actual cardinality can, of course, be calculated by computing the
distance to every other item in the data set. This requires a linear
number of distance calculations. Each of them can be very costly
as, e.g., in video dissimilarity. Hence, we want to minimize the
computational costs induced by an estimator.

2.2 Applications
Cardinality estimation in metric spaces has many applications.
Among others we want to mention the domain of Machine Learn-
ing and Data Mining, where algorithms are usually based on a
distance measure. The most prominent example is the so-called
k-nearest neighbor (kNN) classifier which can be used to classify
any kind of data, if it is endowed with a distance measure.

The basic idea is to retrieve thek objects from a database which
have the smallest distances to a certain query object. Assuming
that the objects within the database carry a certain class label (e.g.
customers of an insurance with label churn or no churn), the query
is classified with the majority label from the set of the k nearest
neighbors. kNN classifiers are known to be inefficient since for
each run of such an algorithm a complete scan of the data set
is required. To accelerate this algorithm typically metric index
structures [28] are employed that allow the efficient retrieval of
elements within a given distance of a query object. However, it is
hard to specify the radius for the corresponding queries since the
kNN classifier requires rather the set of k nearest neighbors than
a certain set of neighbors exhibiting a certain maximal distance
to the query object. For calculating the minimum radius, leading
to a retrieval of k results, cardinality estimation can be used. For
example, [14] make use of cardinality estimation to assign objects
to different Locality Sensitive Hashing tables of different radii.
This improves kNN queries on data sets where the distances of
the k nearest neighbours of items vary greatly over the data set.
A single LSH table could not sufficiently answer such queries.

Another example is the estimation of densities, e.g. for Bayes
Classifiers, where the density around an element x is propor-
tional to the amount of elements in a database that are in a small
vicinity to x . This vicinity is typically specified by a certain small
distance. Obviously, a reliable cardinality estimation approach
would increase the efficiency of such classifiers enormously.

If a query is expressed as a conjunction of multiple proximity
predicates, each of them with a different distance function, car-
dinality estimation is useful for computing an efficient order of
their computation. In an optimal execution plan queries should
be applied in an order that leads to quickly decreasing result
sets. Cardinality estimation can be used to answer exactly this
question and to find an order in which the different distance
measures are to be applied. Applications in which such scenarios
occur are, e.g., pharmaceutical chemistry, where different dis-
tance measures covering certain requirements are applied onto
protein and/or ligand databases to get the final result in form
of a very small set of therapeutically effective drugs. In general,
this is a metric scenario, since proteins cannot be described on
the structural level by vectors without a considerable loss of
information.

2.3 Vector Data vs. Metric Data
In order to emphasize the fundamental differences of metric
data to vector data that lead to the in-applicability of established
methods, we now briefly review important properties of a vector
space. We limit our discussion to vector spaces over the real
numbers. Here, ad-dimensional vector space consists of elements
xxx = (x1, ...,xd)with a real value xi ∈ R called coordinate for each
dimension. Individual elements can be added to each other and
multiplied with scalar values v ∈ R. This, e.g., allows to compute
the mean of multiple elements which is not possible in a metric
space. Thus one of the most basic data summarization operators
is not available in a metric space. Furthermore, the coordinates
of the vector allow determining the location of an element with
respect to other elements. Such a direction cannot be determined
in a metric space.

A set of vectors can be ordered globally by component-wise
sorting or by a space-filling curve [27] that better preserves the
proximity of subsequent elements. In contrast, elements in a
metric space can only be ordered based on the distance to a
single reference object. Furthermore, it is straight-forward to
divide a vector space into a finite number of distinct subsets by
incrementally subdividing the space along the dimensions. In
a metric space such subsets have to be defined using a center
object and a radius. In general, such partitions will overlap if the
complete data space should be covered.

A vector space has ameasure that allows calculating the vol-
ume of subspaces and their intersections. In particular, this is the
foundation for the definition of a density and a distribution of a
data set. The notions of volume, density and distribution are not
available in a metric space.

Finally, in a vector space, the costs of distance calculations
between elements is linear in the number of dimension if an
Lp norm (typically p = 2 for Euclidean distance) is used. In
a metric space a distance function can be arbitrarily complex,
such as e.g. the edit distance between two strings which has a
quadratic runtime. Furthermore, we can calculate a bounding
box of a vector data set in linear time by finding the minimum
and maximum value for each dimension. In contrast, finding the
maximum distance between elements in a metric space requires a
quadratic number of distance computations. In summary, metric
data lacks most of the tools available in traditional scenarios
for cardinality estimation. This makes most established methods
infeasible as we discuss in the Section 3.

However, as discussed previously, metric data appears in many
different applications naturally. Furthermore, it supports distance
queries, which are also highly relevant for vector data [4]. As
our experiments will show later, using distance-based techniques
helps lowering the impact of the curse of dimensionality.

3 RELATEDWORK
The most basic idea for estimating the size of a query result is
to perform the query on a sample of the data and scale up the
resulting cardinality by the sample’s fraction of the total data
size. Using Reservoir Sampling [32], a random data selection can
be computed in linear time. We can apply this method also on
metric data. However, small sample sizes result in underestimates
often equal to zero because metric spaces are sparse.

Histograms are the most popular technique for cardinality
estimation in database systems [18]. They divide a domain into
multiple buckets and store the number of contained elements.
When estimating the cardinality within a given query range, they

350

approximate the actual cardinality usually by assuming a uniform
distribution within the buckets. Computing optimal histograms
that minimize the error induced by this assumption is NP-hard
[25]. The most prominent example of an efficient heuristic is
MinSkew [2]. It recursively subdivides the space by splitting
the most skewed bucket until the desired number of buckets is
reached. Other techniques like rkHist [11] and R-V histogram [1]
start from the leaves of a spatial index structure and merge them
together for limiting the amount of buckets.

The introduced histograms are, however, not applicable for
metric data. There is no straight-forward criterion for subdivid-
ing a metric space into a finite amount of disjoint buckets. The
missing notion of uniform distribution within a bucket and the
unavailability of a volume measure make the incorporation of
such buckets into a cardinality estimate impossible. It is possi-
ble to transform metric data into vector data in order to build a
spatial histogram, though. We can then extract the cardinality
estimate for a distance query by calculating the intersection of
the query (in form of a hyper-sphere) with the histogram buckets.
However, such a transformation into a vector space is costly and
introduces an error in form of distance distortions.

Compression techniques like wavelets and cosine transfor-
mations are also suitable for cardinality estimation [24]. Both
techniques are applicable to multi-dimensional vector data and
are shown to provide accurate results. They approximate the
actual data distribution by means of a basis function and several
coefficients, thus drastically reducing the amount of data. The
cardinality estimate is computed as a cumulative joint distribu-
tion of the individual dimensions of the data set. However, in a
metric space we are not able to use these techniques as the data
has no such dimensions and there is no notion of a distribution.

Another method for approximate query processing is Local
Sensitive Hashing (LSH). LSH performs very well on data from a
high-dimensional vector space. It is for example used for approx-
imate similarity search [15] and thus related to distance queries
in metric spaces. There has been work in cardinality estimation
of similarity joins using LSH [21]. Also, multiple LSH indexes
with different radii can be used for cardinality estimation by
counting collisions of hash buckets [14]. However, LSH requires
a similarity-preserving hash function which does not universally
exist for metric data.

A more recent approach uses Machine Learning [4] for car-
dinality estimation. It is, to the best of our knowledge, the only
method supporting distance queries. The query-driven approach
learns to differentiate several prototype queries and predicts the
cardinality of unseen queries by assignment to a prototype and
subsequent interpolation using regression. The optimization of
the query prototypes is performed via gradient descent where
the prototype query is moved across the data space. This manip-
ulation of a query object is not possible in a metric space. Thus,
like the other approaches, this approach is infeasible for metric
data, unless it is mapped into a vector space first.

A distance preserving mapping of data from a metric space to
a vector space is called embedding. The goal is to find for each
xi ∈ X an embedding yi ∈ Rd , such that the induced stress [19]
on the distances is minimized. This stress measure incorporates
the deviations of the resulting distances among objects with
respect to the original distances.

There are different approaches available to embed metric data
into a vector space [3]. One prominent example is Multidimen-
sional scaling (MDS) [20]. It tries to preserve the pairwise dis-
tances in vector space by using such a stress function [19] and
minimizing it subsequently. This minimization can be performed
by eigendecomposition or gradient descent. However, both meth-
ods are expensive to compute, and thus, not suitable for very large
data sets. Landmark MDS [9] was introduced as an alternative to
MDS for big data scenarios. It uses samples of the data called land-
marks and applies MDS on them. The remaining points are then
embedded based on the distances to the l landmark elements.

Kernel estimators [26] are a competitor of histograms which
exhibit a fast convergence for 1-dimensional data [7] and have
been generalized to multi-dimensional data [16]. Note, that both
approaches do not support distance queries on metric data. Here,
samples distribute their weight using a kernel function K , e.g.
Epanechnikov [12] or Gaussian. This weight corresponds to the
probability of data points existing in the vicinity of the sample.
One approximates the underlying probability density function f̂
of a data set at the evaluation point x by using a set of samples S
and summing up over all samples: f̂ (x) = 1

|S | ·h
∑
s ∈S K(

x−s
h) =

1
|S |

∑
s ∈S Kh (x − s). Here, h is the smoothing-factor called band-

width. The cardinality estimate results from integrating the ker-
nel density function within a given rectangle query and scaling
the result up. In a d-dimensional vector space typically product
kernels are used where the density function is integrated for
each dimension separately. This is only feasible for rectangular
queries and not for distance queries. Hence, the application of
existing kernel-density estimators for distance queries on met-
ric data embedded into a vector space is not straight-forward.
Approximating the distance query as a hyper-sphere introduces
an error that is also influenced by the curse of dimensionality.
Our approach makes use of kernels, but we avoid the curse of
dimensionality by using the one-dimensional distance function.

The choice of the actual kernel function is considered to be
of low impact according to the literature [8]. Nevertheless, we
consider different kernel functions in the experiment section of
this paper. However, the selection of the kernel bandwidth h has
a much more crucial impact on the resulting estimator quality.

There are two general approaches for the bandwidth selection:
global and locally adaptive methods [31]. Using a global (fixed)
bandwidth means that all samples and evaluation points use the
same bandwidth. One method of obtaining this bandwidth is by
minimizing the mean integrated squared error (MISE) [30]. In
contrast to traditional applications, the underlying distribution
that shall be fitted by the kernel estimator is known in cardinality
estimation. It is given by the data itself. This enables other opti-
mization techniques than those used in the statistics literature.
Recent work [17] used a gradient descent based approach to find
the optimal bandwidth for a given set of training queries. They
fit a global bandwidth for each dimension of the vector space.
However, a global bandwidth is usually not optimal, as the result-
ing estimator oversmoothes the distribution in dense regions and
undersmoothes in sparse regions of the data set. While the au-
thors of [17] were able to exploit the different distributions in the
individual dimensions, we found the error of a global bandwidth
for different query sizes in our metric scenario to be significantly
high. Furthermore, a gradient descent based approach to band-
width estimation turned out to get stuck in local optima of poor
quality in our experiments. We thus also investigate locally adap-
tive kernel estimators that vary the bandwidth either based on

351

ǁ𝑠

𝑟𝑄

𝑑𝑖𝑠𝑡𝒳(𝑥𝑄, 𝑠)

𝑟𝑄𝑥𝑄 ≔ 0 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Figure 1: The incorporation of a kernel-sample s into the
cardinality estimation for a query Q = (xQ , rQ). The omit-
ted y-axis corresponds to the probability density.

Algorithm 1: Generic Kernel Estimation Algorithm
Input :Kernel function Kh : R→ R+, centered at 0

Optimized bandwidths B : X × X × R+ → R+
Samples S ⊂ X ⊆ X
Total data set size |X |
Distance function distX : X × X → R+
Query Q = (xQ , rQ) with object and radius

Output :Estimated cardinality c̃(Q)
1 total ← 0.0;
2 foreach s ∈ S do
3 h ← B(s,xQ , rQ);
4 s̃ ← distX(xQ , s);
5 contribution ←

∫ rQ
0 Kh (x − s̃) dx ;

6 total ← total + contribution;
7 end
8 probability ← total/|S |;
9 return ⌊probability · |X |⌋;

the sample point or the evaluation point. The latter is also called
balloon estimator [30].

Other work in kernel-based techniques for cardinality estima-
tion in vector spaces focuses also on improving the efficiency of
the estimation process. One approach is reducing the number of
samples to a so-called coreset [33] that maximizes both quality
and efficiency of the estimator. In the scope of this paper we do
not yet consider such improvements but focus on demonstrating
the general applicability of kernel estimators to this new scenario
of metric data.

4 DISTANCE-BASED KERNEL ESTIMATORS
Kernel estimators allow us to overcome a fundamental problem
of using a sample directly for estimating the cardinality of a
query result. Namely that the information is concentrated at a
sample point. In contrast to a histogram we also get a continuous
distribution. In a metric space it is, however, not straight-forward
how we can apply a kernel function on a sample point, as there
are no dimensions in which they could gradually distribute the
mass of a sample. The central idea of our proposed technique is
therefore to apply the kernel function on the distance to a sample
point in order to incorporate the probability of elements in the
vicinity fractionally.

In the following we show how to incorporate a sample point
into the cardinality estimate. Here, the query Q = (xQ , rQ) with
object xQ and radius rQ is located at distance s̃ B distX(xQ , s)

0.00 0.10

−
1

0
1

2
3

Bandwidth

M
ed

ia
n

of
 R

el
at

iv
e

E
rr

or
s

0.00 0.10

0
50

0
15

00
25

00

Bandwidth

Su
m

 o
f S

qu
ar

ed
 E

rr
or

s

Figure 2: Influence of the bandwidth on the estimation er-
ror on the Moby data set (cf. Section 6) for a fixed query
size. The left-hand side shows the median of the relative
errors (Equation (2)). The right-hand side shows the sum
of squared errors (measureMLS).

from the sample point s . As depicted in Figure 1, we introduce an
axis expressing the distance to xQ . For that wemap xQ to x̃Q B 0,
the origin of the axis. The sample point s is then mapped onto s̃ .
The kernel function Kh is then centered at point s̃ by subtracting
s̃ from its argument. We take the area under the curve of the
kernel function between x̃Q and rQ as the contribution of this
sample to the cardinality estimate.

Algorithm 1 shows the full estimation process. For each sam-
ple point we calculate the contribution and compute the sum.
For this we first compute the optimized bandwidth by calling the
function B for the given sample point and query with object and
radius. In case of a global bandwidth, this function ignores the
parameters and always returns the same bandwidth. In case of a
locally adaptive approach, it either uses the sample or evaluation
point (query) to obtain a specific bandwidth. We detail algorithms
for computing the bandwidth in the next section. Given the opti-
mized bandwidth, the distance between sample and query object,
and the radius, we calculate the contribution of the sample to the
running total . After all samples are processed, the probability
is then the total divided by the number of samples, see line 8.
Finally, we scale the resulting probability up by the total data set
size and return this value as the cardinality estimate.

The general workflow of our technique consists of (1) collect-
ing a set S of samples, (2) determining the optimal bandwidths B
and (3) applying Algorithm 1 to estimate the cardinality of new
queries. In the following we present the process of optimizing
the bandwidths.

5 BANDWIDTH OPTIMIZATION
It is well-known [31] that the bandwidth of a kernel function
has a crucial impact on the resulting cardinality estimate. A too
small bandwidth leads to undersmoothing, a too large bandwidth
to oversmoothing. The two edge cases are an infinitely small
bandwidth that converges to sampling and an infinitely large
bandwidth that converges to a uniform distribution. We thus
take particular care of finding an optimal value. We distinguish
between a global bandwidth for all samples and queries, and
locally adaptive methods where the bandwidth is individually
fitted to accommodate for sparser and denser regions of the data
space.

352

5.1 Global
The computation of the optimal global bandwidth for a kernel
function and a given data set is an optimization problem. We
first formalize this problem and then present our optimization
strategy.

5.1.1 Optimization Problem. We want to find a bandwidth h
that minimizes the error of estimates for future queries on the
given data set. As we do not know the future queries, we extract
a set of training queries Q from the data set and minimize the
error for these queries. Afterwards, we validate the performance
against an independent set of test queries that we extracted from
the data set beforehand. We formally define the optimization
problem for a fixed kernel function as

arg min
h

ErrorX (h,Q) , (1)

where h is the bandwidth,X is the data set and ErrorX a function
that computes the error of the queries Q on X for the given
bandwidth h.

We define an appropriate error measure for Equation (1) in
two steps. First, we define an auxiliary function

errorX (h,Q) B
c̃h (Q) − c(Q)

c(Q)
, (2)

where c̃h (Q) is the estimated cardinality using bandwidth h and
c(Q) the actual cardinality of queryQ on data setX . This measure
differs slightly from the common relative error metric, as we do
not take the absolute value in the numerator. This allows us to
assess over- and underestimates separately. It returns values in
the interval [−1,∞]. Two values are of particular interest: −1
indicates that the estimator returns simply a result of zero even
though there are results contained in the query. On the other
hand, an error of zero indicates a perfect result: the estimated
cardinality is equal to the true number of elements the query
returns. There is no upper bound for our measure. However, one
should notice, that a value of 1 means already an overestimation
by a factor of 2.

To compute the error of a set of queries Q we combine the
errors errorX (Q) of the individual queriesQ ∈ Q using ameasure
M : R |Q | → R+. M computes for a set of errors E a single value
that is then subject to minimization. Two examples for M are the
deviation of the median error from zero, and the sum of squared
errors (LS for least squares):

Mmedian (E) B | median(E) |

MLS (E) B
∑
e ∈E

e2 .

For M ∈ {Mmedian ,MLS }, the final optimization problem is
defined as

arg min
h

ErrorX (h,Q) = arg min
h

M({errorX (h,Q) | Q ∈ Q})

(3)

5.1.2 Optimization Strategy. The minimization of the error
function (3) requires an efficient and robust optimization method.
Figure 2 shows the relationship between bandwidth and error
for an example data set. On the left-hand side of the plot we ob-
serve that starting from an infinitely small bandwidth results first
underestimate the true cardinality. A higher bandwidth reduces
the error to a certain degree. At some point the bandwidth over-
smoothes the distribution, leading to very high overestimations.
The right-hand side shows the mean squared errors. While the
general trend of the error function is clearly visible, we can also

see that the results are noisy. This poses a difficult to find global
optimum as the multitude of local optima has to be overcome.
A method that has shown to be very effective in practice are
Evolution Strategies.

An Evolution Strategy (ES) is a global numeric optimization
approach inspired by the Darwinian theory of natural selection.
We implemented the approach of Beyer and Schwefel [6]. Here,
µ parents produce another set of λ offspring. From the thus ob-
tained set of µ + λ individuals the best µ individuals are selected
for the next generation based on a fitness function. An offspring
is produced using a recombination of p parents followed by mu-
tation. The evolutionary process is repeated until either a fitness
threshold, a number of stall iterations without improvement, or
a total number of iterations is reached.

In our case each individual represents a bandwidth h. For cal-
culating the fitness, we use the error function from Equation (3)
which we want to minimize. We tried different parametrizations
and found the following to provide a good compromise between
runtime and estimation errors: µ = 100, λ = 300,p = 2, recombi-
nation via mean and mutation via a Gaussian distribution. We
stop the optimization process after either 25 stall iterations or a
given total amount of 1000 iterations is reached.

As the fitness function has no side-effects and only depends on
the parameterhwe can easily parallelize the evolutionary process
by computing the score for different individuals on different
threads. Because the evaluation of the fitness function is the
most expensive part of the computation we can effectively scale
up the throughput linearly in the amount of CPU cores.

We also exploit the fact that only a limited number of distinct
distance computations are required. In the fitness evaluation for
a given bandwidth h we need to compute a new estimate for each
training query based on h. However, the distances of the query
objects to the samples that give the interval for the integral in line
5 of Algorithm 1 remain constant. In our implementation we thus
precompute these distances and store them in a matrix D. In the
iterations of the optimization process we then avoid redundant
recomputations by performing simple look-up operations. The
matrix D is of size |S | · |O |, where S is the set of samples and
O B {xQ | (xQ , rQ) ∈ Q} is the set of distinct training query
objects. D is discarded after the optimization process is finished.
It thus only influences the construction-time space complexity
of our algorithm. Reasonable numbers are 102 distinct query
objects and 104 samples as used in our experiments. This means
D typically requires only a few megabytes of memory.

5.2 Locally Adaptive
Afixed global bandwidth is usually insufficient for approximating
the cardinality of small and large queries in dense aswell as sparse
regions. One possibility is to extend the bandwidth optimization
process from the previous subsection to individual bandwidths
per sample point. For the following reasons we refrain from this
direction and rather focus on the balloon estimator [30].

In the Evolution Strategy we can extend the configuration to
incorporate individual bandwidths. However, this leads to a very
high-dimensional optimization problem as we potentially need to
optimize hundreds or thousands of bandwidths simultaneously.
Such an optimization may take very long to converge or get stuck
in a local optimum of overall poor quality.

Another approach is to use coordinate search, where we op-
timize only one bandwidth at a time, keeping the others fixed.
Here, we would initialize the N individual bandwidths hi e.g.

353

Query Spec.

Object Radius Truth

Generate Training Queries

P1

Generate Partitions

Pk

…

Rep. Bandwidths

OPT

OPT

Query

Estimator Construction Execution

Assign to Partition

Get Bandwidths

|Q|

Estimate Cardinality

Optimize Locally1 2 3

Figure 3: A general overview of the locally adaptive estimator construction and execution.

randomly and then optimize them one at a time in the order
i = 1, . . . ,N ,N − 1, . . . 1. We repeat this until no significant im-
provement is made in one full sweep. This approach, however, is
also prohibitively expensive to compute.

We thus limit our investigation to the balloon estimator de-
fined by the kth-nearest neighbor estimator [23]. It chooses the
bandwidth on basis of the evaluation point (query) and the sur-
rounding sample points. In contrast to the traditional balloon
estimator, we again use a set of training queries in the optimiza-
tion process. Given a query Q = (xQ , rQ) and the samples S we
choose the bandwidth h as follows:

h = B(_,xQ , rQ) ∝ distance(xQ , samplek (xQ)) , (4)

where samplek (xQ) ∈ S is the kth-nearest neighbor of the query
object xQ in S , and B the function returning the optimized band-
width as introduced in Algorithm 1. We thus ignore the first
parameter of B and apply the same bandwidth to all samples in
the final cardinality estimation of the query Q . Obviously, the
distance to the kth-nearest neighbor is smaller in denser regions
than it is in sparser regions. This leads to the desired adaptive
bandwidth.

Using the distance to the kth-nearest neighbor directly, how-
ever, turns out to be insufficient. First of all, we need a linear
scaling factor to transform the distance to a bandwidth. Fur-
thermore, we incorporate the query radius into the bandwidth
optimization as well. As our experiments will show, the optimal
bandwidth varies for different query sizes (selectivity). However,
we only know the radius at query time. The result size is precisely
the value we want to estimate.

We can, however, distinguish differently sized queries by the
relationship between the query’s radius and the distance to the
kth-nearest neighbor sample. Here, the latter is an indicator of
the density around the query object. We denote this relationship
as

ρ(Q) =
rQ

distX(xQ , samplek (Q))
. (5)

It is an indicator for the cardinality of the query. If we fix the query
radius, ρ(Q) gets larger the smaller the distance to the kth-nearest
neighbor gets. This matches our intuition as this indicates the
data space becoming more dense. On the other hand, if we fix the
density in form of the denominator, a larger radius corresponds
to a larger ρ value, indicating a larger cardinality.

For our extended balloon estimator called BalloonEstimator+

(B+ for short) we thus optimize the local bandwidth for a given
query Q depending on ρ(Q). Here, we again make use of the
methods presented in the previous subsection. The optimization
process consists of the following steps which are also presented
in Figure 3:

1. Generate a set Q of training queries based on a query
specification (e.g. m query objects with a set of target
selectivities). This involves calculating for a given query
object xQ a radius rQ and the true cardinality that fulfill
the query specification.

2. Divide Q into k disjoint partitions Pi ⊆ Q such that the
intra-partition variance Var ({ρ(Q) | Q ∈ Pi }) is mini-
mized.

3. For each partition Pi compute the optimal bandwidth hPi
that minimizes ErrorX (hPi , Pi).

At query time we assign the query to a partition and use the
optimized bandwidth.

In order to obtain the k partitions required in Step 2 we use
hierarchical clustering with complete linkage based on ρ. We
extract the k partitions from the dendrogram. For each partition
we then compute the locally optimal bandwidth by means of an
ES. Each partition is then identified by the mean ρ-value over all
queries in the partition: ρ(Pi) = 1

|Pi |
∑
Q ∈Pi ρ(Q) . Given a new

query Q we first assign it to the nearest partition P∗ by

P∗ = arg min
Pi

|ρ(Pi) − ρ(Q)| .

We then use hP ∗ as the bandwidth for the kernel functions when
estimating the cardinality of query Q .

The depicted construction process of the B+ estimator requires
several distance computations and incurs some overhead in stor-
age. For calculating the k-nearest neighbor when determining
the ρ-value of the training queries we use the same matrix D as
for the actual bandwidth optimization. Storing the B+ estimator
requires storing for each cluster the mean ρ-value and the opti-
mized bandwidth. This slightly reduces the amount of samples
that can be stored with a given amount of space.

When estimating the cardinality for a given query Q , we in-
duce some overhead with respect to a kernel estimator with a
global bandwidth. Namely, we need to compute ρ(Q) which in-
cludes finding the kth-nearest neighbor sample. However, we
calculate the distances of all samples to the query object anyway
when calculating the estimation after the bandwidth has been de-
termined. Thus, the additional overhead of the B+ estimator only
consists of finding the k-smallest element in the list of distances.
We can efficiently determine this element while computing the
distances using a bounded max-heap. Here, we always store the
k smallest elements and larger elements are discarded. At the
end the k-smallest distance is at the top of the heap. We then in-
corporate this distance in the calculation of ρ(Q) and retrieve the
bandwidth of the nearest partition. The remaining computations
are identical to a kernel estimator with a global bandwidth.

354

6 EXPERIMENTAL EVALUATION
This section presents the results of our experimental study. First,
we present the experiment setting, data sets and investigated
methods. Then, we present the results of the experiments.

6.1 Setting
We implemented the kernel estimators and baseline algorithms in
Java using embedding techniques and histograms from the XXL
library [10]. All experiments were run on an Intel Core i7-4771
CPU and 16GB of RAM. We consider four real-world data sets
which, together with our generated queries, are on our website1.
Moby Word List (Moby) contains word lists in different lan-
guages2. We used the German word list consisting of about
160 000 words and the Levenshtein distance [22] as a metric.
Protein Binding Sites (PBS) are taken from CavBase [29], a
database of protein binding sites (PBS) from experimentally de-
termined protein structures. In CavBase, currently 248 686 PBS
are stored. Each PBS is described by a set of points in the 3-
dimensional Euclidean space that model the shape of the protein.
In addition to the coordinate, each point also carries a label spec-
ifying the physico-chemical property of that point. To compare
pairs of PBS we use the measure presented in [13] which fulfills
all metric properties.
Rea16 is a 16-dimensional vector-data set representing Fourier
coefficients from CAD data. It contains 1.3 million points and is
often used for benchmarking high-dimensional queries [5]. We
use the Euclidean distance measure as metric.
Wikipedia (Wiki) is a data set consisting of 4.5 million Wiki-
pedia articles represented by the article name and a short abstract.
We used the data provided by the DBpedia project3. We removed
articles that are only a disambiguation or a list of links to other
articles. For easier syntactic comparisonswe also removed all non-
ASCII characters. The distance measure for this data set is based
on the Jaccard coefficient of character shingles4 of length k = 3.
The distance between two articles is computed by dist(a,b) =

1 − |sk (a)∩sk (b) |
|sk (a)∪sk (b) |

, where a and b are articles and s is a function
that computes the set of k-shingles of a short abstract.

We generate our test queries uniformly at random from the
data set at hand. For this, we select 100 items as query objects and
remove them from the data set. In particular we remove these
items from the data set before optimizing the kernel bandwidths
on a different set of training queries. We then choose the min-
imum radius around these items such that at least 0.01%, 0.1%
and 1% of the data set are contained in the query. This radius
varies depending on the density at the particular query object.
The training queries are generated in the same fashion as the test
queries. Note that it is not always possible to create a query from
a data object that contains exactly the desired amount of data.
Especially for discrete distance measures, many objects share the
same distance to a reference object. Also note that by generating
queries this way, they follow the distribution of the data. This
means that it is more likely for a query to be placed in a more
dense region of the data space. However, this is no undesired
effect, since this approach intuitively matches real-world query
patterns [17]. In contrast to vector spaces it is not possible to
uniformly sample queries from a domain for metric data (e.g. of

1http://uni-marburg.de/qiFqp
2http://icon.shef.ac.uk/Moby
3http://wiki.dbpedia.org/services-resources/documentation/datasets#
ShortAbstracts
4A k -shingle is a sequence of k characters

newspaper articles). We are thus forced to limit our investigation
to queries drawn uniformly from the data items.

In our experiments we compare the estimated cardinality for
a given query with the actual cardinality – the closer both values,
the better the estimator. We use our error measure from Equation
(2) again. Recall that we use this slight variation of the common
relative error to capture under- and overestimations individually.

For measuring the build time of the individual estimators we
use wall-clock time. Note that we parallelized the Evolution Strat-
egy and used all 8 threads of the machine. For our kernel-based
approaches we measure only the time for creating the estima-
tor and not for generating the training queries as, in practice,
they can e.g. be obtained from historic queries or the current
workload.

In addition to our kernel estimators we consider spatial his-
tograms as a baseline method for cardinality estimation. For
metric data, the spatial histograms require an embedding into
a vector space. We use the following popular measure to assess
the quality of the resulting embeddings:

STRESS1 =

(∑
i<j (distX(xi ,x j) − distE (yi ,yj))

2∑
i<j distX(xi ,x j)

2

) 1
2

, (6)

where distE is the Euclidean distance. It measures on a relative
scale how well distances are preserved by the specific embedding.
According to the literature [19] a value greater than 0.2 is already
considered as a low-quality embedding.

We evaluated the performance of different kernels with opti-
mized bandwidths. Even though the concrete choice of kernel
function is considered to be insignificant in the literature [8], we
found differences among the optimization results. We consider
Cauchy, Epanechnikov, Exponential and Gauss kernels.

We now describe the estimators we used in our experiments.
All of them are given 0.1% of the total data set size in memory
to allow a fair comparison across the data sets of varying sizes.
This size presents a reasonable value in big data scenarios and
returned representative results in our experiments.
Sampling uses reservoir sampling to efficiently build a uniform
random sample S of the data in one pass. The query is executed
on the sample and the resulting cardinality cS (Q) is scaled up to
return the estimated cardinality c̃(Q) = cS (Q) · |X |/|S |.
MSnd and R-Vnd use aMinSkew or R-V histogram, respectively.
The parameter n indicates that the data was first embedded in
an n-dimensional vector space using Landmark MDS. A distance
query Q is then also embedded and becomes an n-dimensional
query sphere Q̂ . For estimating the cardinality we calculate the
volume VI (Q̂,B) of the intersection between Q̂ and histogram
bucket B and sum up the fractional bucket counts:

c̃(Q) =
∑
B

VI (Q̂,B) · count(B) .

For n > 2 we use a Monte Carlo simulation for VI , as it is more
efficient than an analytical solution.
Global size uses a kernel estimator with the Cauchy kernel func-
tion and a global bandwidth optimized by means of an Evolution
Strategy, as described in Subsection 5.1, with 100 individuals.
We use Mmedian as defined in Section 5. The parameter size
gives the cardinality of the training queries: S =̂ small =̂ 0.01%,
M =̂medium =̂ 0.1%, L =̂ large =̂ 1%,MIX =̂X =̂mixed =̂ S∪M∪L.
The query objects are selected uniformly at random.
B+k,n uses a kernel estimator with the Cauchy kernel and lo-
cally optimized bandwidths as described in Subsection 5.2 using

355

● ●

●
●●

●

●

●

●

●●

●

●
●

●

●●●●
●

●

●

●
●

●

●

●

●●

●

●

●

●●●●●
●

●

●

●

●

●●

●
●
●

●●●●●
●

●●●●●

●●

●●

●
●

●

●●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

Moby

0
50

0
10

00

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●
●
●

●

Moby [−1,10]

0
4

8
−

1

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●

●
●
●
●

●

●

●

●

●

●

●●

●
●

●●●

●●
●
●

●
●
●●
●

●●●●●●●●●●●●●

PBS

0
40

0
80

0

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●

●

●

●●●●●●●●●●●●●

PBS [−1,10]
0

4
8

−
1

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

● ●

●

●

●
●

●
●

●

●

●
●
●

●●

●
●

●

●

●●
●
●
●
●

●

●●●●●●●●●●●●●●●
●●
●
●●

●

●●
●

●●
●●

●●●●●●
●●

● ●●●●●●●●●● ●●●●●●●●●●

Rea16

0
40

00
80

00

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●●●●●●●●

Rea16 [−1,10]

0
4

8
−

1

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●

●

●
●

●●●●●
●

●

●

●
●

●●●●●
●

●

●

●
●

●●●●●
●

●

●

●

●

●●●●●
●

●

●

●
●

●●●●●
●

●

●

●

●

●
●●●●

●

●
●

●

●
●

●●●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●●
●

●●

●

●

●●

●●

●
●

●

●●

●

●

●
●

●●●●●
●

●●●●●●●

Wiki

0
20

00
0

40
00

0

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

●●●●●●●

Wiki [−1,10]

0
4

8
−

1

M
S2d

R-V
2d
M

S3d

R-V
3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R−V6d
M

S7d

R-V
7d

Sam
plin

g

Figure 4: Estimation errors of the spatial histograms on queries of 1% of the data. The green line indicates an error of 0, the
red line an error of -1 (zero-estimate). The top row plots show the total error range, the bottom row the interval [−1, 10].

Dimensions

St
re

ss ● ● ● ● ● ●

● Moby PBS Rea16 Wiki

2 3 4 5 6 7

0.
0

0.
4

0.
8

Figure 5: The stress induced by the embedding into a vec-
tor space of d dimensions. The dashed line indicates the
threshold for a low-quality embedding.

the same measure as Global on the MIX training queries. The
parameter k expresses that the kth-nearest neighbor is used and
n defines the number of clusters.

6.2 Estimation Quality
We now present the results of our experiments of the described es-
timators on the introduced data sets. We visualize the estimation
errors in terms of boxplots.

6.2.1 Baseline Algorithms. Figure 4 shows the estimation er-
rors of MinSkew and R-V histogram for the individual data sets
and a query size of 1%. We embedded all data sets into 2, 3, 4, 5, 6
and 7 dimensions using Landmark MDS with 10 landmark points.
We can immediately see very large estimation errors. Using a
higher target dimension for the embedding leads to lower estima-
tions. However, this does not lead to good estimates. In contrast,
the very high estimates turn into zero-estimates (error = −1) for
higher dimensions.

Figure 5 shows the stress induced by the embedding. Overall,
the embeddings are of poor quality with stress values above 0.2
as indicated by the dashed line. We observe that, in general, the
stress decreases with the number of used dimensions. For PBS
we notice a slightly worse embedding for higher dimension. This
reveals a weakness of the Landmark MDS embedding. Only the
landmarks profit directly from the higher degree of freedom in a
higher dimensional vector space. They are properly embedded
using an MDS that minimizes the stress. The remaining elements

● ●

E
rr

or

Cau
ch

y
Epa.

Exp
.

Gau
ss

−
1

0
1

2
3

4

Figure 6: Influence of the choice of kernel function on the
Moby data set for a query size of 0.01%.

are only embedded with respect to the landmarks, not with re-
spect to the other objects. Thus, a higher dimensionality does
not necessarily guarantee a better embedding.

In addition to the poor embedding quality, the spatial his-
tograms suffer from the curse of dimensionality. This leads to an
overall performance degradation with an increasing dimension-
ality. The vector space becomes sparse leading to almost empty
buckets or queries that intersect with no buckets at all. This is
apparent as the high overestimations induced by the embedding
turn into zero-estimates for higher dimensions. We conclude that
spatial histograms are not a reliable choice for cardinality esti-
mation in metric spaces. For the vectorial Rea16 data set in the
original 16-dimensional vector space (omitted in Figure 4 due to
lack of space), nearly all queries return an estimate of zero. This
motivates the idea of using distance-based approaches on high-
dimensional data in order to counter the curse of dimensionality.

Figure 4 also shows the performance using a random sample
for estimating the cardinality. The resulting cardinality on the
sample is scaled up by the constant factor |X |/|S |, where S is the
sample and X the data set. If the sample is large enough with
respect to the query size it reflects the data distribution well and
estimates become accurate. However, if the sample is small or the
query highly selective, errors increase dramatically. Estimates
are either zero because no sample is contained in the query, even
though there are qualifying items in the underlying data set. Or,
estimates are very high because by chance a sample was included
and then scaled up by a large factor. This results in a median of
-1 and a very high maximum error.

356

●●

−
1

0
1

2
3

Moby 0.01%

−
1

0
1

2
3

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

●

●●

●
●
●

●

●●●
●
●

●

●●

●
●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

−
1

1
3

5

Moby 0.1%

−
1

1
3

5

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●
●

●

●●

●

●
●

●

−
1.

0
0.

0
1.

0

Moby 1%

−
1.

0
0.

0
1.

0

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●●

●●

0
2

4
6

8

PBS 0.01%

0
2

4
6

8

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

●
●●●

●

●●
●
●●

●

●●●

●

●●

●

●
●●
● ●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●
●

●

●●●●
●

●

●

●●
●

●
●
●
●

●

●
●

●
●●

●

●●●●

●
●

●●
●

−
1

1
3

5
PBS 0.1%

−
1

1
3

5

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

●

●

●●●

●

●●

● ●●● ●●●

●●

● ●●●●

−
1.

0
0.

0
1.

0

PBS 1%

−
1.

0
0.

0
1.

0

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

● ●

●

●●

●

●●●

●

●●●●●●●●●

0
5

10
15

20

Rea16 0.01%

0
5

10
15

20

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

●

−
1

1
2

3
4

5

Rea16 0.1%

−
1

1
2

3
4

5

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●

●

●

●

●

●

−
1.

0
0.

0
1.

0

Rea16 1%

−
1.

0
0.

0
1.

0

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

● ● ● ● ●

−
1

1
3

5

Wiki 0.01%

−
1

1
3

5

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

−
1.

0
0.

0
1.

0
2.

0 Wiki 0.1%

−
1.

0
0.

0
1.

0
2.

0

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

●●● ●●● ●●● ●●● ●●●

−
1.

0
0.

0
1.

0

Wiki 1%

−
1.

0
0.

0
1.

0

Glob
al

S

Glob
al

M

Glob
al

L

Glob
al

M
IX

B
+ 2,8

Sam
plin

g

Figure 7: Estimation errors of the kernel estimators with global and local optimized bandwidths for different query sizes.

6.2.2 Kernel-Based Techniques. Figure 6 exemplifies the per-
formance of different kernel functions using an optimized band-
width as described in Section 5. It is apparent that different kernel
functions lead to a different estimation accuracy. However, our
experiments confirm that the selection of the bandwidth has
a much greater impact on the performance than the choice of
the kernel function. As the Cauchy kernel gave the overall best
performance in our experiments, we limit our following presen-
tation to this kernel. The reason for its superior performance is
that its distribution is more heavy-tailed than that of the other
kernels. In contrast to, e.g., the Gaussian kernel, the density does
not decrease exponentially in the distance from the mean. This
allows the kernel to distribute its weight more effectively.

Figure 7 shows the estimation errors of the kernel estimators
with globally and locally optimized bandwidths. We also report
the statistics in Tables 2-5 at the end of the paper. In contrast
to sampling the kernel estimators are able to give reasonable
cardinality estimations also for very selective queries. In particu-
lar they overcome the problem of either zero estimates or very
high overestimates. For the global bandwidth optimization we
generated training queries of different cardinality. In Figure 7
the labels S, M, L and MIX indicate the target query size for the
bandwidth optimization process.

Kernel estimators optimized for a specific query size give good
results on new queries of equal size. This proofs that the band-
width generalizes well from training to test queries. However,
estimators optimized for small queries tend to underestimate the
cardinality of larger queries. The optimal bandwidth for larger
query sizes also leads to overestimates for smaller queries. Opti-
mizing the bandwidth for all query sizes at the same time leads
to a bandwidth that is not optimal for any of the query sizes.
This result shows that a global bandwidth is not sufficient for
applications where queries vary greatly in size.

The BalloonEstimator+ (B+k,n) uses the same set of training
queries, but computes a set of optimal bandwidths. The concrete
bandwidth for a given query is chosen based on the local density
and the query radius. We restrict our results to the setting k = 2
and n = 8 that gave slightly better results than for other settings.

Figure 8 displays how many results of good quality are pro-
duced by sampling and B+2, 8, respectively. It confirms the results
indicated by the boxplots that the kernel approach outperforms
sampling for small queries. The plot shows the percentage of
estimates within the error bounds given by the x-axis. Thus, it be-
gins with all estimates with error zero, meaning perfect results. It
then gradually increases the bounds uniformly in both directions,
thus accumulating more results. The x-axis ends with all queries
of errors in the interval]−1, 1[, as we consider greater errors as
a failure of the estimator. Accordingly, we can see the number
of estimates not fulfilling our requirements by the height of the
plot. For all data sets the smallest queries show no results for
sampling with absolute errors below 1. B+2, 8 on the other hand
is able to produce high quality results within the shown interval.
Moreover, the shape of the curve is very consistent between the
different query sizes and data sets, indicating the robustness of
the approach. Sampling shows step-wise increments when new
sample points are incorporated into the estimate.

The concrete choice of n and k is subject to optimization. We
report one setting (k = 2, n = 8) that worked for all our data
sets. There is a general tradeoff between the number of clusters
(improving the estimation quality) and the required space (wors-
ening the quality). In general, we observed in our experiments
that large values for n and k do not improve the performance.
Overall we conclude that the BalloonEstimator+ presents a sig-
nificant improvement over the global bandwidth approach.

357

%
 E

st
im

at
es

 w
it

hi
n

E
rr

or
 B

ou
nd

s
0

50
80

 Moby 0.01%

%
 E

st
im

at
es

 w
it

hi
n

E
rr

or
 B

ou
nd

s

B+2,8

Sampling

%
 E

st
im

at
es

 w
it

hi
n

E
rr

or
 B

ou
nd

s
0

50
80

 Moby 0.1%

0.0 0.2 0.4 0.6 0.8 1.0

%
 E

st
im

at
es

 w
it

hi
n

E
rr

or
 B

ou
nd

s
0

50
80

 Moby 1%

 PBS 0.01%

 PBS 0.1%

0.0 0.2 0.4 0.6 0.8 1.0

 PBS 1%

Error Bounds

 Rea16 0.01%

 Rea16 0.1%

0.0 0.2 0.4 0.6 0.8 1.0

 Rea16 1%

 Wiki 0.01%

 Wiki 0.1%

0.0 0.2 0.4 0.6 0.8 1.0

 Wiki 1%

Figure 8: The plotted lines display the number of estimates with absolute errors within the bounds, given by the x-axis.

Moby Build Time [s]

M
S2d

R-V
2d
M

S3d

R−V3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R-V
6d
M

S7d

R-V
7d

Glob
al

B
+ 2,8

Sam
plin

g

0
5

10
15

20

PBS Build Time [s]

M
S2d

R-V
2d
M

S3d

R−V3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R-V
6d
M

S7d

R-V
7d

Glob
al

B
+ 2,8

Sam
plin

g

0
10

20
30

40
50

Rea16 Build Time [s]

M
S2d

R-V
2d
M

S3d

R−V3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R-V
6d
M

S7d

R-V
7d

Glob
al

B
+ 2,8

Sam
plin

g

0
50

10
0

20
0

Wiki Build Time [s]

M
S2d

R-V
2d
M

S3d

R−V3d
M

S4d

R-V
4d
M

S5d

R-V
5d
M

S6d

R-V
6d
M

S7d

R-V
7d

Glob
al

B
+ 2,8

Sam
plin

g

0
20

00
60

00

Figure 9: The build time of the estimators in seconds.

6.3 Runtimes
The efficiency of an estimator is the second criterion for assessing
its performance. We first discuss the theoretical complexity of the
construction of our B+ estimator. Then, we present our empirical
findings of the build and query time of all investigated methods.

6.3.1 Construction Complexity of the B+ Estimator. The time
complexity of the construction of our B+ estimator is determined
by (1) the costCP for creating P partitions of the training queries
and (2) the cost CES of executing the ES which is dominated by
evaluating the fitness of the individuals. All other operations are
negligible because they cause only constant overhead.

The number of partitions P is defined by the user. The cost for
partitioning the training queriesQ using hierarchical clustering is
dominated by the construction of the dendrogram which requires
CP = O(Q|

2) time.
The fitness evaluation of a single individual requires calcu-

lating the cardinality estimate for each training query in Q by
incorporating the contribution of all samples S . We denote this
cost as ceval = O(|Q| · |S |). Given the number of iterations I , the
number of parents µ and the number of offspring λ the cost for

executing the ES is CES = O((µ + I · λ) · ceval). As we execute
one ES for each of the P partitions, the final time complexity is
O(|Q|2 + P · (µ + I · λ) · |Q| · |S |).

The time complexity depends on the number of iterations
I of the ES. The termination condition is a given number of
stall iterations Ī and thus depends on the fitness development
of the individuals. We can consider I as a random variable. For
Ī = 25, we observed the following number of iterations in our
experiments: min. 79, 1st quantile 86, median 89, mean 93.57, 3rd
quantile 101 and max. 136. Note that we also limit the ES to at
most 1 000 iterations which gives an upper bound on the runtime.

6.3.2 Empricial Findings. Figure 9 shows the build times of
the estimators from Subsection 6.2. The spatial histograms show
a more or less constant construction time, regardless of the di-
mension. Sampling is the cheapest estimator to construct as it
only requires a single scan of the data set. In comparison, our
kernel-based techniques take more time to build. As our B+ esti-
mator performsmultiple bandwidth optimization for the different
query partitions, its runtime exceeds the global bandwidth ap-
proach. However, the required time for construction is still very
reasonable in practical applications, especially as the estimator
has to be built only once which makes the query response time
much more crucial. We observed a very quick convergence of the
Evolution Strategy in our experiments, where an optimum was
usually found within very few iterations. We report the average
build time for the different used configurations. The bandwidth
optimization was performed in parallel, while the spatial his-
tograms were constructed on a single thread. As the ES is very
easy to parallelize, we can thus improve the construction time
using more CPU cores. We also want to emphasize that a sto-
chastic approach is only one method to bandwidth optimization.
If another method turns out to be more efficient in this regard,
it does not lower the accuracy of a kernel estimator. However,
the build time is already very reasonable for practical scenarios.
For Moby and PBS the construction of our estimator took less
than a minute and for Rea only slightly more than two minutes.
This means the overhead of constructing the estimator while
importing the data into a database is insignificant. On the Wiki
data set the construction was significantly slower with ~17 min-
utes. This has two reasons: The first is that the estimator size is
much larger, as we choose it in relation to the data set size in our
experiment. The second reason is that the distance computations

358

Table 1: Mean query times of the estimators in ms.

Method Moby PBS Rea16 Wiki

MS2d 0.232 0.210 0.985 1.825
R-V2d 0.075 0.935 1.229 0.752
MS3d 5.114 114.848 438.672 363.161
R-V3d 4.968 723.424 438.997 4 868.446
MS4d 4.391 41.765 158.357 97.783
R-V4d 4.270 0.055 384.439 4 239.452
MS5d 4.072 21.134 35.995 35.169
R-V5d 4.020 0.051 351.146 3 854.658
MSd 0.203 0.227 0.203 0.967
R-V6d 3.551 915.755 328.374 3 609.655
MS7d 0.224 0.278 0.231 0.992
R-V7d 3.480 872.779 313.527 3 429.448
Kernel Global 0.105 1.032 0.209 354.941
B+2,8 0.138 1.071 0.299 348.178
Sampling 0.104 1.412 0.241 351.645

are the most complex of all data sets. This is also visible in the
high construction times of the spatial histograms.

Table 1 shows the query response times of the cardinality
estimation. The spatial histograms suffer from slow response
times for dimensions greater than 2 which is amplified by the
more complex calculation of the sphere-bucket intersection. For
some experiments the time gets close to zero as no intersecting
buckets were found due to the exponentially increasing vector
space. Sampling, again, has the benefit of being very fast, as only
few distance calculations are necessary. The kernel estimators
additionally need to compute an integral for every sample point
which results in a longer execution time. However, as reflected
by the query times, this turns out to be insignificant overhead
in comparison to the distance computations. The B+ estimator
is also very efficient. Our experiments confirm that the deter-
mination of the appropriate bandwidth induces only very little
overhead. In conclusion kernel-based cardinality estimation is an
efficient method with effectively zero overhead in comparison
to sampling in practical applications. The only reason to use
sampling is its low cost for computing the estimator.

6.4 Impact of Estimator Size
The estimator size limits the number of samples used for cal-
culating the cardinality estimate and thus impacts the quality
of the estimates. We expect that a larger estimator size leads to
overall better estimates. For estimator sizes of 0.05%, 0.1%, 0.2%
and 0.4% of the total data set size we measured the performance
of the estimators in 10 runs using different samples. In each run
we, again, measure the error of 100 test queries. We compute the
trimmed mean of the thus generated 100 error values with a ratio
of 10% to accommodate for outliers. Figure 10 shows boxplots of
the trimmed means for our B+2,8 estimator and pure sampling
with a query selectivity of 0.01%. For both estimators we observe
an overall improvement of the estimates with greater estimator
sizes. Our B+2,8 estimator is able to already give good results
when given only a very limited amount of space. The improve-
ments for larger estimator sizes are relatively small for all data
sets. In contrast, we can see that sampling benefits much greater
from more available data. It starts with very bad results for such
selective queries with a median of zero when only few sample
are used. Overall we observe a tendency to underestimates while

Table 2: Estimation errors on the Moby data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -0.790 -0.128 1.717 -0.397 -0.863 -1.000

Median -0.011 3.070 11.594 1.896 0.243 -1.000
Max 7.613 12.167 40.111 8.581 57.842 61.750

0.
1%

Min -0.919 -0.661 0.056 -0.765 -0.884 -1.000
Median -0.744 -0.011 1.711 -0.277 -0.155 -1.000
Max 3.302 3.823 6.348 3.546 6.869 6.007

1%

Min -0.967 -0.864 -0.624 -0.906 -0.755 -1.000
Median -0.455 -0.331 -0.014 -0.375 -0.107 -0.123
Max 0.852 0.984 1.505 0.931 1.177 1.703

Table 3: Estimation errors on the PBS data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -1.000 -0.852 -0.704 -0.926 -0.852 -1.000

Median -0.111 3.574 7.315 0.889 0.782 -1.000
Max 37.111 41.667 46.333 38.333 37.593 36.037

0.
1%

Min -0.993 -0.949 -0.905 -0.978 -0.956 -1.000
Median -0.818 -0.071 0.670 -0.617 -0.735 -1.000
Max 6.442 7.011 7.551 6.595 7.022 6.299

1%

Min -0.969 -0.850 -0.742 -0.936 -0.957 -1.000
Median -0.246 -0.136 -0.015 -0.216 -0.134 0.091
Max 1.538 1.507 1.485 1.529 1.546 2.638

the errors of our approach are more centered around zero. With
greater estimator size, sampling is able to catch up with our
kernel-based approach for some data sets. However, small es-
timator sizes with respect to the total data set size are highly
relevant in practical scenarios because the amount of data in
databases is rapidly growing. This makes our estimator superior
to sampling in practical scenarios.

7 CONCLUSION AND FUTUREWORK
We presented the first effective and efficient approach to cardi-
nality estimation on metric data. Our approach is based on the
application of kernel-density techniques to the one-dimensional
distance function. We are able to outperform sampling which
suffers from zero-estimates and large overestimates for small
queries. Our approach is also superior to spatial histograms on
embedded data which suffer both from the poor quality of embed-
dings and the curse of dimensionality. We presented approaches
for determining the bandwidth of the kernel estimator globally
and locally adaptive.

In our future work we will further investigate efficient local
bandwidth optimization strategies. Furthermore, we will look
into adapting our estimator to changing data and query work-
loads by performing the ES continuously in the background. We
will also address the incorporation of query feedback into the
estimation process.

REFERENCES
[1] Daniar Achakeev and Bernhard Seeger. 2012. A Class of R-Tree Histograms

for Spatial Databases. In SIGSPATIAL/GIS. ACM, New York, NY, USA, 450–453.
[2] S. Acharya, V. Poosala, and S. Ramaswamy. 1999. Selectivity estimation in

spatial databases. ACM SIGMOD Record 28, 2 (1999), 13–24.
[3] Charu C Aggarwal. 2015. Data mining: the textbook. Springer.
[4] Christos Anagnostopoulos and Peter Triantafillou. 2017. Query-Driven Learn-

ing for Predictive Analytics of Data Subspace Cardinality. ACM Trans. Knowl.

359

−
1.

0
0.

0
1.

0 Moby

●●

●

●

●

−
1.

0
0.

0
1.

0

0.05% 0.1% 0.2% 0.4%

B+2,8 Sampling

−
1

0
1

2
3

PBS

●●−
1

0
1

2
3

0.05% 0.1% 0.2% 0.4%

B+2,8 Sampling

−
1.

0
0.

0
0.

5 Rea16

● ●

●

−
1.

0
0.

0
0.

5

0.05% 0.1% 0.2% 0.4%

B+2,8 Sampling

−
1.

0
0.

0
1.

0 Wiki

●

● ●

●

●

●

●

−
1.

0
0.

0
1.

0

0.05% 0.1% 0.2% 0.4%

B+2,8 Sampling

Figure 10: The trimmed mean estimation errors for estimators of varying sizes on a fixed set of 100 queries with target
selectivity of 0.01%. The estimator sizes are given in % of the total data set size. For each size, the boxplot includes the
results of 10 runs with different samples.

Table 4: Estimation errors on the Rea16 data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -1.000 -0.977 -0.826 -0.977 -1.000 -1.000

Median -0.061 6.347 54.966 6.397 -0.004 -1.000
Max 1.145 15.756 126.191 15.870 1.206 14.267

0.
1%

Min -0.991 -0.925 -0.431 -0.925 -0.990 -1.000
Median -0.873 -0.004 6.583 0.003 -0.314 -0.238
Max -0.736 1.069 14.708 1.082 5.122 1.287

1%

Min -0.997 -0.980 -0.845 -0.979 -0.913 -0.695
Median -0.983 -0.869 -0.004 -0.868 -0.201 -0.085
Max -0.965 -0.725 1.087 -0.723 0.655 0.601

Table 5: Estimation errors on the Wiki data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -0.966 -1.000 -0.973 -0.971 -0.856 -1.000

Median 0.192 -1.000 0.004 0.057 0.065 -1.000
Max 5.324 5.237 5.310 5.314 5.237 3.228

0.
1%

Min -0.867 -1.000 -0.888 -0.882 -0.883 -1.000
Median 0.060 -0.102 0.039 0.046 0.030 -0.154
Max 1.068 0.901 1.042 1.049 1.048 1.110

1%

Min -0.230 -0.240 -0.231 -0.231 -0.240 -0.306
Median -0.049 -0.070 -0.052 -0.051 -0.052 -0.020
Max 0.349 0.330 0.346 0.347 0.346 0.387

Discov. Data 11, 4, Article 47 (June 2017), 46 pages.
[5] Norbert Beckmann and Bernhard Seeger. 2009. A Revised R*-tree in Compari-

son with Related Index Structures. In SIGMOD Conf. ACM, NY, USA, 799–812.
[6] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution strategies – A

comprehensive introduction. Natural Computing 1, 1 (2002), 3–52.
[7] Björn Blohsfeld, Dieter Korus, and Bernhard Seeger. 1999. A Comparison of

Selectivity Estimators for Range Queries on Metric Attributes. In SIGMOD
Conference. ACM Press, New York, NY, USA, 239–250.

[8] Noel Cressie. 2015. Statistics for spatial data. John Wiley & Sons.
[9] V. de Silva and J. B. Tenenbaum. 2004. Sparse multidimensional scaling using

landmark points. Technical Report. Stanford University.
[10] Jochen Van den Bercken, Björn Blohsfeld, Jens-Peter Dittrich, Jürgen Krämer,

Tobias Schäfer, Martin Schneider, and Bernhard Seeger. 2001. XXL - A Library
Approach to Supporting Efficient Implementations of Advanced Database
Queries. In VLDB. Morgan Kaufmann, San Francisco, CA, USA, 39–48.

[11] Todd Eavis and Alex Lopez. 2007. Rk-hist: An R-tree Based Histogram for
Multi-dimensional Selectivity Estimation. In CIKM. ACM, NY, USA, 475–484.

[12] V. A. Epanechnikov. 1969. Non-Parametric Estimation of a Multivariate Prob-
ability Density. Theory of Probability & Its Applications 14, 1 (1969), 153–158.

[13] Thomas Fober, Marco Mernberger, Gerhard Klebe, and Eyke Hüllermeier. 2010.
Efficient Similarity Retrieval of Protein Binding Sites based on Histogram
Comparison. In GCB (LNI), Vol. 173. GI, Bonn, Germany, 51–59.

[14] Jinyang Gao, H. V. Jagadish, Beng Chin Ooi, and Sheng Wang. 2015. Selective
Hashing: Closing the Gap between Radius Search and k-NN Search. In KDD.
ACM, New York, NY, USA, 349–358.

[15] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proc. of the 25th Int. Conf. on Very Large Data
Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., SF, CA, USA, 518–529.

[16] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and Carlotta Domeni-
coni. 2000. Approximating Multi-Dimensional Aggregate Range Queries over
Real Attributes. In SIGMOD Conference. ACM, New York, NY, USA, 463–474.

[17] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-Tuning, GPU-
Accelerated Kernel Density Models for Multidimensional Selectivity Esti-
mation. In Proc. of the 2015 ACM SIGMOD. ACM, NY, USA, 1477–1492.

[18] Yannis E. Ioannidis. 2003. The History of Histograms (abridged). In VLDB.
Morgan Kaufmann, San Francisco, CA, USA, 19–30.

[19] J. B. Kruskal. 1964. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika 29, 1 (1964), 1–27.

[20] Joseph B Kruskal. 1964. Nonmetric multidimensional scaling: a numerical
method. Psychometrika 29, 2 (1964), 115–129.

[21] Hongrae Lee, Raymond T Ng, and Kyuseok Shim. 2011. Similarity join size es-
timation using locality sensitive hashing. Proceedings of the VLDB Endowment
4, 6 (2011), 338–349.

[22] V. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady 10, 8 (1966), 707–710.

[23] D. O. Loftsgaarden and C. P. Quesenberry. 1965. A Nonparametric Estimate of
a Multivariate Density Function. Ann. Math. Statist. 36, 3 (06 1965), 1049–1051.

[24] Yossi Matias, Jeffrey Scott Vitter, and Min Wang. 1998. Wavelet-based His-
tograms for Selectivity Estimation. SIGMOD Rec. 27, 2 (June 1998), 448–459.

[25] S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. 1999. On Rectangular
Partitionings in Two Dimensions: Algorithms, Complexity, and Applications.
In ICDT, Vol. 1540. Springer, London, UK, 236–256.

[26] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and
Mode. Ann. Math. Statist. 33, 3 (09 1962), 1065–1076.

[27] H. Sagan. 1994. Space-filling curves. Springer.
[28] Hanan Samet. 2006. Foundations of multidimensional and metric data structures.

Morgan Kaufmann.
[29] Stefan Schmitt, Daniel Kuhn, and Gerhard Klebe. 2002. A new method to

detect related function among proteins independent of sequence and fold
homology. Journal of molecular biology 323, 2 (2002), 387–406.

[30] David W Scott. 2015. Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons.

[31] George R. Terrell and DavidW. Scott. 1992. Variable Kernel Density Estimation.
The Annals of Statistics 20, 3 (1992), 1236–1265.

[32] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM Trans.
Math. Softw. 11, 1 (1985), 37–57.

[33] Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. 2013. Quality and
Efficiency for Kernel Density Estimates in Large Data. In Proceedings of the
2013 ACM SIGMOD (SIGMOD ’13). ACM, New York, NY, USA, 433–444.

360

	Kernel-Based Cardinality Estimation on Metric DataMichael Mattig, Thomas Fober, Christian Beilschmidt, Bernhard Seeger

