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ABSTRACT
Complex Event Processing (CEP) has emerged as the state-of-
the-art technology for continuously monitoring and analyzing
streams of events in time-critical applications. The key feature
in CEP is sequential pattern matching to detect a user-defined
sequence of conditions on event streams. However, many CEP
applications are not restricted to events only, but require native
support for situations (aggregated event data lasting periods of
time) and expressive temporal pattern matching among these
situations. These important requirements regarding situations
are not sufficiently addressed in the CEP literature so far.

In this paper we present TPStream, a novel event-processing
operator for both deriving situations from event streams and
detecting temporal patterns among situations. First, we provide a
formal foundation of situations and TPStream. Then, we propose
a low-latency algorithm for TPStream that delivers situations and
temporal matches at the earliest possible point in time. Further-
more, we utilize a simple, yet effective costmodel in order to adapt
to changing workloads on the fly and with negligible cost for
migrating operator states. The results of our experimental evalu-
ation show that TPStream is capable of processing high-volume
event streams with low latency and outperforms applicable CEP
solutions from academia and industry.

1 INTRODUCTION
During the last decade, Complex Event Processing (CEP) has
emerged to the technology of choice for analyzingmassive streams
of events in near real time. Typically, CEP systems detect com-
posite (complex) events by combining, aggregating and filtering
streams of simple or other composite events and report matches
to registered event sinks. In turn, these sinks react to the detected
event by triggering appropriate actions in a timely manner. CEP
can be applied to a wide variety of application domains, including
IT infrastructure monitoring, traffic monitoring, health care and
financial applications.

Problem Statement: A noticeable fraction of currently avail-
able CEP systems is build upon point based temporal semantics.
That is, each event is associated with a timestamp (e.g., the mo-
ment a measurement was made) and event streams are ordered
accordingly. With only a single timestamp the expressible tem-
poral relations between two events are limited to before/after/at
the same time relationships. However, many real-world scenar-
ios comprise the detection of complex temporal patterns among
situations lasting for periods of time. Consider the following
traffic-monitoring application:

Example: A traffic monitoring system is continuously receiv-
ing sensor data from connected cars (i.e., position, speed, accelera-
tion). One of the systems goals is to notify drivers about potential
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Figure 1: Detecting aggressive driving with situations

dangers around their locations, such as an aggressively driving
car. Among others, the American Automobile Association has
identified the following two actions being indicators for aggres-
sive driving1: “Operating the vehicle in an erratic, reckless, careless,
or negligent manner or suddenly changing speeds" and “Driving
too fast for conditions or in excess of posted speed limit". From
these definitions, a pattern to detect aggressive drivers could be
stated as: “A sharp acceleration followed by hard braking, both
accompanied by a period of speeding."

Challenges: This example illustrates three key-features a so-
lution for temporal pattern matching on instantaneous events
should provide: (i) Situations are derived from point events on-
the fly, by identifying subsequences of the input stream for which
the defined condition holds true (e.g., speed ą 70 mph). Optional
constraints can be applied to restrict the duration of situations. In
addition to its validity (expressed as a time interval), a situation is
enriched with meaningful summarizations of underlying events
(e.g., the average speed of the speeding phase). (ii) The pattern
language offers support for alternatives. That is, the order of the
situations’ start and end points is not required to be fully fixed.
Consider, for example, the two matches sketched in Figure 1:
In the first match, the three defined situations overlap, while
in the second match deceleration happens during the speeding
situation. (iii) The pattern should be detected with the lowest
possible latency. As depicted in Figure 1, both matches may be
concluded at the beginning of the deceleration situation, since at
this point in time speeding still holds true and the pattern allows
any combination of their endpoints. Technically, this means the
system should be able to conclude a successful match without
exact knowledge about the validity of all situations.

State-of-the-Art:To the best of our knowledge, the onlywork
on complex temporal relations in event stream pattern matching
is the ISEQ operator [20]. However, ISEQ has several shortcom-
ings concerning the desired features: First, the operator expects
interval-events (i.e., situations) as input, leaving all aspects of (i)
to an unspecified external entity. Being unaware of the origin of
interval-events severally limits the operator in processing power
(in terms of plan optimization) and most importantly renders a
detection with the lowest possible latency (iii) impossible since
there is no way to directly access an incomplete situation or indi-
rectly manipulate the building of a situation through constraints.

1http://www.iii.org/fact-statistic/aggressive-driving
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Second, a temporal pattern is specified using a conjunction of
endpoint relationships (i.e., an ordering on start (ts) and end (te)
of intervals). This way, alternatives are expressed by omitting
one or more endpoints. For example, the pattern A.ts ă B.ts ă

A.te ď B.te _ A.ts ă B.ts ă B.te ă A.te on two situations A
and B is expressed as A.ts ă B.ts ă A.te. Hence, disjunctions
like A.ts ă B.ts ă A.te ă B.te _ B.ts ă A.ts ă B.te ă A.te
are not expressible in a single query. Instead, they require multi-
ple queries in an approach without any specified optimization
component to detect shared processing opportunities. Finally,
ISEQ relies on auxiliary index structures and punctuation mecha-
nisms for efficient query execution, complicating the integration
into existing systems.

Straw Man’s Approach: Besides ISEQ, we identified two ap-
proaches to solve the task of temporal pattern matching with
point event streams. Thus, we can provide a point of comparison
to CEP systems featuring pattern matching via regular expres-
sions or equivalent techniques. The first approach works in two
phases: In the first phase, a pattern matcher is deployed for each
defined situation, computing its duration (start/end timestamp)
and the desired aggregates. Technically, this means matching pat-
terns of the form !S S+ !S with S being derived from the input
stream using the situation’s condition (e.g., speed ą 70 mph).
This results in a dedicated stream per defined situation. Each of
these streams is ordered according to the end timestamp, which
allows to map the temporal pattern to a sequence of situations
(reflecting the order of end timestamps, possibly containing al-
ternatives). In the second phase, a dedicated pattern matching
operator is used to find all matching sequences, whereby the
proper ordering of start timestamps is checked via additional
predicates. Even though this approach satisfies requirements (i)
and (ii), it fails to produce early results (iii), because, just like in
ISEQ, situations are fully derived before they are available for
pattern matching.

The second approach uses a single pattern matching opera-
tor and expresses the temporal pattern as a single sequence of
point events. To express temporal overlaps, the conditions of
all involved situations must be connected via a logical AND. For
example, Acceleration overlaps Speeding is expressed as
A B+ C with the following conditions: A : accel ą 8 m{s2,
C : speed ą 70 mph and B : A ^ C. Since patterns are expressed
on the granularity of events, early results (iii) are achieved, by
simply omitting the last portion of the pattern. At the same time
summarizations of single situations and the validation of duration
constraints (i) are left to a post-processing step, since situations
are disassembled to express temporal overlaps.

Solution:We present TPStream, a holistic operator for com-
plex temporal pattern matching on point event streams. Com-
pared to the presented approaches, our contributions are:

‚ TPStream is the first CEP operator to closely couple derivation
of situations with pattern matching, enabling match detection
at the earliest possible point in time.

‚ We also improve upon existing work on temporal pattern
matching (e.g. ISEQ) by allowing arbitrary alternatives and
duration constraints in pattern definitions.

‚ We introduce an optimizer component for interval-based pat-
tern matching which continuously adapts its execution strat-
egy to deal with fluctuating data rates and changes in the data
distribution of incoming streams.

‚ TPStream provides native query support for temporal pattern
matching, making it easier to formulate and read temporal

patterns in comparison to most existing CEP solutions relying
on a straw man’s approach.

‚ Unlike ISEQ, the operator and its low latency optimizations
can easily be implemented in commonly available point-based
systems, because time-intervals are used only internally and
results are again point event streams.

‚ In experiments, we show our latency improvements and the
performance limits of two existing CEP solutions from academia
and industry when handling situations. We present that TP-
Stream can outperform these systems by an order of magnitude
and that alternatives, which have great impact on the perfor-
mance of sequential pattern matching, influence TPStream’s
matching performance only marginally.

The rest of the paper is organized as follows. Section 2 reviews
related work, before we introduce TPStream’s query language
in section 3. In section 4 we model all aspects of TPStream in
an algebra. Efficient evaluation strategies, the algorithm for low-
latency matching and our optimization techniques are presented
in section 5.We evaluate the performance of TPStream in section 6
and conclude this paper in section 7.

2 RELATEDWORK
So far, native ways to work with situations in systems capable
of CEP have not been sufficiently addressed. Nevertheless, the
concept can be related to working with time intervals, aggre-
gating information and performing temporal joins, all of which
have seen recent contributions. Since these are broad areas, we
will loosely group the most relevant approaches under three
headlines: Event Pattern Matching, Context/State in CEP and
Spatio-Temporal Database Systems.

Event PatternMatching: Systems capable of CEP (e.g. [3, 9])
are generally closely associated with a pattern matching operator.
[27] features a discussion on the several different semantics of the
operator and a recent survey [12] covers several implementations,
that employ different techniques such as NFAs or Graphs, each
featuring their own unique optimization techniques. Regardless
of specific details, most approaches focus on data referring to
points in time and thus lack native capabilities to query complex
relations between time intervals as stated in [2] - a crucial aspect
for dealing with long-lasting situations. Cayuga [8], ZStream
[22] and Microsoft StreamInsight [1] are well-known approaches
that associate time intervals with data, showcasing the interest in
working with interval-based events. ZStream in particular shares
similarities with our join-based, adaptive processing approach
for pattern matching. However, each of the respective pattern
languages is based around a strictly sequential relation (interval i
ends before interval j begins) and/or explicitly order-independent
relations (conjunction, disjunction). Not only does this limit their
respective algorithmic support for complex temporal relations,
but, just like point-based systems, formulating derivation queries
naturally leads to the straw man’s approach mentioned above
using Kleene Operators (or FOLDS in [8]). As we will show in
our experiments, this approach results in significant performance
deficiencies.

Context/State in CEP: There has been recent work on intro-
ducing contexts into a CEP environment. CAESAR [23] associates
queries to long-lasting context windows, detects them from in-
coming events as soon as they start and suspends queries of
inactive contexts. Similarly, contexts in [11] are used to group
up event types to process them together. While contexts and
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Relation (R) Equivalent (R) Visualization

A before B B after  A

A star ts B B star ted-by A  

A meets B B met-by A

A over laps B B over lapped-by A

A dur ing B B contains A

A f inishes B B f inished-by A

A equals B

Defini tion (?R)

A.ts < A.te < B.ts < B.te

A.ts = B.ts < A.te < B.te

A.ts < A.te = B.ts < B.te

A.ts < B.ts < A.te < B.te

B.ts < A.ts < A.te < B.te

A.ts < B.ts < A.te = B.te

A.ts = B.ts < A.te = B.te

Table 1: Allen’s Interval Algebra

situations are related concepts, the key difference is that con-
texts are purposefully decoupled from events. Therefore, it is
not possible to query the relation of different contexts to each
other. In contrast, TPStream focuses on efficient, adaptive and
low-latency implementations of those temporal relations. Like-
wise, work on states [18] and on aggregating windows [14, 17]
focuses on derivation, but lacks interval relations [2] or pattern
matching.

Spatio-Temporal Database Systems: The spatial databases
community studied the problem of spatio-temporal pattern queries
(STPQ) in trajectory databases [10]. In general, these approaches
cannot be directly applied to an event processing environment,
because they are built on top of a persistent trajectory database
model, where movement histories are already stored and indexed
in the database. However, the design of [25] in particular served
as a foundation for our proposed TPStream operator as TPStream
adapts similar concepts of temporal predicates and constraints.
Furthermore, our evaluation method is related to temporal joins
(see [13] for an excellent survey), but as most of the work is not
based in stream processing, unique and important issues such
as continuously arriving data, continuous query optimization
and early result detection are overlooked. In comparison to join
algorithms on streams [6, 15] as well as adaptive approaches
[5], TPStream combines both the derivation of situations and the
detection of patterns. Thus, the operator can offer new techniques
for early result detection unique to CEP-style pattern matching.

3 QUERY LANGUAGE
In order to express temporal relations between situations, we
adopt Allen’s Interval Algebra [2] depicted in Table 1 for two
generic intervals A and B. Each interval has a starting point
(ts) and an ending point (te), resulting in a total of four points.
te is the first point in time when the interval is not valid, i.e.
the interval is half-open. The relation (R) between A and B is
represented through the relation between these four points as
given by the definition (δR ). As an example depicted in Table 1
A before B means the interval A ends before the interval B
begins. Similarly, A during Bmeans A happens during B, because
A.ts and A.te are between both points of B. We introduce the
TPStream query language by formulating and explaining the
query to detect aggressively driving cars from the introductory
example in Listing 1.

The operator works on streams containing data referring to
points in time. In the case of aggressive drivers, we work on a
singular stream CS, providing sensor data from cars, which is
specified as an input (FROM). This stream is partitioned by the
car_id to evaluate each driver individually (PARTITION BY). The
important aspect of deriving situations from the stream is handled
in the DEFINE clause: The acceleration situation is represented
with the symbol A, the condition CS.accel ą 8 m{s2 and the

FROM CarSensors CS PARTITION BY CS.car_id

DEFINE A AS CS.accel > 8m/s2 at least 5s,

B AS CS.speed > 70 mph between 4s AND 30s,

C AS CS.accel < -9m/s2 at least 3s

PATTERN A meets B;A overlaps B;A starts B;A during B

AND C during B;B finishes C;B overlaps C;B meets C

AND A before C

WITHIN 5 MINUTES

RETURN first(B.car_id) AS id,

avg(B.speed) AS avg_speed;

Listing 1: Agressive drivers query

(optional) duration constraint AT LEAST 5s, while speeding and
deceleration are defined by B and C respectively. The derived
situations are analyzed with a PATTERN. For aggressive drivers,
an acceleration (A) may meet, overlap, start or occur during
a phase of speeding (B). These are alternatives in the pattern
definition, separated with semicolons in the query language. The
same applies for deceleration (C) and speeding (B). The pattern
is fulfilled if at least one of each alternatives is true. We apply a
window condition on the evaluation period (WITHIN), specifying
that the pattern should only be searched within situations derived
in the past 5 minutes. Finally, in case of a match, we RETURN
aggregated results from each situation, in this case the car_id
and the average speed.

3.1 Expressiveness
Most common CEP systems define patterns based on symbols
connected via regular expressions. Specific extensions, like ag-
gregations, put the expressiveness of those languages between
regular and context-free grammars [27]. However, only ISEQ pro-
vides a native way to process patterns based on temporal relations.
This deficit is also reflected in the respective languages.

By design, TPStream can express all temporal relations (and un-
like ISEQ alternatives among them) in a single query. In contrast,
a single pattern matching query in CEP systems is designed to
detect a sequence, i.e., a before relation. Nevertheless, as shown
by both straw man’s approaches in our introduction, in a system
supporting Kleene-closure it is possible to express other temporal
relations through either multiple queries (decoupling derivation
and detection) or a single query (without aggregation capabilities
and the validation of duration constraints). Thus, our language
does not express more than the full language of other systems.

Instead, we focus on enabling the user to express complex
temporal patterns in a single, readable and maintainable query
via the widely-known interval algebra (Table 1). For this pur-
pose, we made two notable design choices that differ from some
sequence-based approaches. First, some languages [27] allow to
skip events while matching. In contrast, we derive the longest
possible contiguous sequence of events, because this aligns well
with the idea of long lasting situations and avoids ambiguity
whether a situations is still ongoing during other events. Second,
some languages [9] allow symbols to access aggregates of other
symbols. Due to ambiguity in the expected results when dealing
with situations, we do not allow this. For example, consider mod-
ifying the definition for symbol B in Listing 1 to B AS CS.speed
> max(A.speed). Then, for A overlaps B it is unclear whether
max(A.speed) is accessed when A finishes, when B starts or is
continuously monitored for each B. For a precise presentation of
our approach, we chose those two concessions and will work on
mitigating them in the future.

315



Wewould also like to sketch that, apart from those concessions,
it is possible to express a purely sequence-based pattern with
TPStream: A sequence can be expressed with a before relation
and the implicit ongoing nature of situations can be eliminated
with a duration constraint. Nevertheless, the basis for our im-
plementation [19] features a standard sequence-based pattern
matching operator that is optimized and thus preferable for this
purpose. Similarly, our implementation can be easily integrated
into other systems, because TPStream consumes and produces
point-based event streams. In conclusion, this means that we
do not change the expressiveness of other approaches, but by
extending a query language with Allen’s Interval Algebra, our
benefits can be almost universally adopted.

4 ALGEBRA
The goal in designing TPStream is to develop an operator capable
of continuously deriving situations from a stream of events and
relate those situations to each other. To achieve this, we need to be
able to express both the derivation and relation. For this purpose,
we will formally model those aspects (streams, data, deriving
situations and temporal pattern matching) in an algebra.

4.1 Stream Model
Definition 1 (Data Stream). A data stream D is a potentially
unbounded sequence of data items xd1,d2, ...y totally ordered by
a relation ăD . di P D refers to the i-th data item in the stream
according to that order and all data items are from the same
domain D. xy refers to an empty data stream.

In order to refer to multiple data streams, we will utilize the
notation D1,D2,D3, . . . with Di “ xdi1,d

i
2, . . .y, i.e. a superscript

labels separate streams, while a subscript refers to the order
within a stream. For the sake of simplicity and legibility, we will
generally assume that each item in a data stream is unique and
refer to previous work on the matter of handling potentially
equal elements [8]. xy is mainly used to specify the case of no
output in upcoming definitions.

Definition 2 (Continuous Subsequence). Based on a data stream
D, Dri, js “ xdi , . . . ,dj y with i ă j refers to a continuous subse-
quence containing every data item as it pertains to ăD .

Definition 3 (Union). The union Z of two data streams D1 and
D2 both totally ordered with ăD results in a data stream D1 with
the same order ăD :

ZpD1,D2q :“ D1 “ xd 1
1,d

1
2, . . .y

such that D1 contains each element from both D1 and D2. Anal-
ogous to set theory, the union of n data streams D1, . . .Dn is
abbreviated with the notation

Ţn
i“1 D

i .

4.2 Data Model
Our operator involves two kinds of data which we need to define:
events and situations. In general, events refer to a notification
that something happened instantaneously at exactly one point
in time while situations span multiple points in time and contain
aggregated information for that time period.

Definition 4 (Event). An event e is a pair pp, tq consisting of a
payload p and an event timestamp t . p is from some domain D

and t is from a discrete and totally ordered time domain T . The
validity of p is the instant t .

Definition 5 (Situation). A situation s is a triple pp, ts, teq con-
sisting of a payload p and two timestamps: ts (start timestamp)
and te (end timestamp). p is from some domain D. ts and te are
from a discrete and totally ordered time domain T with ts ă te .
The half-open time interval rts, teq specifies the validity of p.

Event streams are ordered by the event timestamp and will
be represented with E. Situation streams are ordered by the
end timestamp of situations and will be represented with S . We
focus our efforts on presenting algorithms for streams with data
arriving in-order and leave the adjustment to out-of-order data
by adapting previous research on out-of-order pattern matching
[7, 21] for future work.

4.3 Derivation
Situations are derived from event streams through aggregation
and predicate evaluation. We will first formally define aggrega-
tion on continuous event subsequences before deliberating on
predicates and how to derive situation streams.
Definition 6 (Aggregated Event Subsequence). An aggregate
γaдд is applied to an event stream subsequence Eri, js by applying
the aggregate aдд to the events in the subsequence:

γaддpEri, jsq :“ paддpei , . . . , ej q, ei .ts, ej`1.tsq

When obvious from context, we abbreviate γaдд with γ .
The result in Definition 6 technically already is a situation.

However, for the derivation process as a whole, we want to
discover situations for which a set of circumstances hold true.
In order to provide an unambiguous process to identify these
situations we are looking for the longest possible sequences for
which these circumstances apply.
Definition 7 (Derived Situation). Situations are derived with
a function deriveϕ,τ ,γ which aggregates information of a con-
tinuous event subsequence Eri, js by applying γ iff the events
in Eri, js are the longest possible sequence of events to fulfill a
given predicate ϕ and the covered timespan is within the given
duration constraint τ :“ rdmin ,dmax s:

deriveϕ,γ ,τ pEri, jsq “

$

’

’

’

&

’

’

’

%

γ pEri, jsq if
@l P ri, js : ϕpel q^

!ϕpei´1q^!ϕpej`1q^

pej`1.ts ´ ei .tsq P τ

xy otherwise

Example. Assume the query in Listing 1 derives a speeding
situation for a car with the time interval r2, 10q. This means
CS.speed ď 70 mph at t “ 1 and t “ 10 and in between those
timestamps CS.speed ą 70 mph. From an algebraic standpoint,
assuming knowledge about the whole event stream, this aligns
well with a natural interpretation: There are not multiple situa-
tions (e.g. r2, 3q, r2, 4q, . . .) but rather one continuous speeding
phase which fulfills the duration constraint (dmin “ 4s and
dmax “ 30s). For that reason and because it results in unique
situations, we choose to derive the longest possible subsequence
in Definition 7.
Definition 8 (Derived Situation Stream). ThederiveStreamϕ,γ ,τ
function derives a stream of situations from a given event stream
E by applying the function deriveϕ,γ ,τ to all possible subse-
quences and unifying the results:

deriveStreamϕ,γ ,τ pEq “
ě

j

j
ě

i“1
deriveϕ,γ ,τ pEri, jsq
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Note that, due to assumption that each event in an event
stream has a unique timestamp and the fact that deriveϕ,γ ,τ
derives the longest situations possible, it is easy to show that
deriveStreamϕ,γ ,τ produces a stream of situations with disjoint
time intervals. This implies, that the order of situations using
start timestamps is the same as the order using end timestamps,
resulting in a beneficial pattern for query processing [16]. Due
to space limitations, we omit a formal proof here.

4.4 Pattern Matching
TPStream matches multiple situation streams to a temporal pat-
tern and produces a result event stream according to the given def-
initions. A temporal pattern is composed of temporal constraints
between situation streams, which in turn comprise multiple tem-
poral relations between exactly two streams. In this section, we
present formal definitions of these terms, the output of a success-
ful match and ultimately the TPStream operator.

Definition 9 (Temporal Relation). Given two situation streams
SA, SB , a temporal relation RA,B , defines a valid relationship be-
tween two situations sA P SA and sB P SB according to Allen’s
Interval Algebra (cf. Table 1). sA and sB fulfillRA,B , iff they satisfy
the corresponding algebraic definition (δR ).

Definition 10 (Temporal Constraint). A temporal constraint
CA,B between two situation streams SA, SB is a set of temporal
relations tRA,B1 , ...,RA,Bm u. Two situations sA P SA and sB P SB

fulfill CA,B , iff they at least fulfill one of the temporal relations.

In other words, temporal constraints allow to specify multi-
ple valid relations between two situation streams, providing the
desired flexibility in expressing alternatives.

Definition 11 (Temporal Pattern). For any number of situation
streams pS1, ..., Smq, a temporal pattern (P) is a set of temporal
constraints tCi, j |1 ď i ă j ď mu. A temporal pattern is matched
by a temporal configuration s “ ps1 P S1, ..., sm P Smq, iff s
satisfies every temporal constraint:

matchPpsq :ô @Ci, j P P : DRi, j P Ci, j : δRi, j ps
i , s j q

Example. Consider the example query of Listing 1 and let sA be
an acceleration situation as defined by A and sB , sC be a speed-
ing (B) and deceleration (C) situation respectively. The PATTERN
describes how pairs of situations in s “ psA, sB , sC q can relate to
each other via temporal constraints: For sA and sB the temporal
relation can be either A meets B, A overlaps B, A starts B or
A during B. It does not matter if acceleration overlaps speeding
or if speeding contains acceleration. Both cases may lead to the
result of detecting aggressive drivers. The temporal pattern on
the other hand is a conjunction of temporal constraints: In order
to match the pattern, each temporal constraint must be fulfilled.

Definition 12 (Pattern Matching Output). A temporal pattern
matching operator PMw,γ̂ matches a temporal configuration s “

ps1, s2, . . . , smq to a temporal patternP. It aggregates the informa-
tion of s with some suitable aggregate γ̂ and checks thewindow
condition (cf. WITHIN clause):

windowps,wq “ w ď max
sPs

ps .teq ´ min
sPs

ps .tsq

Figure 2: TPStream Architecture

The operator produces an output, if the temporal configuration
matches the pattern during the specified window, i.e.:

PMw,γ̂ ps,Pq :“

$

’

&

’

%

pγ̂ psq,max
sPs

ps .teqq if
matchPpsq^

windowps,wq

xy otherwise

Similarly to how we extended derived situations to derived
situation streams (Definition 7 to 8), we can extend Definition 12
to situation streams:

Definition 13 (TPStream). TPStreamw,γ̂ matches multiple sit-
uation streams S1, . . . , Sm to a temporal pattern P by applying
the corresponding pattern matching operator PMw,γ̂ to the cross
product of the situation streams and unifying the results:

TPStreamw,γ̂ pS1, . . . , Sm ,Pq :“
ě

sP
Śm

i“1 S i
PMw,γ̂ ps,Pq

Note that TPStreamw,γ̂ results in an event stream and can thus
easily be integrated into common CEP processing pipelines.

5 ALGORITHMS & IMPLEMENTATION
In this section, we present our algorithms and implementation
details for detecting temporal patterns among streams of point
events. Following the definitions from the previous section, the
general architecture consists of two main components, as de-
picted in Figure 2. The deriver-component consumes events from
the input stream and derives the defined situation streams. Then,
those streams are passed to the matcher-component, which per-
forms the actual pattern matching. In the following two subsec-
tions we will explain both components in detail. For the sake
of simplicity we defer low latency detection to section 5.3 and
initially wait for the end timestamp of derived situations before
invoking the matcher. The last part of this section describes how
TPStream computes efficient execution plans and dynamically
adapts to changing workloads.

5.1 Deriving Situations
Definition 8 introduced derived situation streams, using knowl-
edge about the whole input-stream. To compute situation streams
incrementally as new events arrive the deriver-component man-
ages a buffer for ongoing situations (B) and the situation stream
definitions (D). Algorithm 1 shows how they are used to de-
rive situations on-the-fly. For each defined situation, 3 cases are
checked: If there is no started situation on the buffer, but the
predicate holds true, a new situation is started. Therefore, we
compute initial values for all defined aggregates (e.g., p.speed
for an maxpspeedq aggregate). Those values are bundled with
the event’s timestamp and stored on the buffer (Lines 4,5). The
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Algorithm 1: DeriveSituations
Input: pp, tq: event
Data: B :“ rpp1, tsqi s: active situation buffer,

D :“ rpϕ,γ ,τ qi s: situation definitions
1 R Ð H;
2 foreach i P |D| do
3 pϕ,γ ,τ q Ð Dris;
4 if Bris “ H ^ ϕppq then
5 Bris Ð pinitAддpp,γ q, tq;
6 else if ϕppq then
7 updateAgg(p,Bris,γ );
8 else if Bris ‰ H then
9 if pt ´ Bris.tsq P τ then

10 R Ð R Y tpBris.p1,Bris.ts, tqu;
11 Bris Ð H;

12 if R ‰ H then
13 updateMatcher(R, t );

Algorithm 2: UpdateMatcher
Input: S : set of finished situations, t : the current time

1 purgeBuffers(t );
2 foreach s P S do
3 addToBuffer(s);
4 performMatch(tsu, 0);

temporal validity of a started situation is prolonged, if the current
event fulfills the predicate. In this case, the buffered aggregates
are updated using the event’s payload (p) (Lines 6,7). Finally, a
situation is finished on the first event not satisfying the defined
predicate. In this case, the situation’s end timestamp is fixed to
the current time, it is added to the result-set R (provided it satis-
fies the duration constraint τ ) and the corresponding buffer slot
is cleared (Lines 8-11). After updating the state of each situation
stream, the result-set is passed to the matcher-component (Lines
12,13).

5.2 Matching the Pattern
The matcher implements an incremental version of Definition 13
(TPStreamw,γ̂ ). In other words, it detects matches on-the-fly as
new situations are handed over from the deriver-component. The
general idea is to employ a buffer for each situation stream and
perform the pattern detection via a multi-way join between those
buffers, using the temporal constraints as join-conditions. Recap
that all situations within a stream are disjoint and thus imply the
same order on both the start and end timestamps (Definition 8).
We will use this fact to ensure efficient execution of the matcher
component.

Each time the deriver distills new situations, Algorithm 2 is
invoked: At first, expired situations are purged from the buffers
(Line 1). That is, removing all situations swith s.ts ă t´window.
Because of thementioned ordering, this effectivelymeans, finding
the first situation s1 with s1.ts ě t ´ window and discarding all
previous events. The buffers are implemented via array-backed
ring buffers, which efficiently support these operations.

After purging outdated situations, each new situation is first
added to its corresponding buffer, before the actual matching

Algorithm 3: PerformMatch
Input:ws: working-set, sc: current step count
Data: order: evaluation order

1 if sc “ order.getNumSteps() then
2 publishResult(ws);
3 return;
4 step Ð order.getSteppscq;
5 if step.isSet(ws) ^ step.checkConstraints(ws) then
6 performMatch(ws ,sc ` 1);
7 else if !step.isSet(ws) then
8 foreach pp, ts , te q P findMatches(step,ws) do
9 ws Ð ws Y tpp, ts , te qu;

10 performMatch(ws , sc ` 1);
11 ws Ð wsz tpp, ts , te qu;

algorithm (Algorithm 3) is invoked (Lines 2-4). We force the new
situation to be part of any successful match, by passing it as
a parameter. This ensures the desired incremental creation of
results, because we pass a new, not yet considered situation on
every invocation.

The matching algorithm relies on a so called evaluation order,
which we describe briefly upfront. An evaluation order deter-
mines the order in which situation buffers are joined and provides
the required information for each processing step (a reference to
the situation buffer and the set of temporal constraints to be ful-
filled). Using this information and a partial temporal configuration
(working-set), Algorithm 3 matches the temporal pattern as fol-
lows: In each step, the corresponding situation buffer is searched
for situations satisfying all applicable temporal constraints (Line
8). Applicable means, that the counterpart of the constraint is
already present in the working-set. Then, all returned situations
are successively added to the working-set and for each of the
new partial temporal configurations, the algorithm proceeds to
the next step (Lines 9-11). Lines 5 and 6 intercept the evaluation,
if the working-set already contains a situation for the current
step, which accounts for situations passed as a parameter from
Algorithm 2. In this case, the corresponding buffer is ignored
and the step’s temporal constraints are checked directly. Finally, a
match is detected if the working-set contains a situation from ev-
ery buffer (Lines 1-3). The publishResult function consumes this
working-set, assembles the result and pushes it into the output
stream.

Obviously, the evaluation performance of Algorithm 3 mainly
depends on the efficiency of the findMatches function. A naïve
approach would be, to scan the entire buffer and check the tem-
poral constraints for each situation separately. With Ri denoting
the i-th intermediate result, Bi the buffer traversed in step i
and |R1| “ |B1|, the costs (C) of performMatch following this
approach can be estimated with:

C “ |Rn | `

n´1
ÿ

i“1
|Ri | ¨ |Bi`1| (1)

To speed up the computation, we again use the order of situ-
ation streams: Because the order is reflected on the buffers, we
are able to find all matching situations using binary searches.
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Figure 3: Temporal Matching via Range Queries

We first discuss how this is done for a single temporal rela-
tion before extending it to (multiple) temporal constraints. Re-
call that a temporal relation explicitly defines a relationship be-
tween all four endpoints of two situations. For instance, this is
A.ts ă B.ts ă A.te ă B.te for A overlaps B. Now, given an
instance of situation A, we can obtain matching instances of B
by (i) issuing two range-queries on the buffer of B, using the
timestamps of A as boundaries and (ii) intersecting the results of
those queries. For the example relation, these queries are:

(1) A.ts ă ts ă A.te for the start-timestamp and
(2) A.te ă te ă 8 for the end timestamp.

It is easy to see, that each situation falling into both ranges
fulfills the given temporal relation. Figure 3 illustrates this using 3
situations: Situation A1 in combination with the temporal relation
is used to build the two search ranges. After intersecting the
results ( tB1u for the start range and tB1, B2u for the end range),
we receive our final result B1. Note that for temporal relations
allowing more than one result (e.g., A before B), this strategy
additionally eliminates the need for checking each combination
individually.

Typically, a temporal constraint contains more than one tempo-
ral relation, stating each of them as a valid relationship between
two situations. This can be easily integrated by executing the
search separately for each of the defined relations and subse-
quently building the union of the obtained results. The conjunc-
tion of multiple temporal constraints can be implemented as an
intersection of the results from the respective individual queries.
Because the buffers are backed by a contiguous array, we can
represent the search results as index-ranges and thus efficiently
compute the required unifications and intersections. This ap-
proach reduces the estimated costs of performMatch to:

C “

n
ÿ

i“2

´

|Ri´1| ¨ |Ri | `Cf indMatches p|Bi |q
¯

(2)

withCf indMatches p|Bi |q being bounded by |P|¨13¨4¨log2p|Bi |q.
The constant factors 13 and 4 arise from the possible temporal
relations per constraint and the binary searches to execute for
each of them, respectively.

5.3 Low-Latency Matching
In this section, we will determine the earliest points in time (td )
to detect a temporal relation (td pRq), temporal constraint (td pCq)
and temporal pattern (td pPq). Then, we adjust our algorithms
from the previous section to deliver matches as early as possible.

5.3.1 Analysis. Two situations A,B can only be related once
we know they exist, making maxpA.ts, B.tsq ď td pRq a trivial
lower bound for all relations. For exact td pRq consider a relation’s
definition δR depicted in Table 2. Let t1 ď t2 ď t3 ď t4 be
the timestamps in the order they appear in δR . It is easy to see

Relation (R) Defini tion (?R) td(R)

A before B A.ts < A.te < B.ts < B.te B.ts

A meets B A.ts < A.te = B.ts < B.te B.ts

Prefix-Group (G) td(G)

A.ts < A.te ? B.ts B.ts

A star ts B A.ts = B.ts < A.te < B.te A.te

A.ts = B.ts B.tsA equal B A.ts = B.ts < A.te = B.te A.te = B.te

A star ted-by B A.ts = B.ts < B.te < A.te B.te

A over laps B A.ts < B.ts < A.te < B.te A.te

A.ts < B.ts B.tsA f inishes B A.ts < B.ts < A.te = B.te A.te = B.te

A contains B A.ts < B.ts < B.te < A.te B.te

Table 2: Low-Latency Analysis

that the ordering of t4 can implicitly be derived at t3, because
t3 ď t4 and there are no timestamps beyond that. Furthermore,
at t1 and t2 there are other relations sharing the same definitions
up to that point, i.e., it is not possible to distinguish them from
each other. To show this, we have grouped relations starting with
A.ts as prefix groups in Table 2 (B.ts groups are analogous). For
those reasons we can conclude td pRq “ t3.

A temporal constraint C “ pR1, . . . ,Rnq for A,B matches if at
least one relation matches. Therefore, the earliest detection time
is td pCq “ ttd pR1q, . . . , td pRnqu. Note that td pCq is a set and the
actual detection time of two situations depends on the fulfilled
relation. Further, if C contains all relations of a prefix group (cf.
Table 2), the detection time of these relations is shifted to the
trivial lower bound (td pGq).

Finally, for a pattern P “ pC1, ...,Cmq, each constraint must
be matched. However, a single temporal configuration matching
P fulfills exactly one temporal relation (R) from each constraint,
making td pPq “ maxptd pR P C1q, . . . , td pR P Cmqq. In gen-
eral, td pPq is among the constraint detection points: td pPq Ď
Ť

i“1...m td pCi q.

5.3.2 Implementation. For the ease of presentation, we ignore
the optional duration constraints on situations as well as prefix
groups during the development and discuss the required changes
at the end of this section.We gained two implementation-relevant
insights from the low-latency analysis. First, new matches can
only be detected if a new situation starts or a situation ends. Sec-
ond, only a subset of the defined situations can possibly produce a
match at td pPq. Thus, the matching process can be delayed until
a situation with at least one endpoint in td pPq occurs without
affecting the latency. We call those situations trigger situations
since only they should trigger a performMatch call. These insights
affect our algorithms in the following ways. Situations must be
available for matching from their start on, which can easily be
achieved by adjusting the deriver. Additionally, we need to de-
termine for each situation stream if the derived situations are
trigger situations. For trigger situations we need to identify the
point in time to execute performMatch (at its start, end or both).

However, the following cases must be considered during the
matching process. If a situation requires matching on both end-
points, care must be taken not to produce duplicate results. Fur-
ther, started situations must not be visible to the matcher in
all cases: If two situations are related via finishes or equals,
they could be mistakenly matched, because their temporary end
timestamps (i.e., the current time) are equal. On the other hand,
if two situations are not explicitly related via a temporal con-
straint they may participate in a successful match, even if both
end timestamps are unknown. To illustrate this, consider the
following pattern on four situations (A, B, C, D): A before B
AND A before C AND A before D AND (D during C OR C
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Figure 4: Earliest detection time (td ) of different temporal
configurations for the same pattern

finishes D OR C meets D). It defines situation A as starting
point of every match. B is not explicitly related to C and D and
required to happen after A. Consequently, B is a trigger situation
and B.ts is in td pPq. For D both D.ts (via meets) and D.te (via
during,finishes) are in td pPq. Figure 4 shows four represen-
tative temporal configurations for this pattern, highlighting the
earliest point of detection (td ). Configuration 1 showcases B as
a trigger situation with td “ B.ts. For the second configura-
tion, D is the trigger with td “ D.ts. This case also shows that
two started relations may participate in a match if their end is
unknown (B,D). The remaining configurations highlight D as a
trigger, but with td “ D.te.

Instead of handling these cases explicitly, our low latency
algorithm avoids them by ensuring a unique combination of
situations in the working-set, before passing it to the matching
algorithm. In particular, this means started situations are man-
aged in a separate buffer, inaccessible for the matching algorithm,
and all valid combinations among them (i.e., all combinations of
started situations, not explicitly related to the current one) are
built upfront inside the working-set. Furthermore, to avoid du-
plicate results, the following fact is exploited: temporal relations
enforcing matching on a situation’s start require its counterpart
to be finished in the past. On the other hand, temporal relations
triggering matching on a situation’s end require its counterpart
to be either started (and not yet finished) or finished at the same
time (cf. Table 2). Consequently, manually adding the started
counterpart to the working-set, before executing the matching al-
gorithm on a situation’s end ensures uniqueness of the produced
results.

The details are presented in Algorithm 4. After purging out-
dated situations from the buffers (Line 1), each started situation
(s) is added to the additional buffer and if s .ts P td pPq, the algo-
rithm performs a regular match with s being the only constant
in the working-set (Lines 2-5). Furthermore, if there are started
and unrelated situations, we perform matches with s and each
combination of them (Lines 6-8). This accounts for configurations
as seen in Figure 4.2. All finished situations are migrated from
the separate to the regular buffer (Lines 9-11) and if s .te P td pPq,
the matching process is triggered. This time with combinations
of s and all started and related situations (Lines 15-16), further
combined with all started and unrelated situations (Lines 17-18),
which fuses the avoidance of duplicate results and false positives.
An example for this case is shown in Figure 4.3. Note that, the
actual constraint-checking among the created combinations is
performed by the call to performMatch (Algorithm 3), since it is
aware of pre-set situations in the working-set. As we will show

Algorithm 4: Low-Latency MatcherUpdate
Input: Sf , Ss : sets of finished/started, t : current time

1 purgeBuffers(t );
2 foreach s P Ss do
3 startedBuffer.add(s);
4 if matchOnStart(s) then
5 performMatch( tsu, 0 );
6 U Ð getUnrelatedStarted(s);
7 foreach u P powersetpU qzH do
8 performMatch( u Y tsu, 0 );

9 foreach s P Sf do
10 startedBuffer.remove(s);
11 addToBuffer(s);
12 if matchOnEnd(s) then
13 R Ð getRelatedStarted(s);
14 U Ð getUnrelatedStarted(s);
15 foreach r P powersetpRqzH do
16 performMatch( r Y tsu, 0 );
17 foreach u P powersetpU qzH do
18 performMatch( r Y u Y tsu, 0 );

in section 6, the extensive building of combinations has only
minimal impact on the runtime-performance, because it shifts
load from joining to the update algorithm and does not introduce
additional computation steps.

Duration constraints on situations are incorporated into
low latency-matching with only a few modifications: First, if a
maximum duration constraint is defined (regardless of a possibly
specified minimum duration), the corresponding situation must
not be included in the matching process until its end is known –
and the constraint is fulfilled. Hence, these situations are excluded
from the set of started situations (Ss ) and if their start timestamp
is in td pPq, matching is deferred to their end timestamp. Second,
if a minimum but no maximum duration is defined, the inclusion
into the set of started situations is deferred until the constraint
is satisfied. This possibly implies the inclusion of its deferred
start timestamp (ts) into td pPq. As an example, consider the
pattern A during B and the following order of timestamps:
B.ts ă A.ts ă A.te ă B.ts ă B.te. This match can not be
detected at A.te, because B’s duration does not exceed the lower
bound at this point. Hence B.ts requires a matcher invocation.

To handle prefix groups the restriction that two started and
explicitly related situations must not be matched is relaxed. That
is, matching is performed if the corresponding temporal constraint
contains one or more prefix groups. However, for still being able to
omit false positives, the matcher must distinguish between prefix
group and regular detection. Technically this means splitting
the temporal constraint into two disjoint sets (one containing all
temporal relations forming a prefix group and another one holding
the remaining relations) and use the first set, when matching on
a situation’s start and the second one on its end.

5.4 Computing the Evaluation Order
The matcher component maps the problem of temporal pattern
matching to a multi-way join between situation buffers. Like
multi-join processing in traditional relational database systems,
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Relation before dur ing

Selectivi ty 0.445 0.03

over laps

0.01

star ts, f inishes, meets

0.0049

equal

0.0006

Table 3: Initial estimates for the selectivity of temporal re-
lations. Mirror relations are equivalent.

the performance of joining heavily depends on the order in which
the join operations are executed. In this section, we discuss how
the matcher’s evaluation order is computed and present the cost-
model used during this process.

Analogous to classical join processing we implemented an
optimizer that enumerates possible execution plans, computes
the expected computational costs for each of them and suggests
the most efficient plan for execution. We do not provide multi-
ple implementations of the join operator, so that enumerating
possible plans reduces to the enumeration of possible evaluation
orders. To further reduce the number of plans to consider, we
exclude orderings joining a situation buffer without an appli-
cable temporal constraint. In other words: Plans involving the
calculation of a cross product are omitted.

According to Equation 2, estimating the costs for a given plan
boils down to estimating the size of intermediate results:

|Ri | :“

#

|B1| if i “ 1
|Ri´1| ¨ |Bi | ¨ si otherwise

(3)

si denotes the selectivity of the applicable temporal constraints
in step i (Ci ), which can be composed from the selectivities of
the contained temporal relations as follows:

si :“
ź

CPCi

˜

ÿ

RPC
sR

¸

(4)

When a query is initially deployed into the system, the situ-
ation buffers are empty and we have no estimation on the se-
lectivity of the temporal constraints. Hence, we initially assume
the selectivities depicted in Table 3. These values are backed by
the following back-of-the-envelope calculation: The combined
selectivity of all possible relations should be 100%. Assuming
equal sized buffers and an equal temporal distribution of the
situations, the selectivity of a before relation will be around 50%.
For during, the number of results is limited by the maximum
of both buffer sizes, because a situation A can happen during
at most one other situation (B), but B may contain multiple A
situations. All other temporal relations define a 1:1 relationship,
which limits the worst case to the minimum of both buffer sizes.
As seen in Table 3, we additionally separate the last case by the
number of stated equalities. Note that even though this is an
initial estimate, the resulting plans prove to work well in most
cases (cf. section 6.4.2).

5.4.1 Adaptivity. Once a query is deployed in a CEP-system,
it is typically active for a long time. Hence, more important than
the quality of an initial execution plan is the ability to tune this
plan and adapt it to changing workloads. To do so, we keep
track of the buffer sizes and selectivities imposed by temporal
constraints during execution. The buffer-sizes are available at
any point in time and at no cost, since they are tracked by the
underlying data structure. However, to smooth out (potential)
spikes, we monitor the buffer size using an exponential moving
average, which is adjusted after each call to the matcher’s update
method as follows:

EMAi “ α ˚ |Bi | ` p1 ´ αq ˚ EMAi´1

EMAi holds after the i-th update. |Bi | denotes the size of the
considered buffer at update i and the smoothing factor α P p0, 1q

determines how much weight is given to previous values. For ex-
ample, a value close to 1 assigns almost no weight to older values,
while a value close to 0 decreases the influence of new values.
The selectivities of the temporal constraints are also managed
with EMAs using one EMA-value per constraint.

To check if a re-computation of the evaluation order is re-
quired, the active plan stores a snapshot of the statistics it is
based on. After each update, we compare them to the current val-
ues and if any of them differs by more than the defined threshold
(t ), we trigger a re-computation.

Finally, if a migration is required, we are able to migrate to
the new plan between any two invocations of the matcher com-
ponent. Because the matcher does not store any intermediate
results, but solely relies on the situation buffers this switch comes
without any additional migration costs. As we will show in sec-
tion 6.4.2, the total costs for adaptivity are negligible.

6 EXPERIMENTAL EVALUATION
In this section we present the results from our experimental
evaluation of TPStream2. First, we study TPStream’s evaluation
performance in comparison to ISEQ and point based CEP systems.
Then, we analyze the latency improvement of our approach in
comparison to ISEQ. Finally, we prove the validity of our opti-
mization techniques.

6.1 Setup
All experiments were conducted on a workstation equipped with
an Intel i7-2600 3.4 GHz processor and 8GB of memory, running
a Debian Linux (kernel version 4.11.11-1). The results presented
for each experiment are averaged values from a total of 10 runs,
whereby every run was preceded by a warm-up phase of evaluat-
ing at least 100,000 events before the measurement was started.

The main goal of this section is to compare TPStream’s process-
ing performance and our low latency approach to the state-of-the
art solution for temporal pattern matching (ISEQ). There is no
publicly available implementation of ISEQ, so we implemented
it based on the available description in [20]. As required by the
design of ISEQ, the input consists of interval streams ordered by
endpoint. These streams are again generated with our deriver
component.

In order to provide a comparison with point based systems, we
also included CEP-solutions from the open-source community
(Esper3 6.0.1) and academia (SASE+ 4), when applicable. While
Esper is a production ready CEP system, highly optimized for
efficient query execution, SASE+ is one of the most popular CEP
languages in the research community and served as foundation
for the ISEQ operator. The rich query language of Esper allowed
us to express both straw man’s approaches as sketched in the
introduction. We refer to the first approach (2 phase pattern
matching) with Esper-1 and the low latency approach is denoted
as Esper-2. Because the SASE+ implementation does not feature
chaining of queries, we only implemented the low-latency ap-
proach. TPStream and all its competitors are implemented in the
JAVA programming language, whereby TPStream and ISEQ are
based on JEPC [19] – an event processing middleware. We used

2Datasets and source code available at http://uni-marburg.de/oaCPk
3http://www.espertech.com
4https://github.com/haopeng/sase
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Figure 5: Processing time for aggressive driver detection as a function of the input size: (a) simplified pattern, (b) full
pattern and processing time for disconnected pattern detection as a function of the window size (c)

Figure 6: Processing time for various query patterns

Oracle JDK 1.8.0.144 compile the systems and ran all experiments
on that JVM with 6GB of heap space.

During the evaluation two data sources were used. The first
source comprises trip data generated with the Linear Road Bench-
mark [4]. Besides other attributes, each event consists of a unique
car id, its location, the current speed and acceleration. We gen-
erated data simulating 5 hours of traffic on a single expressway
with 1000 active cars per hour. Each active car reports its state
every second, leading to 887 million events (36 GB of data). The
second source is a random event generator, tuned to pose high
load on the system. It generates event streams with a config-
urable number of boolean attributes, each representing a single
situation stream. The generated situations last between 10 and
100 seconds, while the gaps between two consecutive situations
span 10 to 50 seconds (both uniformly distributed). Events are
generated with a frequency of 1Hz, so that for a situation lasting
n seconds, the corresponding attribute’s value is true for exactly
n consecutive events.

Independent of the data-source, we used a single thread for
both, reading/generating the data and evaluating the query. For
each experiment, we measured the reading/generation time up-
front and removed it from the presented results. The most im-
portant parameters throughout all experiments are as follows:
Event Rate The rate (events/s) with which events are pushed

into the systems.
Window Size The size of the time window (s) during which a

pattern must occur completely.
Event Count The total number of events to process.

6.2 Processing Time
This set of experiments compares the processing performance
of TPStream with its competitors using various queries and pa-
rameter settings. The events were pushed into the system at the
maximum possible rate and we used the processing time as main
measure.

6.2.1 Aggressive Drivers. We injected different fractions (1M
to 100M events) of the Linear Road dataset into the system and
executed the example query of Listing 1 (without duration con-
straints). The thresholds for speeding, acceleration and decel-
eration were the 99th, 90th and 90th percentiles for the speed
and positive/negative acceleration values of a 50M event sample.
Besides chaining of queries, the SASE+ implementation also lacks
support for disjunctions. Nevertheless, to include SASE+ in this
experiment, we also evaluated a simplified query version which
restricts the used temporal relations to meets and overlaps.

The results of this experiment are shown in Figure 5 (a –
simplified pattern, b – full pattern). The x-axis shows the num-
ber of processed events, the processing time is shown on the
y-axis.TPStream and ISEQ are head to head and their process-
ing times increase linearly with the number of processed events.
Further, they are insensitive to alternatives, resulting in almost
identical processing times for both query variants. TPStream was
not able to outperform ISEQ in this experiment, because in the
given pattern all situations overlap which in turn allows to break
the buffer scan early. Esper benefits from the simplified version
of the pattern, but its evaluation performance is inferior to TP-
Stream and ISEQ (up to 30x for the full query and 15x for the
simplified version). When evaluating the full query, Esper hit
the memory limit of 6GB and the system crashed if more than
30M (Esper-1) and 40M (Esper-2) events were processed. For the
simplified version, the processing time of Esper-1 increases dras-
tically when processing more than 50M events – Esper-2 runs
out of memory and crashes. SASE+ managed the evaluation, but
was clearly outperformed by TPStream and ISEQ.

6.2.2 Disconnected Pattern. The second experiment compares
processing time and memory consumption of the systems using
a pattern with high selectivity: A before B overlaps C. The
difference to the first experiment is, that each A situation may
be related to many B overlaps C sub-matches instead of con-
tributing to at most one match. Hence, we expected the number
of results and consequently the processing time/memory con-
sumption to depend on the size of the configured time window.
We injected 300M synthetic events into the systems and executed
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Figure 7: (a) application time latency gain per temporal relationand comparison of result latency (b) under maximum
possible throughput as a function of the window size, (c) under varying event rates with a fixed size window

the query with window sizes varying from 500s (8:20 minutes)
to 100,000s (slightly more than one day).

Figure 5 (c) shows the processing time of all systems as a func-
tion of the window size (note the log-scale). In this experiment,
TPStream is able to outperform ISEQ by a factor of 14 using a
window of 100,000s. This is because ISEQ does not make use of
the order on the situations’ start timestamp and requires addi-
tional computational steps during result construction and buffer
pruning. SASE+ did not finish this experiment in a reasonable
time for none of the window sizes and Esper barely managed
window sizes up to 20,000s. To measure the average memory con-
sumption, we monitored the used heap space with a frequency of
20Hz during each run and averaged these values. Both, TPStream
and ISEQ require only very little additional memory for increased
window sizes: TPStream 911 - 1018 MB, ISEQ 903 - 1027 MB. Esper
stays stable at 1 GB up to a window size of 10,000s but afterwards
suffers from buffering single events rather than a compact rep-
resentation like situations. For the last evaluable query (20,000s
window) Esper already consumed 1,7 GB of memory.

6.2.3 Query Patterns. To give a comprehensive overview of
TPStream’s processing performance, we evaluated 5 different
query patterns and varied the number of situation streams from
4 to 10. Queries 1-3 (Equal, Meets, Chain) are of the form S1 ‘1
S2 ‘2 . . . ‘n´1 Sn , with ‘i “ equals, ‘i “ meets and ‘i
a randomly drawn temporal relation, respectively. In query 4
(Star), S1 is connected with every other situation, via a random
temporal relation (i.e. S1 ‘1 S2, S1 ‘2 S3, . . . , S1 ‘n´1 Sn ). Query
5 (Combined) combines the two generic patterns by connecting
the first n{2 situations via the Chain pattern and the remaining
situations according to the Star pattern. Each query-type was
executed 100 times, using 50M synthetic events and a window
size of 2,000s.

The box plots in Figure 6 provide themedian as well as the 25th
and 75th percentiles of the processing time. For all query types,
the median processing time increases linearly with the number of
situations. The generic Chain pattern incurs higher maximum
values than Equal and Meets, because the possible temporal
relations include before, which is highly selective. This forces the
matcher to build many partial results – especially if three or more
consecutive situations are in a before relationship. Star queries
are more sensitive to the concrete pattern instance, because in
the worst case every situation triggers the matching process. This
effect can also be observed for the Combined pattern, but to a
smaller degree, because only half of the situations are connected
via a Star pattern.

6.3 Low Latency
This set of experiments compares the result latency of our ap-
proach with the state-of-the art solution for temporal pattern
matching, ISEQ.

6.3.1 Application Time. At first, we measure the latency im-
provement of TPStream compared to ISEQ in terms of application
time. That is, we compare the timestamps of the events that pro-
duced a result in both approaches and calculate their difference.
We evaluated each temporal relation independently using two
synthetic situation streams (A,B). We varied the average duration
ratio from 2:1 to 1:2, keeping A’s average duration fixed at 55
seconds. Note that the window size has no impact here (as long
as it is not too small to hold a match), so it was set to 1,000s.

Figure 7 (a) shows the average latency improvements per tem-
poral relation. For sequential relations (before, meets), the gain
in latency is equal to the average duration of B situations, be-
cause matches are detected at B.ts. For the remaining relations,
the detection time is A.te and the average improvement depends
on the concrete temporal relation. In the worst case (during)
this is B.duration{2. Note that, equals and finishes were not
included, because no latency improvements can be achieved.

6.3.2 Wall Clock Latency. We conducted two experiments,
showing that TPStream’s processing techniques significantly re-
duce the result latency in terms of wall clock time which is a
critical aspect in a streaming scenario. Therefore, we repeat the
experiment from section 6.2.2 twice: first, we measure the time
passed between the arrival of the first event that could produce
a result and the receipt of that result. We varied the window
size and pushed events with the maximum possible rate. For the
second experiment we fixed the window size at 100,000s and
varied the event rate from 1M to 1 events/s. This time, we split
the measured latency in (i) processing latency: the time passed
between arrival of the event that triggered the result and the
actual receipt of that result and (ii) event latency: the time passed
between arrival of the first event that could trigger the result and
the arrival of the event that actually triggered that result.

The results are shown in Figure 7 (b,c). Both figures show the
average latency per result (y-axis, note the log-scale for c). While
(b) shows, that TPStream’s evaluation techniques provide latency
savings through reduced processing time, (c) highlights the sav-
ings achieved with our low-latency matcher. Especially when the
rate is in sync with application time (1 event/s), the event latency
of ISEQ dominates the processing latency and almost reaches
the application time savings (~35s, cf. Figure 7 a, 1:1, overlaps),
while TPStream introduces no event latency at all.
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Figure 8: (a) Quality of the initial plans for Q1 – Q3, (b)
Throughput comparison: dynamic plan adaption vs. best
initial plans

6.4 Plan Quality & Adaption
Finally, we evaluate the optimization techniques presented in
section 5.4. Like in section 6.2, events were pushed with the
maximum possible rate.

6.4.1 Initial PlanQuality. To evaluate the quality of the gener-
ated initial plans, we used the following queries on three situation
streams: Q1: A overlaps B AND A overlaps C AND B starts
C, Q2: A overlaps B AND A before C AND B overlaps C and
Q3: A before B AND A before C AND B before C. For each
query, we generated all 6 valid plans and measured the through-
put (processed events/s) by evaluating synthetic events with a
window size of 5,000s.

Figure 8 (a) shows the results for the best, worst and suggested
plans and clearly confirms our approach. For queries Q1 and
Q2 the best plan was suggested. The initial plan for Q3 was
C Ñ B Ñ A even though the estimated costs for C Ñ A Ñ B are
the same. The experiments show, that C Ñ A Ñ B would have
been a slightly better choice, but the difference is negligible.

6.4.2 Dynamic Plan Adaption. To analyze the plan adaption
capabilities of TPStream, we executed Q3 again and processed
300M events. The occurrence ratio of situations A,B and C changed
from 1:1:1 to 1:50:50 after 100M events and finally to 50:1:50 af-
ter 200M events. The window size, smoothing-factor (α ) and
threshold for plan migration (t ) were set to 10,000s, 0.01 and 0.2,
respectively. Besides the adaptive implementation (TPS-A), we
ran the experiment with both best initial plans C Ñ B Ñ A (TPS-
1), C Ñ A Ñ B (TPS-2), and an implementation, doing a hard
coded switch to the best plan exactly when the characteristics of
the stream changes (TPS-O).

Figure 8 (b) shows the throughput for all four configurations
and the three different stream-characteristics: TPS-1 and TPS-2
both have drawbacks in either one of the skewed phases, while
our adaptive approach is very close to the optimal solution TPS-O
(suffering slightly from dynamic adaption). However, the total
runtime of TPS-O (63,523ms) compared to TPS-A (64,612ms)
reveals only a negligible overhead of 1,089ms (less than 2%) for
plan adaption.

7 CONCLUSION
We presented TPStream, a novel event processing operator for
detecting complex temporal patterns among event streams.We en-
abled TPStream to derive lasting situations directly from streams
of events and developed new techniques for detecting temporal
patterns at the earliest possible point in time. Furthermore, we
demonstrated low-cost adaptive approaches suitable for a stream-
ing scenario. We proved the potential of TPStream by comparing
it to industrial and academic solutions for CEP in experiments.

Since research on situations in CEP is scarce, we focused our
efforts on presenting a fundamental solution suited for this sce-
nario and equipped it with the capabilities to handle the adaptive,
low-latency nature of stream processing. For future work, we
intend to extend TPStream to tackle out-of-order arrivals [7, 21]
and parallel processing [24, 26].
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