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ABSTRACT
The plethora of graphs and relational data give rise to many inter-
esting graph-relational queries in various domains, e.g., finding
related proteins retrieved by a relational subquery in a biologi-
cal network. The maturity of RDBMSs motivated academia and
industry to invest efforts in leveraging RDBMSs for graph process-
ing, where efficiency is proven for vital graph queries. However,
none of these efforts process graphs natively inside the RDBMS,
which is particularly challenging due to the impedance mismatch
between the relational and the graph models. In this paper, we
propose to manage graphs as first-class citizens inside the rela-
tional engine. We realize our approach inside VoltDB [6], an open-
source in-memory relational database, and name this realization
GRFusion. The SQL and query engine of GRFusion are empow-
ered to declaratively define graphs and execute cross-data-model
query plans acting on graphs and relations, resulting in up to four
orders-of-magnitude in query-time speedup w.r.t. state-of-the-art
approaches.

1 INTRODUCTION
Graphs are ubiquitous in various application domains, e.g., social
networks, road networks, biological networks, and communication
networks [3, 8, 9, 12]. The data of these applications can be
viewed as graphs, where the vertexes and the edges have relational
attributes [46], or as traditional relational data with latent graph
structures [51]. Applications would issue queries that consult the
topology of the graphs along with the data associated with the
vertexes and the edges or other data sources (e.g., relational tables
in an RDBMS). For instance, a user may be interested to find the
shortest path over a road network while restricting the search to
certain types of roads, e.g., avoiding toll roads.

In an RDBMS, the filtering predicates can be expressed as
relational predicates, and they may reference relational tables that
have indirect relation with the queried graphs. We refer to these
queries as graph-relational queries (or G+R queries, for short).
G+R queries have two main ingredients: 1) graph operations,
e.g., shortest-path computation, and 2) relational predicates or
relational sub-queries. For example, selecting specific users from
relational tables to find the nearest hospitals using shortest-path
evaluation on top of a road-network.

As RDBMSs are pervasive and mature, various approaches for
using an RDBMS to manage graph data have been proposed, e.g.,
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Grail [25] and Aster [45]. The literature has two main approaches
that share the idea of building an application on top of an RDBMS
to support graphs without modifying the internals of the RDBMS.
We refer to these approaches as Native Relational-Core and Native
Graph-Core. In this paper, we propose and investigate a hybrid
approach that we term Native G+R Core that exploits the strengths
of the former two approaches, and we realize our approach inside
VoltDB [7, 10].

The Native Relational-Core approach (e.g., as in SQLGraph [46]
and Grail [25]) embeds a graph inside of relational tables of
specific schema. Then, an application on top of the RDBMS is
built to translate specific types of graph queries into SQL state-
ments for the RDBMS to execute. For example, Grail can translate
shortest-path queries to procedural SQL [25], while SQLGraph
translates Gremlin queries with some restrictions [5] into SQL
queries [46]. Figure 1(a) illustrates the general architecture of the
Native Relational-Core approach. Although many graph queries
and algorithms are hard to translate into SQL statements, tools can
be developed to automate the translation. However, the main issue
of the Native Relational-Core approach is that the graph operations
are evaluated by a sequence of relational operations (e.g., self-
joins) that may be more expensive than traversing a native graph
representation. Moreover, the Native Relational-Core approach
does not guarantee an easy-to-comprehend relational schema of
the embedded graphs in an RDBMS, e.g., the storage-optimized re-
lational schema generated automatically by SQLGraph is hard for
users to understand and write ad-hoc graph-relational queries [46].

The second approach, namely Native Graph-Core (e.g., as in
Ringo [38], GraphGen [51, 52]), assumes that graphs are already
stored in an RDBMS, where an application on top of the RDBMS
is built to extract these graphs to analyze them outside the realm of
the RDBMS. This approach follows the same philosophy as that
of specialized graph databases, where an RDBMS has nothing to
do with query execution. Figure 1(b) illustrates the general archi-
tecture of the Native Graph-Core approach. Notice that a graph
in the Native Graph-Core requires re-extraction if the relational
tables storing the graph in the RDBMS are updated. Moreover,
users cannot issue declarative graph-relational queries that refer-
ence both the extracted graphs and any other relational data in
the RDBMS. One solution to allow graph-relational queries in
the Native Graph-Core approach is to build another layer that
queries both the RDBMS and the extracted graph. This solution
is similar to that of Teradata Aster [45], where a data movement
fabric and two different query executors (i.e., a relational execu-
tor and a graph executor) are used in processing graph-relational
queries. However, integrating the results from the graph and the
relational executors imposes additional overhead. In summary, the
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Figure 1: Various approaches for leveraging relational databases in support of graph processing.

Native Relational-Core Native Graph-Core Native G+R Core

Hybrid QEPs ✗ ✗ ✓

Native Graph Processing ✗ ✓ ✓

No Query-Translation Overhead ✗ ✓ ✓

No Graph Reconstruction/Re-embedding on Updates ✗ ✗ ✓

Table 1: Contrasting various approaches for graph support in RDBMSs.

Native Relational-Core and the Native Graph-Core approaches
use a vanilla RDBMS, where graphs are not natively recognized
by the RDBMS. However, if the necessary layers of the RDBMS
are modified to manage graphs as first-class citizens, processing
and managing graphs will be more efficient.

In this paper, we investigate a third approach, namely Native
G+R Core, where graphs are recognized as first-class citizens
inside an RDBMS. We address the impedance mismatch between
the graph and the relational model, and we realize the Native G+R
Core approach in a centralized version of VoltDB [7, 10], the
open-source implementation of the H-Store in-memory relational
DBMS [32]. In-memory data management witnessed early aca-
demic and industrial contributions, where the current affordability
of large main-memory hardware motivated several and diverse
research efforts [14, 15, 23, 30, 33, 35, 36, 38, 39, 44, 49–51, 53].

We refer to our realization of this approach as GRFusion. The
main idea of GRFusion is to natively process graphs inside an
RDBMS by combining the Native Relational-Core and the Na-
tive Graph-Core approaches under the same umbrella. GRFusion
realizes this idea by separating the graph topology from the re-
lational data associated with the vertexes and the edges, and by
proposing graph operators to process the graph topology inside
the RDBMS, where the graph operators seamlessly co-exist with
other relational operators in the same query execution pipeline
(or QEP, for short). A graph topology in GRFusion is realized as
a native graph structure, where each vertex or edge has pointers
to the relational tuples describing their attributes. Hence, a graph
topology in GRFusion can be viewed as a traversal index of the
relational tuples of the vertexes and the edges. In short, GRFusion
presents cross-data-model QEPs, where the inputs to the QEPs
can be either relational data or native graph structures.

Figure 1(c) illustrates the general idea of the Native G+R Core
approach. First, the end-user provides a declarative statement to
create graph views that are initialized from relational data, where
a graph view is materialized as a new database object. Second,
the user is allowed to query the graph views as well as other
relational tables or views in the same query. Table 1 contrasts
the Native Relational-Core, Native Graph-Core, and Native G+R

Core approaches. The objective of this paper is not to replace the
specialized graph systems. However, the main objective is to em-
power the pervasive relational databases to support graph traversal
queries natively and efficiently. Consequently, the relational-data
owners can process important class of graph queries through their
RDBMS systems without the cost and the overhead of migrating
their data and manage it in a separate graph system. The contribu-
tions of this paper are as follows:

• Introducing graphs as native objects inside a relational
database system, namely VoltDB (Section 3), where online
graph updates are supported (Section 3.3).

• Allowing users to seamlessly query and operate on graphs
and relations simultaneously and declaratively without leav-
ing the realm of the relational database system (Section 4).

• Introducing graph operators for graph traversals (Sec-
tion 5.1), and showing their ability to seamlessly co-exist
with the relational operators to construct cross-data-model
query execution pipelines (Section 5.2).

• Addressing the impedance mismatch between the graph
model and the relational model (Section 5.3).

• Conducting an extensive performance study of GRFusion
w.r.t. state-of-the-art systems, and reasoning about the bene-
fits of processing graphs in a graph-native representation in-
side an RDBMS. We compare to SQLGraph, Grail, Neo4j,
and Titan, where GRFusion achieves up to four orders-of-
magnitude query-time speedup (Section 7).

2 OVERVIEW OF GRFUSION
In GRFusion, graphs are assumed to be initially stored in relations.
In the simplest case, a relational table may have a row for each
vertex, and another table may have a row for each edge. Also, the
vertexes or the edges data can be obtained through a relational
materialized view that joins or filters multiple relational tables.
To allow flexibility, GRFusion provides the user with a declarative
language to define and query graphs (see Figure 2). A graph is
defined in GRFusion by what we term дraph views. A дraph view
identifies the relational tables or the relational views that store
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the attributes of the vertexes and edges, namely, the vertexes
relational-source, and the edges relational-source, respectively.
Graph views define a view of the relational data in the graph
model and materializes the graph topology in main-memory in
native graph data structures. The materialized graph topology
has a native graph representation that holds pointers (e.g., tuple
identifiers) to the relational data that describe the vertexes and
the edges. The main idea behind materializing the graph topology
is to empower the relational database engine with the ability to
realize complex graph algorithms. Thus, GRFusion helps fill the
gap between the relational model and the massive body of research
that assumes a graph model. Listing 1 shows how a graph view
is created in GRFusion from the relational sources of Figure 3,
which is detailed in Section 3.1.

Once a graph view is defined, GRFusion allows the user to write
pure graph queries, pure relational queries, or queries that mix
both graph and relational operations. GRFusion’s query engine
views the relational data in either the relational or the graph model
according to the incoming query. In particular, the graph clauses in
a query are mapped to graph operators in the QEP, where a graph
operator accepts only graph representations as input. GRFusion
allows the graph operators and the relational operators to co-exist
in the same QEP, where the operator type determines the data
model of viewing the data (i.e., graph views for the graph model,
and relations for the relational model).

In-Memory Relational Database

Declarative Graph-Relational Queries

Graph ViewsRelational Data

Graph-Relational Query Engine

Query Parser

Query Optimizer

Plan Executor

Figure 2: GRFusion’s architecture allows the query engine to
process data in both the relational and the graph models.

3 GRAPHS AS DATABASE OBJECTS
As users can create tables in relational databases, they can also
create materialized graph views in GRFusion as database objects.
A graph view is created once as a singleton object, and can be
referenced by multiple users and queries. In Section 3.1, we high-
light how graph views are defined declaratively in GRFusion.
Section 3.2 illustrates how the topology of a graph in GRFusion is
decoupled from the graph data, and how they can be inter-linked.
Because dynamic graphs are essential in many applications, the
support for graph updates is addressed in Section 3.3.

3.1 Creating Graph Views
GRFusion has a declarative Create Graph View statement to create
graph views initialized from relational data. The statement has
four main objectives: (1) Identifying the name of the graph view
to create, (2) Identifying and extracting the graph’s set of vertexes

uId fName lName dob

1 Edy Smith 09-25-1971

2 Jones Parker 11-21-1980

3 Bill Patrick 02-01-1976

….. ….. …… ……

relId uId1 uId2 startDate isRelative

1 1 3 01-10-2009 true

2 2 3 12-31-2008 false

….. ….. …… ……

Users

Relationships

Figure 3: A sample social-network in the relational model.

from the underlying relational sources, (3) Identifying and ex-
tracting the graph’s set of edges from the underlying relational
sources, and (4) Materializing a native graph data structure in
memory that reflects the graph topology based on adjacency-list
structures. Notice that graph traversal operations can be performed
efficiently over this native graph representation and is linked back
to the corresponding relational data tuples that describe it. Notice
further that the relational source can either be a table or a mate-
rialized relational-view because the graph data attributes for the
edges and/or the vertexes can be constructed from multiple data
sources.

Figure 3 illustrates how a graph view is created in GRFusion.
Assume that the data of a social network is stored in the relational
tables as in the figure. Tables Users and Relationships represent
the vertexes and the edges of the social network, respectively. Each
vertex or edge has an identifier in the relational tables. To illustrate,
consider Listing 1 that shows an example of creating a graph view,
namely the SocialNetwork graph view, in GRFusion from the rela-
tional sources in Figure 3. A vertex in the SocialNetwork graph
has its Id from Users.uId and has the two attributes lName and
birthdate that get their values from Users.lName and Users.dob,
respectively. Similarly, Table Relationships defines the edges of
the SocialNetwork graph, where the edge Id comes from Rela-
tionships.relId, the endpoints come from Relationships.uId1 and
Relationships.uId2, and the two edge attributes sDate, relative
refer to Attributes startDate, isRelative of Table Relationships,
respectively. For the graph view defined by the Create Graph
View statement, if the set of vertexes is V, and the set of edges is E,
then, the endpoints of an edge in E are constrained to be included
in V.

Listing 1: A Social Network Graph View Example
CREATE UNDIRECTED GRAPH VIEW SocialNetwork
VERTEXES(ID = uId, lstName = lName,

↪→ birthdate = dob) FROM Users
EDGES (ID = relId, FROM = uId1, TO = uId2,

↪→ sDate = startDate, relative =
↪→ isRelative) FROM Relationships

3.2 Decoupling the Graph Topology and the
Graph Data

The Create Graph View statement updates the system catalog of
GRFusion to store the definition of the graph view. Creating a
graph view results in the materialization of the graph topology
as a native graph structure in the main-memory managed by GR-
Fusion (as a singleton object that multiple users and queries can
reference). However, the attributes of the vertexes and the edges
stored in the relational sources are not replicated in the native
graph structure, and main-memory tuple pointers are used to link
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Figure 4: A graph view materializes the topology and holds
pointers to the relational data of the vertexes and the edges.

the graph topology to the relational sources. To illustrate, Figure 4
demonstrates how the graph topology is separated from the graph
data (i.e., the relational attributes of the vertexes and the edges).
As in Figure 4, each vertex or edge has a main-memory tuple
pointer that points to the corresponding relational tuple storing
the attributes of this vertex or edge. Notice that the design of
GRFusion allows a vertex or edge in a graph topology to store
multiple tuple-pointers if the relational sources are vertically parti-
tioned (e.g., to support semistructured RDF data, where not all the
vertexes or edges share the same set of attributes). Without loss
of generality, we assume a single tuple pointer per vertex or edge
as the focus is to explore the benefits of empowering an RDBMS
with native graph-processing.

The graph topology follows the graph model, where the topol-
ogy is represented physically as a graph data-structure based on
adjacency-lists. The key idea behind this native graph represen-
tation is to allow for the efficient execution of graph traversals,
where relational joins can be mitigated when traversing a graph.
The reason is that materializing the topology of a graph view can
be thought of as a traversal index, where each vertex, say V , is
associated with the identifiers of both the outgoing edges and the
incoming edges of V . Given a graph view, say GV , its topology
can be constructed using a single pass over the relational sources
defining the vertexes and the edges of GV .

Notice that there is a bi-directional linkage between the graph
topology and the graph’s corresponding relational data. To illus-
trate, let T be a relational tuple containing the attribute values of
Vertex V . Using the VertexId attribute of T , GRFusion can locate
Vertex V in the graph representation in O(1) time using the hash
map of the native graph structure. Also, using the tuple pointer as-
sociated with Vertex V in the graph data-structure, Tuple T can be
located in O(1) time. The benefit of separating the graph topology
from the graph data is two-fold. First, the size of the graph view
is not affected by the size of the graph data that can be very large
in some cases. Second, the attributes of the vertexes and the edges
in the relational sources can be easily updated without affecting
the native graph representation.

3.3 Graph Updates
GRFusion supports serializable graph updates that affect the topol-
ogy or the attributes stored in the relational sources. The topology
is affected only when vertexes/edges are added or deleted. GR-
Fusion relies on the design and the implementation of VoltDB to
maintain pointers to the relational tuples on memory reallocations.

3.3.1 Graph-Data Updates. Updating the attribute data of
an edge or vertex is straightforward as the attributes are stored
in relations outside the native graph representation. Hence, these
relational attributes can be updated directly. However, updating the
VertexId and the EdgeId attributes need special handling because
these attributes are used for navigating from the relational store to
the native graph structure (e.g., to probe path-traversal operators in
a QEP as in Section 5). Although updating the identifiers are not
common, GRFusion maintains the consistency of the identifiers
in the graph representation when updating their corresponding
attributes in the relational sources. Also, GRFusion maintains the
referential integrity of the edges relational-source when updating
a vertex identifier in the vertexes relational-source.

3.3.2 Graph-Topology Updates. GRFusion allows topo-
logical updates when the relational sources are either relational
tables or a relational views selecting from a single table. GRFusion
associates each relational source, say R, with the identifiers of the
graph views that reference R. When inserting a new tuple into R,
the transaction of the insertion statement updates the graph-view
topology as part of the transaction (i.e., adding a new vertex or
adding a new edge in the graph representation). Similarly, when
deleting a vertex or edge, the deletion statement detects the graph
views associated with R and updates the affected graph views
accordingly as part of the deletion transaction. For example, if R
is an edges relational-source for a graph view, say GV , the edge
in GV corresponding to a deleted tuple is removed from GV .

4 THE PATHS QUERY CONSTRUCT
As graph traversal queries form a massive body of graph queries
(e.g., reachability and shortest path queries [19, 24, 26, 42, 43,
47]), GRFusion extends the SQL language to declaratively find
paths in graph views. GRFusion introduces the PATHS construct
to query its graph views. For a graph view, say GV, GRFusion
recognizes GV.PATHS in the From clause of a select statement (as
it is treated conceptually as a set of paths). Conceptually, this al-
lows GRFusion to traverse and retrieve simple paths from GV that
satisfy a path criteria (e.g., predicates on the attributes of the edges
forming the path). In addition to GV.PATHS, GRFusion recognizes
GV.VERTEXES, and GV.EDGES, to reference the vertexes, and the
edges of GV, respectively. We focus on the GV.PATHS construct
as the other constructs are straightforward.

GRFusion models a path as an ordered list of edges, where
each edge has a start and end vertexes. The edges and the vertexes
of a path, say PS , can be indexed and referenced by relational
predicates as follows:

• PS.Edges[StartIndex..EndIndex].EdgeAttribute: Ref-
erences an attribute of the edges starting from StartIndex
until EndIndex . A value of ‘*’ for the EndVertex place-
holder indicates that all the edges starting from StartIndex
should satisfy the relational predicate.

• PS.Vertexes[StartIndex..EndIndex].VertexAttribute:
References an attribute of the vertexes starting from
StartIndex until EndIndex . A value of ‘*’ for the
EndVertex placeholder indicates that all the vertexes
starting from StartIndex should satisfy the relational
predicate.

Observe that the aforementioned EdgeAttribute, and the Verterx-
Attribute placeholders can refer to any attribute of the edges or the
vertexes that have been defined at the time of creating Graph-view
GV . In addition, each vertex in Path PS has two additional inte-
gral attributes, namely FanIn and FanOut. Also, Path PS allows
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accessing to some path-specific properties, e.g., PS.StartVertexId
and PS.Length refer to the identifier of the start vertex and the
length of Path PS , respectively.

To illustrate how paths can be queried in GRFusion, consider
Query Qp in Listing 2. The From clause of Qp specifies that the
paths are being traversed from the SocialNetwork graph view,
where the vertexes relational-source of the SocialNetwork graph
is RelationUsers. The query displays the last names of the friends
of friends of all the users with Job = ‘Lawyer’. Conceptually,
Qp is evaluated by selecting the sub-graph, say Gsub , containing
edges with start dates after ‘1/1/2000’. Using Sub-graph Gsub ,
GRFusion explores paths consisting of two edges that originate
from the vertexes corresponding to lawyers in the social network.
Notice that Listing 2 could use SocialNetwork.VERTEXES instead
of Users. However, Listing 2 uses the Users relation to show
how relational tables can be joined with the paths of a graph
view. Notice that the details of the extended query language of
GRFusion are not the main focus of this paper. However, we
provide sample code snippets that are relevant to illustrating the
evaluation of the graph-relational queries supported by GRFusion.

Listing 2: Friends-of-Friends Path Query Qp

SELECT PS.EndVertex.lstName
FROM Users U, SocialNetwork.Paths PS
WHERE U.Job = 'Lawyer' AND PS.StartVertex.

↪→ Id = U.uId AND PS.Length = 2 AND PS.
↪→ Edges[0..*].StartDate > '1/1/2000'

Listing 3 presents a reachability queryQr that queries a protein-
interaction network represented by the BioNetwork graph view,
and checks if Protein X interacts directly (i.e., by an edge) or
indirectly (i.e., by a path) with Protein Y through either a cova-
lent or stable interaction types. PS.PathString corresponds to the
string representation of Path PS . Notice that many paths can exist
between the vertexes corresponding to the specified proteins. So,
Query Qr uses the LIMIT 1 clause because retrieving one path is
sufficient to decide on reachability.

Listing 3: Reachability Query Qr

SELECT PS.PathString
FROM Proteins Pr1, Proteins Pr2, BioNetwork

↪→ .Paths PS
WHERE Pr1.Name = 'Protein X' AND Pr2.Name =

↪→ 'Protein Y' AND PS.StartVertex.Id =
↪→ Pr1.Id AND PS.EndVertex.Id = Pr2.Id
↪→ AND PS.Edges[0..*].Type IN ('
↪→ covalent', 'stable') LIMIT 1

In addition to the ability of referencing the attributes of the
edges or vertexes forming a path, say PS , GRFusion allows ag-
gregation functions on the attributes of the vertexes or the edges
of PS . The aggregate functions on the attributes of paths have the
same usage and constraints as those on relational attributes. For
example, if the edges of PS have an attribute, sayWeiдht , a query
can compute the sum of the weight values across all the edges of
PS , i.e., sum(PS .Edдes .Weiдht) can appear in the select-clause of
a query to compute the sum of the weights associated with the
edges of Path PS .

The PATHS construct can also retrieve sub-graphs based on
specific patterns (e.g., the topology of the sub-graph, attributes
of the vertexes/edges of the subgraph). For instance, finding tri-
angular structures with specific edge properties, and counting
these triangles are important primitives for Machine-Learning,

SocialNetwork

σVertexes.lstName = ‘Smith’

VertexScan

πbirthdate, fanOut

MemGraph

Figure 5: QEP for Query Qv .

e.g., [48], where a triangle structure can be viewed as a loop of
three edges. Listing 4 presents Query Qt that counts the number
of triangles, where the edges have specific values for their Label
attribute. Notice the use of the Path.Length property, where it is
necessary to retrieve only triangles (as the sub-graph of interest
has only three edges).

Listing 4: Subgraph Pattern Query to Find Triangles Qt

SELECT Count(P)
FROM MLGraph.Paths P Where P.Length = 3 AND

↪→ P.Edges[0].Label = 'A' AND P.Edges
↪→ [1].Label = 'B' AND P.Edges[2].Label
↪→ = 'C' AND P.Edges[2].EndVertex = P.
↪→ Edges[0].StartVertex

More interestingly, paths can be joined to query more complex
sub-graph patterns. Similar to relational engines that can perform
self-joins for a relational table, GRFusion allows self-joins of the
paths of a given graph view. This is possible as the vertexes and
the edges of the paths to join can be referenced by relational join
predicates.

5 GRAPH-RELATIONAL QUERY
PROCESSING

In this section, we explain how GRFusion evaluates graph-
relational queries. Section 5.1 introduces the primitive graph op-
erators of GRFusion, while Section 5.2 illustrates how the graph
operators integrate with typical relational operators in a cross-
data-model QEP, where the graph operators appear in the leaf
level of the QEP. Then, Section 5.3 discusses the conceptual query
evaluation of graph-relational queries in GRFusion.

5.1 Graph Operators
GRFusion defines three primitive operators to evaluate the graph
constructs of graph-relational queries. In particular, GRFusion
defines the VertexScan, EdgeScan, and PathScan operators that
iterate over a graph view’s vertexes, edges, and paths, respectively.
The PathScan operator is a lazy operator following the iterator
model [28] to avoid eager generation of paths that might not be
required by parent operators. The reason of this design decision is
that many queries (e.g, reachability) limit the number of paths to
be retrieved, and consequently generating all/multiple paths may
be expensive and unnecessary.

5.1.1 Vertex Scan and Edge Scan Operators. Operators
VertexScan and EdgeScan allow GRFusion to iterate over the ver-
texes and edges of a given graph view, respectively. For example,
the VertexScan operator provides an alternative access method
for accessing the vertexes of a graph view, where the fan-in and
fan-out properties of any vertex can be efficiently retrieved in
constant time. To illustrate, consider Query Qv in Listing 5. Qv
selects from the set of vertexes of the SocialNetwork graph view,
and then applies some relational operators afterwards. To evaluate
Qv , GRFusion constructs the query execution pipeline, say QEPv ,
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as in Figure 5. Operator VertexScan scans the vertexes of the graph
defined by the SocialNetwork graph view from the in-memory
graph structure (represented as MemGraph in Figure 5, that refer-
ences the singleton graph structure of the graph view). Vertexes
with last name ‘Smith’ are selected and a relational projection
operation selects only the birth date and the fan-out properties.

Listing 5: Vertexes Selection Query
SELECT VS.birthdate, VS.fanOut
FROM SocialNetwork.Vertexes VS
WHERE VS.lstName = 'Smith'

5.1.2 The PathScan Operator. In GRFusion, the PathScan
operator is responsible for traversing a graph view to construct
simple paths identified by a graph query. PathScan is a logical op-
erator that has three physical operators with three corresponding
graph-traversal algorithms. All the physical operators explore a
traversed vertex only once to avoid loops, i.e., the paths in GRFu-
sion are simple paths. In particular, the query optimizer maps a
logical PathScan operator into DFScan, BFScan, or SPScan, cor-
responding to depth-first search, breadth-first search, or shortest-
path search physical operators, respectively. In this section, we
focus on the logical semantics of the path scan operator. We defer
the discussion of the physical operators to Section 6.

As a logical operation, the paths-discovery process in GRFu-
sion starts from a set of start vertexes to avoid materializing all
possible paths. These start vertexes are either stated explicitly in
the query (e.g., PS.StartVertex.Id = Value) or are generated by
other operators during query evaluation (e.g., PS.StartVertex.Id
= VS.Id as in Listing 2). In the latter scenario, the start vertexes
selected by some operators (e.g., TableScan, relational sub-query),
are used to probe the PathScan traversal operator. If the start ver-
texes of a path selection are not defined, all the vertexes of the
corresponding graph view will be used as starting vertexes. No-
tice that the paths in GRFusion are not eagerly materialized by a
PathScan operator, rather they are lazily generated.

To illustrate how paths are explored in GRFusion, consider
Query Qp in Listing 2. Qp explicitly states that the path discovery
process starts from the vertexes corresponding to lawyers in the so-
cial network. Figure 6 demonstrates the query evaluation pipeline
QEPp that evaluates Query Qp , where MemGraph refers to the
singleton materialized graph structure of the graph view. In par-
ticular, Qp starts the traversal process from each qualified vertex.
Notice that the qualified vertexes are retrieved using a relational
operator (e.g., by a TableScan or IndexScan operators) in Figure 6.
The reason is that using a relational access method with filtering
predicates on the vertexes relational-source is more efficient than
using the tuple pointers in the graph view to filter all the vertexes
on the fly. Because of the seamless integration of the relational
and graph models in GRFusion, this optimization alternative is
feasible. While traversing the graph view, only the edges with start
dates after ‘1/1/2000’ are considered. Also, QEPp explores paths
of length two only (i.e., consisting of two edges) that originate
from a given start vertex. As an effective optimization, GRFusion
pushes predicates, e.g., path-length predicates, to be considered
during the traversal process. This optimization allows GRFusion
to apply early pruning of paths, and to reduce the size of the inter-
mediate results flowing through the query pipeline. Consequently,
the performance of the query evaluation process is boosted w.r.t.
the processing time as well as the temporary memory used for the
intermediate results.

PathScanPathLength = 2 AND

E.StartDate > ‘1/1/2000’

πendVertex.lstName

SocialNetwork

MemGraph

TableScanJob = ‘Lawyer’

⋈Id = StartVertexId

Vertex
Relational
Source

Figure 6: GRFusion joins a relational table with a graph-view
traversal-operator for Query Qp .

5.2 Cross-Model Query-Execution-Pipelines
A query in GRFusion can reference relations or relational views
with graph views simultaneously. A pure relational engine has a
main structure (i.e., tuple) that is passed among the relational op-
erators in a query evaluation pipeline (QEP). GRFusion allows its
query engine to view data by two different data models, namely,
the relational model and the graph model. GRFusion allows a
single QEP to have two main categories of operators that interact
seamlessly in a QEP. The first category contains the relational
operators (e.g., select, project, relational join) that can interact
directly with relational tables. The second category contains graph
operators that can operate on graph views. GRFusion integrates
both categories of operators by allowing a relational operator to
operate on the result of a graph operator. In particular, GRFusion
unifies the interface of the output of both the relational and the
graph operators. Specifically, the query engine of GRFusion ab-
stracts graph processing by using three data types that extend the
Tuple data type, namely the Vertex , Edдe, and Path data types,
where each has a schema that depends on the queried graph-view,
as explained below.

In GRFusion, a vertex, say V , is represented in a QEP by a
tuple, say T , where each attribute of V becomes an attribute in T .
For example, a graph vertex in Listing 1 is represented by a tuple
with attributes: (uId, lstName, birthdate). In addition, Vertex V
has the following properties:

• FanOut: Contains the number of V ’s outgoing edges.
• FanIn: Contains the number of V ’s incident edges.

An edge E is represented by a tuple with attributes corresponding
to E’s attributes in addition to the following attributes:

• From: Contains the start vertex of Edge E.
• To: Contains the end vertex of Edge E.

GRFusion defines the Path data type, where a path, say P , is
a sequence of identifiers of the edges that form P . In particular,
P is an extended tuple with the following attributes defining its
schema:

• Length: Is the number of edges in P .
• StartVertex: Is the start vertex of P .
• EndVertex: Is the end vertex of P .
• Vertexes: Is the list of vertexes forming P .
• Edges: Is the list of edges forming P .

5.3 Conceptual Evaluation of Graph-Relational
Queries in GRFusion

GRFusion addresses the impedance mismatch between the graph
model and the relational model by unifying the type of the ele-
ments that move among the relational and the graph operators
within a QEP. To illustrate, we list below the high-level steps
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that describe GRFusion’s conceptual evaluation of declarative
graph-relational queries, i.e., ones that reference relation(s) and
graph-view(s):

• The relational tables and views are joined together using
all the relational predicates in the WHERE clause of the
query. This step yields a single resultant relation, say R.

• Each graph operator operates on a graph view, say GV ,
using its in-memory singleton graph-structure, sayMemGV .
In case of using different aliases on the same graph view,
each alias is assigned an independent pointer to MemGV .

• When querying a combination of relations, relational views,
vertexes, edges, or paths, all the graph operators operate
only on graph views. Observe that the output of each graph
operator is an extended type of the relational Tuple type.
Hence, the output of the graph operators can be ingested
by the relational operators (e.g., the joins) in the same QEP
seamlessly, where a relational join outer tuple can be used
to probe a graph operator in the inner (e.g., see Figure 6).

• The predicates in the WHERE clause of the query that have
not been consumed in producing R are used to join R with
all the vertexes, edges, and paths referenced by the query.

• The SELECT list is used to perform projection.

6 QUERY OPTIMIZATION
GRFusion optimizes graph-traversal queries with two objectives
in mind: (1) pruning undesired paths as early as possible to opti-
mize the runtime, and (2) favoring traversal algorithms with less-
memory requirements. The second goal is vital as memory should
be consumed discreetly in an in-memory system. Optimization
techniques for early pruning are discussed in Sections 6.1 and 6.2.
In Section 6.3, we address the traversal-algorithm selection.

6.1 Path Length Inference
The query optimizer of GRFusion infers the allowed length of
the paths described by the queries. The main objective is to make
sure that a path returned from the PathScan operator is unlikely
to be rejected by a parent operator (e.g., a join operator) due to a
predicate referencing the path length. For instance, if a query has
the filter "PS .Edдes[5..∗].Att1 = Value", then PathScan infers
that the minimum path length to return is 6 (indexing is zero-
based). Hence, PathScan will not return a path of length 5 or less.
Many real-world queries specify the length of the desired paths,
e.g., triangle-counting queries [48] specify a path length of three,
the popular friends-of-friends queries restrict a path length to two,
and many reachability queries put a cap on the maximum length
of the path connecting the queried endpoints.

For each collection of paths, say PS , that is referenced in the
From-clause, the query optimizer analyzes the predicates ref-
erencing the length of PS explicitly (e.g., PS.Length = value),
or implicitly (e.g., by analyzing the logical operators as in
PS.Edges[5..*].Att1 = X AND PS.Edges[7..9].Att2 = Y), to pre-
dict the range of allowed lengths of the paths to return. Then, the
inferred path length is considered by PathScan while traversing
the graph (e.g., an inferred maximum path length of 8 will prune
any path of length ≥ 9).

6.2 Pushing Filters Ahead of Path Scans
To prune paths early, all the filters related to discovering the
paths of a graph view are pushed ahead of the PathScan op-
erator. For instance, for a graph view’s paths, say PS , Predi-
cate "PS .Edдes[0..∗].Cost < 10" is pushed so that PathScan

can prune any potential path explored with an edge of cost
≥ 10. Similarly, predicates that refer to aggregates on a path’s
attributes will be computed and checked during the PathScan eval-
uation. For example, consider a query, say Q , with the predicate
"Sum(PS .Edдes .Cost) < 100". When PathScan explores Path P
while evaluating Q , PathScan will accumulate the cost-attribute
of the edges of P during the traversal. If the accumulated cost
exceeds 100, P will be dropped and will not flow to the operators
next in the QEP.

6.3 Logical to Physical Operator Mapping
Recall from Section 5.1.2 that the PathScan operator is a logical
operator that is mapped into one of three physical traversal opera-
tors for execution, namely, depth-first search, breadth-first search,
and shortest-path search based on Dijkstra’s algorithm [24].

The shortest-path physical operator, namely SPScan, is very
useful in top-k shortest path queries. Listing 6 illustrates how
the user can instruct the optimizer to use SPScan. Given a non-
negative numerical edge attribute, SPScan traverses the graph us-
ing Dijkstra’s algorithm [24], and returns the next shortest-path as
requested (i.e., pulled) by the parent operator in the QEP. SPScan
is useful in many applications, e.g., recommendation systems and
route discovery, to avoid the costly straightforward plan, i.e., avoid
enumerating all paths, then filtering, sorting, and then returning
the top ones.

For general graph-traversals where shortest paths are not de-
fined, GRFusion can use either a depth-first search (i.e., a DFScan
operator), or a breadth-first search (i.e., a BFScan operator). The
user can give a query hint to decide on depth-first or breadth-first
evaluations. To illustrate how GRFusion decides on the physical
operator to perform a general graph traversal in the absence of an
explicit query-hint, assume that a query, say Q , searches for Path
P of Length L. Assume further that Query Q targets a graph view
where the average fan-out is F . Following an analysis similar to
that in [41], a depth-first search can contain on average F ∗ L
vertexes in its stack data structure. In contrast, a breadth-first
search can contain FL vertexes in its queue data structure. Hence,
GRFusion uses BFS if F < L−1√

L to optimize for memory. This
optimization is applicable if the path length can be inferred and
by maintaining the average fan-out statistic for each graph view
in the system catalog. Otherwise, GRFusion uses the default scan
operator that the user can set based on the expected workload
(e.g., BFS can still be better if the underlying graph has a large
diameter and frequent queries find the desired paths after one or
two hops). GRFusion has a configuration to store the average
fan-out of graph views as a statistics object. If this configuration
is enabled, GRFusion runs a thread in the backend to compute the
average fan-out using the compact graph-view structures.

Listing 6: Declarative Shortest-Path Query
SELECT TOP 2 PS
FROM RoadNetwork.Paths PS HINT(SHORTESTPATH

↪→ (Distance)), RoadNetwork.Vertexes
↪→ Src, RoadNetwork.Vertexes Dest

WHERE PS.StartVertex.Id = Src.Id AND PS.
↪→ EndVertex.Id = Dest.Id AND Src.
↪→ Address = "Address 1" AND Dest.
↪→ Address = "Address 2"
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7 EXPERIMENTAL EVALUATION
We experimentally evaluate the performance of GRFusion, a re-
alization of the proposed Native G+R Core approach inside a
centralized version of VoltDB. We compare GRFusion to the state
of the art of the Native Relational-Core approach, namely SQL-
Graph [46], and we compare to Grail [25]. Although Grail uses
a different computational model than GRFusion, they both have
the common ground of executing queries through an RDBMS.
We also compare GRFusion to two popular specialized graph sys-
tems, Neo4j [4] and Titan [11]. The reason for comparing with
specialized graph systems, which follow the Native Graph-Core
approach, is to show that graph-traversal queries can be efficiently
handled by GRFusion.
Mitigating the disk IO cost from the baselines: As GRFusion
is an in-memory system, the experiments are designed to mitigate
the disk cost of all the baselines we compare to. We implemented
SQLGraph and Grail as described in [46], and [25], respectively,
on top of the in-memory VoltDB system. We configured Titan to
use the in-memory storage configuration, and we set Neo4j to run
and execute over a RAM disk on Linux.

We consider two important categories of graph queries, namely,
traversal-based queries and pattern-matching queries, where the
queries can take additional filtering predicates. For traversal-based
queries, we evaluate reachability queries (e.g., Listing 3). We
also evaluate shortest-path queries to compare with Grail [25].
For pattern-matching queries, we evaluate the triangle-counting
query using filtering predicates on the edges while varying selec-
tivity. The triangle-counting query is a primitive operator in many
machine-learning and knowledge-discovery techniques, e.g., [48].
Experiments are conducted on a machine running Linux ker-
nel 3.17.7 on 32 cores of Intel Xeon 2.90 GHz with 384 GB
of main-memory.

7.1 Datasets
We use real graph datasets that represent four different application
domains, namely, road networks, biological networks, authorship
networks, and social networks. For the road networks, we use
the continental-sized Tiger dataset [9] that covers the entire U.S.,
where the edges represent road segments, and the vertexes rep-
resent road intersections. For the biological networks, we use
the String protein-interaction dataset [8], where the vertexes rep-
resent proteins, and the edges represent interactions among the
proteins. We use the DBLP [1] dataset for the authorship networks,
where the vertexes represent authors, and the edges represent co-
authorship relations. We use the Twitter dataset [3] for the social-
network application, where the dataset represents the follower
graph of Twitter. The vertexes in Twitter represent users, where an
edge from User A to User B denotes that User A follows User B.
Table 2 summarizes the properties of these datasets.
Controlling sub-graph selectivity: We study the effect of select-
ing a subgraph from an underlying graph before performing a
graph operation (e.g., selecting a sub-graph containing 10% of the
edges of the entire graph before executing a shortest-path query or
a topological pattern-matching query on the selected sub-graph).
For each dataset, we vary the selectivity of the queries from 5%
to 50%.
Evaluating the effect of graph-views in the Native G+R Core
approach: To accurately study the performance gains due to the
graph-views of the Native G+R Core w.r.t. the Native Relational-
Core approach, we use breadth-firth search instead of depth-first
search, and we do not push the predicates ahead of the path scan
operator in GRFusion for all the reachability-queries experiments.

7.2 Unconstrained Reachability Queries
We contrast the performance of GRFusion with that of SQLGraph,
Neo4j, and Titan, when processing reachability queries without
filtering predicates on the graph edges. Given two nodes, say A
and B, a reachability query returns true if a path exists from Node
A to Node B. The query-processing time of a reachability query is
affected by the path length of the query result. The reason is that
the increase in the number of edges traversed directly corresponds
to the number of relational joins in the Native Relational-Core
approach (e.g., SQLGraph).

For each dataset in Table 2, we generate random reachability
queries with different path lengths that make the query endpoints
connected. We vary the path length from 2 to 20. For each path
length, say l , we generate 10, 000 random queries, say Ql . We
run Ql and measure the average query-processing time using
GRFusion, SQLGraph, Neo4j, and Titan.

Figure 7 shows the average query-processing time of running
the queries using all four systems, where the x-axis and the y-
axis give the path-length of the query answers and the query-
processing time in milliseconds, respectively. GRFusion achieves
up to four orders-of-magnitude speedup in query-processing time
compared to SQLGraph, where the speedup increases as the graph
size increases. For instance, the speedup reaches 599x for the
DBLP graph, and 2483x for the larger String graph. The reason
is that GRFusion uses the compact graph view that captures the
graph topology, where the graph views act as navigational in-
dexes. Hence, GRFusion does not perform any relational join on
the relational sources to traverse the graphs. In contrast, SQL-
Graph performs a relational join for each edge traversal during
the path discovery process. Consequently, the query-processing
time in SQLGraph increases as the path length of the query result
increases. Moreover, the SQLGraph approach may not scale in
main-memory RDBMSs when the graph size is very big due to the
size of the intermediate results of the relational joins. To illustrate,
in Figure 7(d), in the Twitter dataset, the Native Relational-Core
represented by SQLGraph does not execute if the query evaluation
requires more than four relational joins. The reason is that the in-
termediate temporary-memory of the join operators exceeds 6 GB,
which is 60 times the 100-MB recommended limit in VoltDB. To
allow room for query-evaluation pipelining to reduce the interme-
diate results, and to mitigate the limits of the main-memory, we
execute the Twitter queries on a popular disk-based commercial
RDBMS. The queries on the Twitter graph time-out after 5 hours
of execution when the traversal depth of the queries exceeds four.
In contrast, the systems following the Native Graph-Core repre-
sented by Neo4j and Titan scale for deep graph-traversal queries
on large graphs as the overhead of the relational joins does not
exist, where a deep graph-traversal query is a query that explores
paths of long lengths, i.e., many edges, which corresponds to
many joins in the Native Relational-Core. However, GRFusion
that realizes the proposed Native G+R Core approach is able to
scale for deep graph-traversal queries with better performance
than those of the native graph systems.

Comparing GRFusion to the specialized graph databases Neo4j
and Titan, GRFusion has a query-time speedup that exceeds three
orders-of-magnitude for the String graph (see Figure 7(c)). We at-
tribute these performance gains of GRFusion over the specialized
graph databases to implementation factors and not to a funda-
mental change in the computational model. The reason is that
GRFusion is based on VoltDB that has a low-overhead concur-
rency model (e.g., no lock overhead as in the specialized graph
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Dataset Number of Vertexes Number of Edges Construction Time Memory Size (GB)
Tiger Road Network 24,412,259 58,698,439 2.08 Min 0.88
DBLP Co-Author Network 1,007,047 6,592,656 1.59 Sec 0.09
String Protein Network 1,520,673 348,473,440 3.81 Min 4.17
Twitter Follower Network 41,652,230 1,468,365,182 10.87 Min 17.81

Table 2: The graph views in GRFusion are fast to construct with low memory overhead for the datasets of the evaluation.

databases). Moreover, VoltDB has an optimized memory manager
written in C++ that is significantly more efficient than the JAVA
memory managers of both Neo4j and Titan. Theoretically, if we
remove all the implementation-specific factors, the performance
of GRFusion should be comparable to that of the specialized graph
systems as both are processing native graph representations. In
Section 7.3, we present the performance of GRFusion when evalu-
ating queries that do not only consult the graph topology, but also
the edges’ attributes stored in the relational sources.

7.3 Reachability Queries with Filtering
Predicates

We evaluate the performance of reachability queries in GRFusion
and compare it to the baselines when the queries are associated
with a filtering predicate. To study the effect of sub-graph se-
lectivity (i.e., selecting the sub-graph to perform the query on),
we generate reachability queries similar to the ones described
in Section 7.2 with varying selectivities. We vary the selectivity
parameter from 5% to 50% using synthesized edge attributes to
control the selectivity. We limit the path length of the results of the
generated queries to 20 to emphasize the effect of the selectivity
of the sub-graph to operate on.

Figure 8 shows the average query-processing time for execut-
ing the reachability queries with filtering predicates using all 4
systems and datasets, where the x-axis and the y-axis are the
edge-selectivity of the queries, and the query-processing time in
milliseconds, respectively. Observe that, for the relatively-small
DBLP graph in Figure 8(a), SQLGraph outperforms Neo4j and
Titan as the relational engine can execute joins and apply filtering
predicates efficiently on relations of small cardinalities. GRFusion
outperforms both SQLGraph and the specialized graph engines.
There are two main reasons behind GRFusion’s performance gains.
First, GRFusion uses a compact graph data structure to perform
the traversal and avoids relational joins completely to explore
the underlying graph. Second, GRFusion relies on the relational
engine to evaluate the filtering predicates on the edges. Recall that
GRFusion has a direct pointer to an edge’s tuple that is accessed
in O(1) time to evaluate the query filtering-predicate using the ef-
ficient logic of the relational engine. Hence, GRFusion combines
the strengths of both the graph systems and the relational systems
to achieve the best-of-both-worlds in terms of performance. How-
ever, the efficient evaluation of the filtering predicates and the cost
of the relational joins in SQLGraph do not pay off when the size of
the relations increase. To illustrate, refer to Figure 8(b), where the
performance of SQLGraph degrades as more edges are selected.
For the String dataset in Figure 8(c), SQLGraph exceeds the tem-
porary memory limits of VoltDB after selecting a subgraph of size
larger than 25% of the queried graph for the reasons illustrated in
Section 7.2. For the largest Twitter dataset, SQLGraph is not able
to perform even on a subgraph of a 5% selectivity. The reason
is that the cost of 20 relational joins on the large Twitter table
exceeds the temporary-memory limits of VoltDB, and time-out

the queries on a commercial disk-based RDBMS after 5 hours of
execution. Also, as the number of self-joins increases in the Native
Relational-Core approach, the relational optimizer may not be
able to select the best join algorithm due to inaccurate cardinality
estimations of the intermediate results (see [27] for details).

The relational engine is efficient in performing filtering predi-
cates. This set of experiments demonstrates the power of extending
the relational engine with a native graph-core processor that is
optimized for graph traversals and that uses efficient memory
representation. Figure 8 demonstrates the scalability and the effi-
ciency of GRFusion in contrast to the baselines in handling graph
queries with filtering predicates. Notice that increasing the edge-
selectivity factor of the queries has less impact on Neo4j, Titan,
and GRFusion than on SQLGraph w.r.t. query-processing time.
The reason is that these queries are evaluated on a graph structure
by performing the filtering predicates on the fly as the graph is
being traversed. The selectivity affects the query performance of
all the approaches. However, it is more impactful in the case of
pure-relational evaluation. For example, in Figure 8(b), the pro-
cessing time of SQLGraph increases by 138x when changing the
selectivity from 5% to 50%, in contrast to an increase of 1.72x in
GRFusion on the same setup.

7.4 Sub-Graph Pattern Matching
We evaluate the performance of the triangle-counting query. Given
a graph, say G, a triangle-counting query, say QTC , counts all the
sub-graphs of a triangle pattern (e.g, see Listing 4). Notice that
the Native Relational-Core approach, e.g., SQLGraph, can scale
for this specific pattern query as only two relational joins are
needed for query evaluation. This is the reason for choosing this
pattern query besides its importance as a primitive in many applica-
tions [48]. Figure 9 gives the performance of evaluating triangles
queries on the DBLP, Tiger, and String graph datasets, where the
x-axis and the y-axis are the edge-selectivity of the queries and
the query-processing time in milliseconds, respectively.

Notice that in Figure 9, the SQLGraph approach outperforms
both Neo4j and Titan when the selected sub-graph size is small,
e.g., up to a selectivity of 10% for the DBLP dataset as in Fig-
ure 9(a). Also, notice that SQLGraph is more sensitive to the
selectivity parameter than all the other approaches including GR-
Fusion. Although only two joins are required by SQLGraph in this
type of queries, increasing the number of tuples to join increases
the query processing time, which results in better performance by
Neo4j and Titan when increasing the selectivity parameter. For
instance, Neo4j and Titan are more efficient than SQLGraph for
the String dataset in Figure 9(c) for a selectivity parameter greater
than 20%.

Figure 9 illustrates that GRFusion outperforms SQLGraph,
Neo4j, and Titan by up to one order of magnitude in query perfor-
mance. We attribute this performance advantage by GRFusion to
the same reasons reported in Section 7.2.
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Figure 7: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for unconstrained reachability queries.

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(a) DBLP Dataset

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(b) Tiger Dataset

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50
E

x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(c) String Dataset

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion Neo4j Titan

(d) Twitter Dataset

Figure 8: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for reachability queries with filtering predicates.
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Figure 9: GRFusion finds all the triangles with filtering predicates with a query-time speedup of one order-of-magnitude.

7.5 Shortest-Path Queries with Filtering
Predicates

We conduct an experiment using the Tiger road network to as-
sess the performance of GRFusion in evaluating the single-source
shortest-path query (or SSSP, for short) in contrast to Grail [25].
The purpose of this experiment is to show that a simple algo-
rithm, e.g., Dijkstra’s algorithm [24], executing inside a relational
database system can achieve significant performance gains over
a pure-relational approach, e.g., as in Grail [25], when evaluat-
ing SSSP queries, or more generally, intensive traversal queries.
Notice that the computational model of Grail is based on the
vertex-centric computational approach that is different from the
graph-traversal model of GRFusion. However, both approaches
have a common ground due to using an RDBMS in the evaluation.
We implement the SSSP query of Grail as reported in Listing 3 in
Grail’s paper [25]. Our Grail implementation is an in-memory im-
plementation on top of VoltDB to mitigate the disk IO cost, and we
allow Grail to filter the edges while processing to report the effect
of sub-graph selections on the query-execution performance.

We generate 1000 random sources from which we execute an
SSSP query to all the other vertexes, and we report the average
query execution time for various sub-graph selectivity factors.
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Figure 10: GRFusion executes SSSP queries natively inside
an RDBMS few-thousand times faster than Grail.

Figure 10 gives the performance of evaluating SSSP queries on
the Tiger road network, where the x-axis and the y-axis are the
edge-selectivity of the queries and the query-processing time in
milliseconds, respectively. GRFusion achieves more than three
orders-of-magnitude query-time speedup w.r.t. Grail. Notice that
we do not use an advanced SSSP evaluation method. Instead, we
use a straightforward Dijkstra’s algorithm that utilizes efficient
filtering-predicates of the relational database engine. This empha-
sizes the point that having a native and an efficient graph represen-
tation inside an RDBMS can fill the gap between the RDBMSs and
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the graph algorithms that are designed for native graph structures,
where these graph algorithms can achieve significant performance
gains when compared to equivalent pure-relational query evalua-
tion approaches.

7.6 The Overhead of Graph Views
As graph views are materialized in GRFusion, we report the con-
struction time as well as the consumed memory space for each
dataset. Table 2 illustrates that the construction time ranges from
two seconds to 10 minutes according to the size of the graph. The
reason is that the construction process passes only once by the
vertexes relational-source as well as the edges relational-source.
Similarly, Table 2 shows the memory size due to the materializa-
tion of the topology of every graph. The consumed memory is of
acceptable overhead because only the graph topology is material-
ized, where each vertex and edge holds pointers to the relational
data instead of replicating the relational data inside the graph
views. For example, only 0.88 GB is needed to construct a graph
view for the continental-sized US road network. Moreover, the
overhead of updating the graph views is low. On average, it takes
0.04 milliseconds to add a new edge into an existing graph view,
i.e., the total time to insert a tuple in the relational source as well
as updating the topology of the corresponding graph view. For
both the deletions and insertions of vertexes and edges, GRFusion
incurs 5%-11% additional overhead to the time of manipulating
the relational sources. The reason for this low overhead is that the
logic of manipulating the graph views is linear in time w.r.t. the
number of affected vertexes or edges as illustrated in Section 3.3.

8 RELATED WORK
Graphs Integration with Relational Databases: There is a
plethora of database systems that adopt the graph data model
(e.g., Neo4j [4] and Titan [11]). These systems have powerful
graph querying features. However, it has been shown that for
many graph queries, the performance of these systems can be
achieved or exceeded by a vanilla relational database [25, 46].
For graph-relational queries, a graph database is useful if it is
feasible to: a) import all the relational data into the graph database,
or b) develop a custom layer where results from the graph data-
base and the relational database are integrated to form the final
results. In contrast, GRFusion allows efficient execution of graph-
relational queries with neither the overhead of importing data nor
the overhead of integrating query results from different systems.
Commercial systems, e.g., Oracle Graph and Aster [45], follow
the architecture of processing graph-relational queries using dif-
ferent run-time systems, where the results are combined at the end.
For example, Aster allows defining graph functions that can be
referenced in the FROM-Clause of a SQL statement. During query
execution, the graph function is extracted and evaluated using a
graph runtime system. Eventually, the result from the external
graph-runtime is transformed into a relational table that can be
integrated with the parent SQL query. Similarly, G-SPARQL [40]
is a SPARQL-like language for querying attributed graphs, where
a graph is represented and processed using a hybrid Memory/Disk
model, and the query-execution is split between the RDBMS and a
memory-based layer outside the RDBMS. In contrast, GRFusion
executes the graph operations as well as the relational operations
of a query through a cross-data-model QEP without leaving the
realm of the RDBMS.

Several graph libraries and systems target graph analytics, e.g.,
CRAY Graph Engine [13], Pregel [34] and its open source version

Giraph [2], GraphLab, GraphFrames [22]. For graph analytics,
it may be acceptable to import data from relational databases
for analytical purposes. In contrast, GRFusion also serves OLTP
scenarios. This is possible as the relational data in GRFusion is not
deeply copied into the graph views. Moreover, the updates to the
relational data that affect the topology of the defined graph views
incur little overhead to update the in-memory graph structures in
GRFusion.

Relational Databases with Modified Layers for Graph Pro-
cessing: In this category, the internals of an RDBMS are mod-
ified to some extent, but not to a level that executes a graph-
relational query through the same QEP as in GRFusion. For exam-
ple, SAP HANA Graph and GRAPHITE [37] allow graph opera-
tions to directly execute on the relational data in a column-store
without replication. However, two different runtime components
execute the graph-relational queries. In contrast, GRFusion uses a
single runtime leading to better performance. In [18], an access
method is proposed to process graphs stored on disk under certain
locality assumptions. In contrast, GRFusion is a main-memory
system that traverses a graph by realizing a light-weight structure
describing the graph topology.

Extracting Graphs from Relational Databases: In this cate-
gory, graphs stored in relational tables are extracted from the data-
base system to be under the control of an independent application.
This independent application allows for querying the extracted
graphs using graph APIs. Ringo [38] and GraphGen[51, 52] are
representatives of this approach. In contrast, GRFusion processes
graphs inside the relational database and does not extract the
graphs outside the realm of the database engine. Additionally,
GRFusion supports dynamic graphs, where online updates are
possible. Notice that to support graph-relational queries, e.g., in
Ringo or GraphGen, the relational part of the query should be
processed by the relational database, and the graph operations
should be processed by Ringo or GraphGen, where another exter-
nal layer will be responsible for integrating the graph results and
the relational results into the final query result.

Encoding Graphs in Relational Databases: In this line of
work (e.g., SQLGraph [46], Grail [25]), graphs are stored in re-
lational tables with schema optimized for specific graph queries.
After encoding graphs in a vanilla relational database, a transla-
tion layer is designed to translate the supported graph queries into
complex SQL statements for the relational database to execute.
Although the query performance of this approach is comparable
to specialized graph databases for specific queries, these systems
make it difficult for users to write declarative graph-relational
queries. In particular, the schema of the relations storing the graph
data may not be suitable for users to query directly and join with
other relational data. The reason is that the schema is usually auto-
generated based on the input graph for optimization purposes.

Tailored Operators for Specific Graph Operations: In this
category, several research efforts (e.g., [17, 20, 21]) have been con-
ducted since the 1980s and until recently (e.g., [16, 26]). However,
most of these efforts target specific query types (e.g., transitive
closure, shortest paths). Unlike GRFusion, these approaches also
do not support a unified/cross-model declarative language to query
both graph and relational objects simultaneously. In [17, 20], Re-
lational Algebra is extended with operators to allow for recursive
queries. Although the proposed recursive algebra helps execute
some graph traversal queries, query execution is not efficient be-
cause the graph operators execute over relational tables and not
over native graph representations. For instance, several iterations
with insertions into temporary tables are needed to keep track
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of the traversal state. Similarly, Vertica [31] presents optimiza-
tions for graph-relational queries. However, the graph operations
execute over pure relational structures and not on graph represen-
tations. Thus, costly relational joins are mandatory in many cases
to traverse graphs. In contrast, GRFusion’s graph operators pro-
cess native graph structures in main-memory without performing
costly joins and without manipulating temporary tables to traverse
a graph topology. Dar et al. [21] use relational operators repeti-
tively to compute the transitive closure of a graph represented in
a predefined relational schema. Gao et al. [26] present specific
optimizations to process shortest-path queries over graphs stored
in a relational database. GRFusion is more general and can join
graph views with relational tables in the same query. Moreover,
GRFusion addresses the impedance mismatch between the graph
model and the relational model. In EmptyHeaded [16], graphs in
a relational storage are queried using a datalog-like language [29].
The core idea of EmptyHeaded is to leverage join algorithms with
strong theoretical guarantees in addition to using advanced query-
compilation techniques. In contrast, GRFusion avoids relational
joins completely when traversing the topology of a graph view.

9 CONCLUSION
We introduce the notions of in-memory materialized graph views,
graph operators that seamlessly integrate with relational oper-
ators in query evaluation pipelines, memory management, and
query optimization techniques for optimizing graph-relational
queries. GRFusion is a realization of the proposed Native G+R
Core approach inside VoltDB. The key idea behind GRFusion is
to show the effect of extending an RDBMS to handle natively and
seamlessly graph and relational data through cross-data-model
QEPs. We introduce the PATH construct, and the extended SQL
language of GRFusion to declaratively express graph-relational
queries. GRFusion constructs in-memory graph structures to cap-
ture the graph topology and exploits the relational engine’s power
in evaluating the relational constructs of the queries. Consequently,
GRFusion efficiently handles deep graph-traversal queries with-
out any relational joins to explore the connectives of the vertexes
of a graph. We evaluate GRFusion using various graph queries
w.r.t specialized graph engines and systems following the Native
Relational-Core approach, where GRFusion achieves up to four
orders-of-magnitude query-time speedup.
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