
Distributed in-memory SPARQL Processing
via DOF Analysis

Roberto De Virgilio

Roma Tre University, Rome, Italy

dvr@dia.uniroma3.it

ABSTRACT

Using so-called triple patterns as building blocks, SPARQL queries

search for specified patterns in RDF data. Although many aspects

of the challenges faced in large-scale RDF data management have

already been studied in the database research community, current

approaches provide centralized DBMS (or disk) based solutions,

with high consumption of resources; moreover, these exhibit very

limited flexibility dealing with queries, at various levels of granu-

larity and complexity (e.g., SPARQL queries involving UNION or

OPTIONAL operators). In this paper we propose a computational

in-memory framework for distributed SPARQL query answering,

based on the notion of degree of freedom of a triple. This algo-

rithm relies on a general model of RDF graph based on the first

principles of linear algebra, in particular on tensorial calculus. Ex-

perimental results show that our approach, utilizing linear algebra

techniques can process analysis efficiently, when compared to re-

cent approaches.

CCS Concepts

•Information systems → Data management systems; World Wide

Web; •Computing methodologies → Linear algebra algorithms;

Distributed algorithms;
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1. INTRODUCTION
Today, many organizations and practitioners are all contributing

to the “Web of Data”, building RDF repositories of huge amounts

of semantic data, posing serious challenges in maintaining and query-

ing large datasets. Modern scenarios involve analyses of very large

semantic datasets, usually employing the SPARQL query language.

Many aspects of large-scale RDF data management have already

been studied in the database research community, including native

RDF storage layout and index structures [18], SPARQL query pro-

cessing and optimization [8], as well as formal semantics and com-

putational complexity of SPARQL [20, 23].
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Challenges. Examining the prevalent trend in semantic informa-

tion storage and inspection, we face two major challenges: manage-

ment of large datasets, and scalability of both storage and querying.

As size increases, both storage and analysis must scale accordingly;

however, despite major efforts, building performant and scalable

RDF systems is still a hurdle. Most of the current state-of-the-art

approaches consider SPARQL as the SQL for RDF, and therefore

they usually employ RDBMS-based solutions to store RDF graphs,

and to execute a SPARQL query through SQL engines (e.g. Jena

or Sesame). Moreover, popular systems are developed as single-

machine tools [18, 28], which hinder performances as the size of

RDF dataset continues to escalate. In particular Jena, Sesame,

RDF-3X [18], BitMat [1], TripleBit [29] and GADDI [31] repre-

sent centralized approaches exploiting single-machine implemen-

tations of edge (e.g., [18, 1]) and subgraph (e.g. [31]) index based

approaches to graph matching over graph-shaped data (e.g. RDF).

In this context efficiency is driven by various forms of horizontal

and vertical partitioning scheme [4], or by sophisticated encoding

schemes [1, 29]. Hence, such proposals require the replication of

data in order to improve performances, or introduces several index-

ing functions that increase the overall size of stored information.

Lately, some distributed RDF processing systems have been devel-

oped [30, 8, 19, 9]. Trinity.RDF [30] is a distributed GraphDB

engine for RDF graph matching: it observes that query process-

ing on RDF graphs (i.e. by SPARQL) requires many graph op-

erations not having locality [23], but relies exclusively on random

accesses. Therefore typical disk-based triple-store solutions are not

feasible for performing fast random accesses on hard disks. To this

aim, among distributed approaches, Trinity.RDF exploits GraphDB

technology to store RDF data in a native form and implements a

scheduling algorithm to reduce step-by-step the amount of data to

analyze during SPARQL query execution. However non-selective

queries require many parallel join executions that the generic ar-

chitecture of Trinity.RDF is not able to integrate, as it is common

in MapReduce approaches using Hadoop (e.g., [11]). On the other

hand, MapReduce solutions involve a non-negligible overhead, due

to the synchronous communication protocols and hob scheduling

strategies. Therefore, H2RDF+ [19] builds eight indexes using

HBase. It uses Hadoop to perform sort-merge joins during query

processing. DREAM [9] proposes the Quadrant-IV paradigm and

partitions queries instead of data and selects different number of

machines to execute different SPARQL queries based on their com-

plexity. It employs a graph-based query planner and a cost model to

outperform its competitors. In addition, we mention the TriAD dis-

tributed system [8], embedding a main-memory architecture, based

on the master-slave paradigm. The problem of such system, as in

other approaches and as it will be shown experimentally, is that

it exhibits complex indexing (i.e., SPO permutation indexing) and
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partition schemes (i.e. RDF summary graph), damaging seriously

the maintenance of the approach itself and making not possible to

exploit completely an in-memory (distributed) engine. Moreover

graph data are often maintained in a relational store which is repli-

cated on the disk of each of the underlying nodes of a cluster; man-

aging big attributed graphs on a single machine may be infeasible,

especially when the machine’s memory is dwarfed by the size of

the graph topology.

Contribution. In this paper we propose a novel distributed in-

memory approach for SPARQL query processing on highly unsta-

ble very large datasets. Our objective is to provide a performance-

oriented system able to analyze RDF graphs on which no a pri-

ori knowledge is possible or available, and to avoid collection (ex-

ploitation) of complex statistics on initial data and/or frequent past

queries. Based on the notion of DOF, the degree of freedom of

a triple pattern, that is a measure of triple pattern’s explicit con-

straints, we rely on a simple and optimal scheduling algorithm that

builds incrementally answers to a SPARQL query. Intuitively, a

pattern with no constraints, i.e., constituted only by variables, has

the highest DOF, while one constituted by only constants is associ-

ated with the lowest DOF. Specifically, our scheduling starts from

triple patterns with the lowest degree of freedom, and proceeds in

bounding variables incrementally to their values by selecting the

triple pattern with the highest probability of decreasing the search-

space.

As opposed to DBMS-based (single-machine) approaches, our

approach avoids any schema or indexing definition over the RDF

graph to query, being reindexing impractical for both space and

time consumption in a highly volatile environment. Additionally,

we highlight as, in a distributed query system, storing RDF data in

disk-based triple stores hinders performances, as queries on such

graphs are non-local [30], and therefore random access techniques

are required to speedup processing. We define a general model

of RDF graph based on first principles derived from the tensor

algebra field. Many real-world data (e.g., knowledge bases, web

data, network traffic data, and many others [25, 13, 5]) with mul-

tiple attributes are represented as multi-dimensional arrays, called

tensors. In analyzing a tensor, tensor decompositions are power-

ful tools in many data mining applications: correlation analysis on

sensor streams [25], latent semantic indexing on DBLP publication

data [26], multi-aspect forensics on network data [16], network dis-

covery [5] and so on.

Leveraging such background, this paper proposes a formal ten-

sor representation and endowed with specific operators allowing

to perform efficiently our scheduling algorithm for both quick de-

centralized and centralized massive analysis on large volumes of

data—i.e., billions of triples. We strongly rely on an in-memory dis-

tributed approach, so that our framework may comfortably analyze

any given RDF dataset, without any cumbersome processing; in

other words, the tensor construction itself is the only processing op-

eration we perform. Our model and operations, inherited by linear

algebra and tensor calculus, are therefore theoretically sound, and

their implementation exploit the underlying hardware for search-

ing in the solution space. In detail, by applying bit-oriented oper-

ations on data, each computational node in our distributed system

is able to exploit low-level CPU operations, e.g., 64-bit or 128-bit

x86 register opcodes; additionally, operations are carried out in a

cache-oblivious manner, thus taking advantage of both L1 and L2

caches on modern architectures. Due to the properties of our ten-

sorial model, we are able to dissect tensors (i.e., Ri) representing

RDF graphs into several chunks to be processed independently (i.e.,

by each process pi), as shown in Figure 1.
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Figure 1: Distributed query processing in TENSORRDF.

Outline. Our manuscript is organized as follows. Section 2 will

introduce our general model of a RDF graph, accompanied by a for-

mal tensorial representation, subsequently put into practice in Sec-

tion 3, where we provide a method for RDF data analysis. Section 4

describes a scheduling algorithm to perform SPARQL queries. Sec-

tion 5 illustrates the physical modeling of our framework, while

Section 6 discusses the complexity of all involved operations. We

benchmark our approach with several test beds, and supply the re-

sults in Section 7, with the available literature discussed in Sec-

tion 8. Finally Section 9 sketches some conclusions and future

work.

2. RDF AND SPARQL MODELING
This section is devoted to give a rigorous definition of an ontol-

ogy, with respect to RDF and Semantic Web.

RDF. Data in RDF is built from three disjoints sets I, B, and L
of IRIs, blank nodes, and literals, respectively. All information in

RDF is represented by triples of the form 〈s, p, o〉, where s is called

the subject, p is called the predicate, and o is called the object. To

be valid, it is required that s ∈ I ∪ B; p ∈ I; and o ∈ I ∪ B ∪
L. RDF is a representation of an ontology. An ontology may be

viewed as a set of relations between objects, or more in general, as

a function that, given two entities s and o, and a relation p, returns

a truth value corresponding to the condition of whether or not the

two entities are related.

DEFINITION 1 (ONTOLOGY TENSOR). Let S be the finite set

of subjects, O the finite set of objects, and P the finite set of predi-

cates, the ontology tensor is a rank-3 tensor T : S×P×O −→ B ,

being B a boolean ring.

This general definition of ontology tensor must be related to ex-

isting representations, in particular with RDF. Hence, we can in-

troduce a direct mapping between the sets I, B, L and the above

definition:

DEFINITION 2 (RDF SETS). The finite sets S, P , and O are

defined as follows: S := I ∪ B, P := I, and O := I ∪ B ∪ L.

Let us briefly focus on the fact that, by definition, I, B, and L are

finite and countable. Therefore, their union is a countable set, and

so S, P , and O, consequently. The countability property makes it

possible to relate each set to N via an injective function, i.e., we can

“order” all the elements.

DEFINITION 3 (RDF SET INDEXING). Given the finite count-

able RDF sets S, P , and O, we introduce their respective index-

ing functions S, P, and O of subjects, predicates, and objects:

S : S −→ N, P : P −→ N, and O : O −→ N.
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Figure 2: An example of RDF graph G.

The introduced functions, given the finiteness and countability

properties are not only injective, but also surjective, i.e., we intro-

duced a bijection between a subset of N, and S, P , O. The RDF

set indexing functions map elements of RDF sets to a (subset of)

natural numbers. Let us focus on the ontology graph G given in

Figure 2, constituted of 14 nodes (i.e., 4 resources and 10 literals)

and 7 properties. In this case, we have S(a) = 1, S(b) = 2 S(c) = 3,

P(age) = 1, P(friendOf) = 2, and so on. Their inverse functions

are, being bijections, well defined, e.g., S−1(3) = c.

DEFINITION 4 (RDF TENSOR). Let G be a RDF graph. The

RDF tensor R(G) =: R on G is an ontology tensor such that

R = (rijk) :=

{
1, 〈S−1(i),P−1(j),O−1(k)〉 ∈ G ,

0, otherwise .

Contrary to adjacency matrices, a tensorial representation allows

a simple solution for handling multiple edges between two nodes.

Given a RDF tensor, we observe that the majority of its elements

will be zero, i.e., the originating graph is loosely connected [1]. It

is therefore advisable to employ a rule notation to express a tensor,

instead of listing all its elements. With the rule notation, we will

express a tensor with a list of triples {i, j, k} → rijk, for all rijk 6=
0, and assuming all other elements being zero, if not present in the

triples list.

EXAMPLE 1. Let us consider the RDF graph in Figure 2. The

RDF tensor R of G can be therefore given as shown in Figure 3. In

the Figure, for typographical simplicity, we omitted

0R = (0, 0, 0, 0, 0, 0, 0)t

denoted with a dash. A more concise way of expressing the above

tensors is by employing the rule notation, i.e., assuming zero as the

default value, and listing all non-zero elements:

R = { {1, 3, 1} → 1 , {1, 4, 3} → 1 , . . . , {3, 1, 13} → 1 } .

For instance the element {1, 3, 1} → 1 means that there exists

in G the triple 〈S−1(1),P−1(3),O−1(1)〉, i.e., 〈a, hates, b〉.

SPARQL. Abstractly speaking, a SPARQL query Q mainly is a 5-

tuple of the form 〈qt, RC,DD,GP , SM〉, where: qt is the query

type, RC is the result clause, DD is the dataset definition, GP

is the graph pattern, and SM is the solution modifier. At the

heart of Q there lies the graph pattern GP that searches for spe-

cific subgraphs in the input RDF dataset. Its result is a (multi) set

of mappings, each of which associates variables to elements of

I ∪ B ∪ L. In particular the official SPARQL syntax considers op-

erators UNION, OPTIONAL, FILTER and concatenation via a point

symbol “ . ” to construct graph patterns.

DEFINITION 5 (GRAPH PATTERN). A graph pattern GP is a

4-tuple 〈T, f, OPT,U〉 where

– T is a set of triple patterns {t1, . . . , tn} that may contain

a variable, i.e., a symbolic name starting with a ? and can

match any node (resource or literal) in the RDF dataset;

– f is a FILTER constraint using boolean conditions to filter

out unwanted query results;

– OPT is a set of OPTIONAL statements trying to match T,

but the whole query does not fail if the optional statements

do not match. This set is modeled as GP ;

– U is a set of UNION statements modeled as GP .

The result clause identifies which information to return from the

query. It returns a table of variables (occurring in GP ) and values

that satisfy the query. The dataset definition is optional and spec-

ifies the input RDF dataset to use during pattern matching. If it is

absent, the query processor itself determines the dataset to use. The

optional solution-modifier allows sorting of the mappings obtained

from the pattern matching, as well as returning only a specific win-

dow of mappings (e.g., mappings 1 to 10). The result is a list L of

mappings. The output of the SPARQL query is then determined by

the query-type: SELECT, ASK, CONSTRUCT and DESCRIBE.

EXAMPLE 2. Let us consider the RDF graph shown in Figure 2

and three different SPARQL queries over such graph (i.e., we used

simple terms in place of verbose URIs).

Q1: SELECT ?x ?y1

WHERE { ?x type Person. ?x hobby ’CAR’.

?x name ?y1. ?x mbox ?y2. ?x age ?z.

FILTER (xsd:integer(?z) >= 20) }

Q2: SELECT *
WHERE { {?x name ?y} UNION {?z mbox ?w} }

Q3: SELECT ?z ?y ?w

WHERE { ?x type Person. ?x friendOf ?y. ?x name ?z.

OPTIONAL { ?x mbox ?w. } }

Q1 selects URI and name of persons having the hobby of cars,

a name, a mailbox and an age greater (or equal) than twenty. Q2

selects URI and name of persons united to URI and mailbox of per-

sons. Finally Q3 selects the name and (in case) the mailbox of all

persons having a friend (of which the query returns the URI also).

Referring to Example 2, as illustrated above (in particular refer to

definition 5), for instance we model Q1 as 〈SELECT, {?x}, _, GP , _〉
with GP = 〈T, f, _, _〉, T = {〈?x, type, Person〉, 〈?x, hobby, Car〉,
〈?x, name, ?y1〉, 〈?x,mbox, ?y2〉, 〈?x, age, ?z〉} and f = {?z >=
20}.

In [21], the authors analyzed a log of SPARQL queries harvested

from the DBPedia SPARQL Endpoint from April to July 2010. The

log analysis produced interesting statistics, allowing us to simplify

the features of a SPARQL query. In the following we will consider

a query Q as a 2-tuple of the form 〈RC,GP 〉, i.e. only SELECT

queries with result clause and graph pattern, employing the oper-

ators {AND, FILTER, OPTIONAL, UNION}. This simplification does

not compromise the feasibility and generality of the approach.

3. SPARQL DOF MODELING
This section is devoted to the introduction of our approach to

SPARQL selection query treatment. In the rest of the paper we will

use the term “triple” to indicate also a triple pattern (i.e., a triple

can be considered a triple pattern 〈s, p, o〉, where s, p and o are

constants).
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Figure 3: An example of RDF tensor R and corresponding RDF Sets Indexing S, P and O.

3.1 Triple Analysis
A selection query consists of a SELECT clause, followed by a list

of unbounded variables, i.e., variables whose value is not calculated

yet. A WHERE clause states all the conditions the variables must

meet, conjunctively.

DEFINITION 6 (DEGREE OF FREEDOM). The degree of free-

dom of a triple t, dof : T −→ {+3,+1,−1,−3}, is the function

defined as: dof(t) := v−k, being k and v the number of constants

and variables in t, respectively.

The degree of freedom, or DOF, is a measure of a triple’s explicit

constraints, hence a condition with no constraints (i.e., constituted

by variables) has the highest DOF, while one constituted by only

constants has the lowest DOF.

EXAMPLE 3. Referring to Figure 2, the triple t1 := 〈a, hates, b〉
is constituted by three constants, and no variables: its DOF is

dof(t1) = v − k = 0− 3 = −3. A triple as t2 := 〈a, hates, ?x〉
has two constants, and one variable, namely ?x. Its degree of free-

dom is dof(t2) = v−k = 1−2 = −1. With t3 := 〈?x, hates, ?y〉
we express a constraint constituted by one constant, hates, and two

variables. It follows that dof(t3) = v − k = 2 − 1 = +1. Last,

let t4 := 〈?x, ?y, ?z〉 be a triple: it is composed by three variables,

and no constants. Therefore, dof(t4) = v − k = 3− 0=+3.

3.2 Constraint Solving
Due to the fact that triples may have various degrees of freedom,

i.e., they may or may not be bound to constants, in the following

we shall consider each case, and calculate the results of a triple

within our tensorial framework. In particular we employ the vec-

tor specification of Kroneker tensor, commonly known as Kroneker

delta (δ). For instance, given the RDF tensor Rijk, the notation δ2i
means that each component in a position different from 2 has value

0, while the component in position 2 has value 1. The number of

components in δ2i is equal to the size of the dimension i in Rijk.

Referring to the RDF tensor of Figure 3, δ2i = (0, 1, 0). For the

sake of conciseness, we employ a simplified Einstein’s summation

convention: if two adjoined entities share a common index, a sum-

mation is implicitly intended, e.g., Rijk δ
2
i :=

∑
i
Rijk δ

2
i .

Degree −3. A triple t with dof(t) = −3, is by definition bound

to three constants c1 ∈ S, c2 ∈ P , and c3 ∈ O, and therefore the

constraint is computed as Rijk δ
S(c1)
i δ

P(c2)
j δ

O(c3)
k .

Degree −1. A triple t with dof(t) = −1 possesses two constant

values, c1, and c2, whose domains are associated with their respec-

tive indices i1 and i2. The results are hence given by Rijk δ
K1(c1)
i1

δ
K2(c2)
i2

with K1,K2 ∈ {S,P,O}. The result of such computation is a vec-

tor bound the only variable present in the triple, and, with the rule

notation, it may take the form of a list of values.

Degree +1. A triple t with dof(t) = +1 present two variables,

and a single constant c, with the index ic associated to its do-

main. So, we may compute the constrains as Rijk δ
K(c)
ic

with

K ∈ {S,P,O}. The above equation yields a rank-2 tensor, or in

other words, a matrix, and promptly interpreted as a list of couples

when employing the rule notation.

Degree +3. A triple t with dof(t) = +3 is associated to no con-

stants, and therefore its result is unbounded, i.e., it is computed by

returning Rijk.

3.3 Conjunctive Operations
A list of triples in the set T of a given SELECT query must be

satisfied conjunctively.

DEFINITION 7 (DISJOINED TRIPLES). Let t1, t2 ∈ T be two

triples; t1 and t2 are disjoined if they share no common variables.

With the above definition, we are able now to focus on the only

two cases that may present in a selective SPARQL query.

Disjoined Triples. Given two disjoined triples, their conjunction

is simply the union of their bounded variables. By definition, if a

variable is bound to an empty set, the query yields no results.

Conjoined Triples. Sharing at least one variable, two conjoined

constraints t1 and t2 produce their results by applying the Hadamard

product (element-wise multiplication denoted by ◦) on the com-

mon variables: being u = (ui) and v = (vi) we have z = (zi) =
u ◦ v := (ui · vi).

EXAMPLE 4. With reference to Figure 2, let t1 and t2 be two

conjoined triples, with t1 := 〈?x, friendOf, c〉, and t2 := 〈a, hates, ?x〉.

The first triple will be computed as t1 := Rijk δ
P(friendOf)
j δ

O(c)
k ,
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Figure 4: Triples by their degree of freedom in an execution

graph. From left to right, we have DOFs −3, −1, +1, and +3.

which yields the vector t1 := {{S(b)} → 1}. Analogously, t2

will give the result t2 := Rijk δ
S(a)
i δ

P(hates)
j = {{O(b)} → 1}.

Hence, t1 ◦ t2 = {{S(a)} → 1} is the final result, i.e. t1 and t2
have b in common. Conversely, if we have t2 := 〈a, friendOf, ?x〉,
this will yield no results, since t2 := ∅, and therefore t1 ◦ t2 = ∅.

Anticipating an implementation aspect, we highlight the fact that

conjoined triples may be computed sequentially for each value in a

variable. In other words, if we have a shared variable ?x to which

there is associated the set of values {v1, v2}, the query shall be

processed for v1, and separately for v2.

4. QUERY ANSWERING
Given a query, we may now proceed in describing a suitable

scheduling algorithm for the analysis of all triples.

4.1 Query Scheduling
Let us first recognize that the final purpose of a scheduling is

to determine the order of execution of each triple. In turn, this

will bind all the variables in the query to their respective values, if

any. The degree of freedom of each triple is the primary tool for

determining a sequence in which constraints should be solved: it

indicates the priority of each triple, with lowest DOFs associated to

higher priorities. A directed acyclic graph (DAG) may represent an

algorithm [3], and in our case, will be employed to visually select

all triples for execution.

DEFINITION 8 (EXECUTION GRAPH). Given a set T of triples,

an execution graph on T is a weighted directed acyclic graph EG =
(N,E). N is the set of nodes resulting from Nt ∪Nc ∪Nv , where

Nt is the set of triples in T, Nc and Nv are the sets of constants and

variables associated to the triples of T, respectively. E is the set of

weighted edges connecting triples to their respective constants and

variables, with weights representing the domain (i.e., S, P or O)

of the ending node.

In order to enhance readability, we present the execution graph

in a three-layered fashion, as depicted in Figure 4. The center layer

contains all triples Nt, the top layer the constants Nc, and the bot-

tom layer the variables Nv .

EXAMPLE 5. With reference to the query Q1 of Example 2 and

Figure 4, we rewrite Q1 as follows. The triple t1 := 〈?x, type, Person〉
has DOF −1 and is represented by the second graph of Figure 4,

with c1 = type, c2 = Person, and their respective weights are

w1 = P , w2 = S, and w3 = O. Hence, the computation of t1 is

given by Rijk δ
P(type)
j δ

O(Person)
k , giving birth to a vector of ele-

ments, bound to the variable ?x. The triple t2 := 〈?x, hobby, car〉
has DOF −1 and is represented similarly to t1. Therefore we may

compute t2 as Rijk δ
P(hobby)
j δ

O(car)
k . The triples t3 := 〈?x, name, ?y1〉,

t4 := 〈?x,mbox, ?y2〉, t5 := 〈?x, age, ?z〉 have DOF +1 and are

represented by the third graph of Figure 4. For instance, referring

to t3, we have only one constant c1 = name with weight w2 = P ,

?x

t1

persontype

S

P O

t2

carhobby

S

P O

t3

name

S

P

O

?y1

t4

mbox

S

P

O

?y2

t5

age

S

P

O

?z

Figure 5: An example of execution graph.

and two variables x1 = ?x and x2 = ?y1; their respective weights

are w1 = S, w3 = O. Hence, t3 is computed as Rijk δ
P(name)
j :

the matrix resulting from the computation is the set of couples as-

sociated to the variables ?x and ?y1. Figure 5 shows the final

execution graph built from Q1.

The scheduling for the execution of a SELECT SPARQL query is

therefore dynamically determined. In our framework, given a set T

of triples, the scheduling algorithm can be sketched as follows:

1. Determine the DOF of each triple ti ∈ T;

2. Select the triple t̃ ∈ T with lowest DOF;

3. Execute t̃ as described in Section 3.2;

4. Bind all variables in the triples of T conjunctively;

5. Remove t̃ from the list;

6. If T = ∅ stop; else proceed to step 1.

In the previous scheduling schema, we may encounter triples

with the same DOF. In this case, in Step 2 we shall select the triple

which raises the DOF of the largest numer of triples in a query,

excluding itself. Suppose for instance that our triple patterns are

as follows: ?x name ?y, ?x hobby ?u, ?u color ?z, and finally the

pattern ?u model ?w. In the example we may notice as every triple

has DOF equal to +1. However, analyzing the prospect DOFs, we

notice as the first will promote only the second query through ?u,

both the third and fourth will affect two patterns—the second and

fourth—while the second will affect all queries, and hence it is se-

lected for processing.

EXAMPLE 6. This example will elucidate the process of query

answering via DOF analysis. With reference to the RDF tensor R
described in Figure 3, let the SPARQL query under scrutiny be Q1

= ?x type Person. ?x hobby ’CAR’. ?x name ?y1. ?x mbox ?y2.

?x age ?z.; as discussed above, we have five triples t1, t2, t3, t4,

and t5. Given our five constraints we hence proceed in analyzing

their degrees of freedom, resulting in dof(t1) = dof(t2) = 1, and

dof(t3) = dof(t4) = dof(t5) = +1. We may proceed now in ex-

ecuting the query. First, let us remind that any variable is currently

unbounded, or in other words, unassociated to any value. The first

triple to be computed is between t1 := 〈?x, type, Person〉 and

t2 := 〈?x, hobby, car〉, having the lowest value of DOF, equal to

−1. In this case we start from t1. Therefore we determine the val-

ues associated to this constraint. This triple produces a vector of

values to be bound to ?x:

t1 := Rijk δ
P(type)
j δ

O(person)
k =

= { {S(a)} → 1, {S(b)} → 1, {S(c)} → 1 } .

This computation returns the set X of values {a, b, c} to be as-

sociated to the variable ?x. Therefore we have to reanalyze the
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degree of freedom of the remaining triples. In this case we have

dof(t2) = −3 and dof(t3) = dof(t4) = dof(t5) = −1, i.e., the

variable ?x is promoted to the role of constant. The next triple to

be computed is t2, having the highest value of DOF, equal to −3.

Therefore, for each xz ∈ X , the triple yields the boolean value

t2 := Rijk δ
S(xz)
i δ

P(hobby)
j δ

O(car)
k = 1 .

Since the outcome of the computation is true for xz ∈ {a, c}, the set

X is filtered accordingly, and the query processing may proceed.

Proceeding our scheduling, t3 has to be processed similarly to t1.

This triple produces a vector of values to be bound to ?y1:

t3 := Rijk δ
S(a)
i δ

P(name)
j ∪Rijk δ

S(c)
i δ

P(name)
j =

= { {O(Paul)} → 1, {O(Mary)} → 1 } .

Owing to the non-emptiness of the previous computation, we pro-

ceed to the last triples t4 and then t5 computed as t3 producing the

vectors of values to be bound to ?y2 and ?z, respectively.

t4 := { {O(p@ex.it)} → 1, {O(m1@ex.it)} → 1,

{O(m2@ex.com)} → 1 } .

t5 := { {O(18)} → 1, {O(28)} → 1 } .

In both the triples all values in the set X , i.e., a and c, provide

non-empty results in the computation. Finally we apply the filter

to the values associated to the variable ?z, i.e., ?z ≥ 20. Conse-

quently, we have to filter t5 to {{O(28)} → 1} and then the set

X , i.e., X = {c}. Since all triples were processed, the scheduling

stops. Moreover we bind the set Y 1 of values associated to ?y1 to

X obtaining {Mary}. Because the result clause of Q1 is ?x ?y1,

we return the so-generated X and Y 1.

In the rest of this section we provide an implementation of our

scheduling algorithm to perform both “conjunctive” and “non-conjuncti-

ve” SELECT SPARQL queries.

4.2 Conjunctive Pattern with Filters
The so-called conjunctive pattern with filters (CPF) uses only the

operators AND and FILTER. Therefore our scheduling algorithm

takes as input a set T of triple patterns t1, . . . , tm, a filter f , a set

Xv of result clause variables ?x1, . . . , ?xn and a RDF tensor R, in

terms of sum of p chunks Ri; p is the number of processes on p
hosts, while Ri is the slice of R corresponding to the set of triples

in the i-th host. The output is a set XI of instances X1, . . . , Xn,

that is, each Xi contains values to be associated to the variable

?xi such that all constraints t1, . . . , tm are satisfied. The set XI is

computed as shown in Algorithm 1.

More in detail, we initialize a map V where the keys are all the

variables occurring in the triples of T while to each key we as-

sociate a set of values, i.e. at the beginning an empty set (lines

[1-2]). The procedure getVariables is responsible to extract

all variables from the triple patterns in T. For instance referring

to the query Q1 of Example 2 on the RDF graph of Figure 2, we

have T = {t1, t2, t3, t4, t5} as described above, f = ?z ≥ 20,

Xv = {?x, ?y1} and the RDF tensor R illustrated in Figure 3.

The map V is initialized to {〈?x,∅〉, 〈?y1,∅〉, 〈?y2,∅〉, 〈?z,∅〉}.

We organize T as a priority queue (i.e. high priority corresponds

to low DOF associated to a constraint t). Then we extract a con-

straint t from T until T is not empty and the computation of t pro-

duces a non-empty result (lines [4-12]). In particular, a broadcast

mechanism sends t and V to all hosts, which compute t on the

Algorithm 1: Execution of a SPARQL query

Input : T = {t1, . . . , tm}, f , Xv = {?x1, . . . , ?xn},
R =R1 + . . . +Rp

Output: XI = {X1, . . . , Xn}

V← ∅;1

foreach ?x ∈ getVariables(T) do V.put(?x,∅);2

proceed← true;3

while (T is not empty) ∧ (proceed) do4

t← T.dequeue();5

broadcast(t);6

proceed← reduce(Application(t, V,Ri), OR);7

if (proceed) then8

Update(T, V);9

Filter(V,f);10

foreach ?x ∈ getVariables({t}) do11

reduce(V.get(?x), sum);12

if (proceed) then13

foreach ?x ∈ Xv do XI ← XI ∪ V.get(?x);14

else XI ← ∅;15

return XI ;16

own R〉. The resulting values associated to the variables occur-

ring in t are included in the set V and then filtered by applying f
(i.e., the procedure Filter is responsible of such task) in terms

of a map operation: being u = (ui) and f a suitable function,

v = (vi) = map(f, u) := ( f(ui) ). Consequently, we update the

DOFs of each triple in T (i.e., the procedure Update is responsi-

ble of such task). At the end, if all triples brought result we return

the sets of values associated to the variables in Xv , otherwise we

return an empty set.

Algorithm 2: Tensor application of a triple

Input : t, V = {〈?x1, X1〉, . . . , 〈?xz, Xz〉},R
Output: boolean

if isVariable(t.s) then S ← V.get(t.s);1

else S ← S ∪ {t.s};2

if isVariable(t.p) then P ← V.get(t.p);3

else P ← P ∪ {t.p};4

if isVariable(t.o) then O ← V.get(t.o);5

else O ← O ∪ {t.o};6

switch dof(t,V) do7

case -38

return CASETHREE(t, S, P , O, V,R);9

case -110

return CASEONE(t, S, P , O, V,R);11

case +112

return CASEMINUSONE(t, S, P , O, V,R);13

case +314

V.put(t.s, getValues(Rijk1̄j 1̄k));15

V.put(t.p, getValues(Rijk1̄i1̄k));16

V.put(t.o, getValues(Rijk1̄i1̄j));17

return true;18

otherwise19

return false;20

The computation of a triple t is performed by the procedure

Application. Since we are in a distributed environment, we

exploit a reduce function that takes as input a set of values and

an operator to combine such values. Since Application returns

a boolean value (i.e. true if the tensor application was able to com-

pute t), the reduce function takes all boolean values from each

host and combine them through the OR logic operator (line [7]).

Similarly, if the result of such reduce is true, then we combine

all the values retrieved for each variable ?x in t by the hosts by re-

ducing them though a sum operator, i.e. union, (lines [11-12]).As

shown in Algorithm 2, it takes as input the triple t, the map V and
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the tensor slice R. In this procedure we have to evaluate the DOF

of t: how many constants (or variables to which there exists a non-

empty set associated in V) and how many variables (to which an

empty set is associated in V). We use the notation t.s, t.p and t.o
to access to subject, property and object of a triple t, respectively.

The procedure isVariable evaluates if a component of t is a

variable: we extract all values associated in the previous compu-

tations and we put them in the sets S, P and O. Otherwise S, P
and O contain the constants t.s, t.p and t.o, respectively. W.r.t the

DOF, we call the corresponding procedure implementing the tensor

application on R.

Case −3. The triple t has DOF −3; in this case we have to filter

all s ∈ S, p ∈ P and o ∈ O such that there does not exist a triple

〈s, p, o〉 in R. As illustrated in Algorithm 3, we iterate on S, P and

O to compute the set D of elements to filter. If all S, P and O are

not empty we can proceed with our scheduling.

Algorithm 3: Case with DOF -3

Input : t, S, P , O, V,R
Output: boolean

D ← ∅;1

foreach s ∈ S do2

foreach p ∈ P do3

foreach o ∈ O do4

ifRS(s)P(p)O(o) = 0 then5

D ← D ∪ {s};6

D ← D ∪ {p};7

D ← D ∪ {o};8

else9

D ← D − {s};10

D ← D − {p};11

D ← D − {o};12

S ← S −D;13

P ← P −D;14

O ← O −D;15

if isVariable(t.s) then V.put(t.s,S);16

if isVariable(t.p) then V.put(t.p,P);17

if isVariable(t.o) then V.put(t.o,O);18

return (S 6= ∅ ∧ P 6= ∅ ∧ O 6= ∅);19

Case −1. The triple t has DOF −1; in this case t provides only one

variable. As shown in Algorithm 4, the procedure roleVariable

evaluates which component of t is a variable (i.e., ’s’ for sub-

ject, ’p’ for property, ’o’ for object). We have to compute the

application Rijk δ
K1(c1)
i1

δ
K2(c2)
i2

on the two constants c1 and c2
of t. For instance if roleVariable(t) is ’s’ then we employ

the constants p ∈ P and o ∈ O (i.e., coming from the previous

computations) and we compute Rijk δ
P(p)
j δ

O(o)
k . The procedure

getValues retrieves the values associated to the resulting vector

and put them in the set X . Finally we associate X to the variable

t.s in V. If the resulting set X is not empty we can proceed with

our scheduling.

Case +1. The triple t has DOF +1; in this case t provides only one

constant. As shown in Algorithm 5, the procedure roleConstant

evaluates which component of t is a constant.

We have to compute Rijk δ
K(c)
ic

. For instance if roleConstant(t)

is ’s’, we have to extract all predicates and objects associated to

the elements e ∈ S (coming from the previous computations in

case). Therefore we compute RS(e)jk1̄k and RS(e)jk1̄j ; RS(e)jk

returns a matrix fixing the dimension i to S(e) while 1̄j (1̄k) is a

vector with all components 1 and with length equal to the size of

Algorithm 4: Case with DOF -1

Input : t, S, P , O, V,R
Output: boolean

X ← ∅;1

switch roleVariable(t) do2

case ’s’3

foreach p ∈ P do4

foreach o ∈ O do5

X ← X ∪ getValues(Rijkδ
P(p)
j

δ
O(o)
k

);6

V.put(t.s,X);7

case ’p’8

foreach s ∈ S do9

foreach o ∈ O do10

X ← X ∪ getValues(Rijkδ
S(s)
i

δ
O(o)
k

);11

V.put(t.p,X);12

case ’o’13

foreach s ∈ S do14

foreach p ∈ P do15

X ← X ∪ getValues(Rijkδ
S(s)
i

δ
P(p)
j

);16

V.put(t.o,X);17

otherwise18

return false;19

return X 6= ∅;20

the dimension j (k). All the properties (E1) and objects (E2) are

then associated to t.p and t.o in the map V. If E1 and E2 are non

empty our scheduling can proceed.

Case +3. If the triple t has DOF +3 we have to extract all sub-

jects (Rijk1̄j 1̄k), properties (Rijk1̄i1̄k) and objects (Rijk1̄i1̄j)

from R.

4.3 Non-Conjunctive Pattern with Filters
The so called non conjunctive pattern with filters (non-CPF) em-

ploys OPTIONAL and UNION, beyond AND and FILTER. In this case

our scheduling algorithm has to perform disjoined triples.

Union. Given a query 〈RC,GP 〉 with GP = 〈T, f, _, U〉 (i.e.,

U = 〈TU , fU , _, _〉), we perform our scheduling algorithm on

the triples of both T and TU , separately. Finally we make the

union of all XI . For instance let us consider the query Q2 of

Example 2. We have T = {t1} and TU = {t2}, where t1 :=
〈?x, name, ?y〉 and t2 := 〈?z,mbox, ?w〉. From T we generate

XI = {{a, b, c}, {Paul, John,Mary}} while from TU we have

XI = {{a, c}, {p@ex.it,m1@ex.it,m2@ex.com}}.

The final result is XI = { {a, b, c}, {Paul, John,Mary},
{ p@ex.it, m1@ex.it,
m2@ex.com} }.

Optional. Given a query 〈RC,GP 〉 with GP = 〈T, f, OPT, _〉
(i.e., OPT = 〈TOPT , fOPT , _, _〉), we perform our scheduling al-

gorithm on the triples of both T and T∪TOPT , separately. Finally

we make the union of all XI . For instance let us consider the query

Q3 of Example 2, we have T = {t1, t2, t3} and TOPT = {t4},

where t1 := 〈?x, type, Person〉, t2 := 〈?x, friendOf, ?y〉, t3 :=
〈?x, name, ?z〉 and t4 := 〈?x,mbox, ?w〉. From T we generate

XI = {John,Mary}, {b, c}}, while from T ∪ TOPT we have

XI = {{Mary}, {b}, {m1@ex.it, m2@ex.com}}. The final re-

sult is XI = {{John,Mary}, {b, c}, {m1@ex.it, m2@ex.com}}.

Of course, both the graph patterns U and OPT can be more

complex, i.e. with other UNION or OPTIONAL statements; in this

240



Algorithm 5: Case with DOF +1

Input : t, S, P , O, V,R
Output: boolean

E1 ← ∅;1

E2 ← ∅;2

switch roleConstant(t) do3

case ’s’4

foreach e ∈ S do5

E1 ← E1 ∪ getValues(RS(e)jk1̄k);6

E2 ← E2 ∪ getValues(RS(e)jk1̄j);7

V.put(t.p, E1);8

V.put(t.o, E2);9

case ’p’10

foreach e ∈ P do11

E1 ← E1 ∪ getValues(Ri P(e)k1̄k);12

E2 ← E2 ∪ getValues(Ri P(e)k1̄i);13

V.put(t.s, E1);14

V.put(t.o, E2);15

case ’o’16

foreach e ∈ O do17

E1 ← E1 ∪ getValues(Rij O(e)1̄j);18

E2 ← E2 ∪ getValues(Rij O(e)1̄i);19

V.put(t.s, E1);20

V.put(t.p, E2);21

otherwise22

return false;23

return (E1 6= ∅ ∧ E2 6= ∅);24

case we apply the above procedure recursively. Concluding, once

our scheduling algorithm produced XI , we demand to a front-end

task the presentation of results in terms of tuples, conforming to the

result clause of the query.

5. IMPLEMENTATION
Our prime objective is to provide a general storage, in memory

data structures and operators for distributed query processing in our

framework. As detailed in Section 7, we make use of a clustering

file system, i.e., the Lustre [15] file system. In our system we were

not allowed low-level administration, and therefore we could not

tune Lustre for optimal performance by imposing ad-hoc parame-

ters: we therefore chose a file format that could exploit a parallel

distributed access on a shared file system, in particular, we chose

the Hierarchical Data Format version 5, or HDF5. The HDF5 data

format [10] is a binary storage that allows a hierarchical organi-

zation of large datasets. It supports platform-independent binary

data types, multidimensional arrays, and grouping in order to pro-

vide more articulated data structures. In comparison to standard

DBMSs, recent developments in the analysis of biological dataset

highlighted that databases are effective in dealing with string-based

data, whereas management is more difficult for complex numeri-

cal structures (cf. Millard et al., Nature [17]). Limits of HDF5

on the top of a Lustre file system is beyond present-day realistic

constraints: the maximum archive size is imposed by HDF5, 1018

bytes, or 1000 PB.

Permanent Storage. Several data structures have been proposed

for (sparse) tensors, i.e., multidimensional arrays [24]. A common

representation for sparse matrices is the Compressed-Row Storage

format, or briefly CRS, with its dual CCS—Compressed-Column

Storage (cf. [6]). Such matrices with nnz non-zero entries, are rep-

resented by means of three different arrays: one of length nnz rep-

resenting all stored entries, in row-major order for CRS (column-

major for CCS); one array of length equal to the number of rows,

Header

Literals

RDF Tensor

root

...

{s1, p1, o1}

{s2, p2, o2}

S P O

Figure 6: Data storage within the HDF5 file format.

containing the indexes of the first element of each row (or column);

finally, the column index vector of each non-zero element. Liter-

ature describes numerous data structures related to CRS, aimed at

tensor representation: in essence, elements are stored by sorting in-

dexes, and subsequently memorizing index vectors as CRSs, a tech-

nique commonly known as slicing. It is clear as the order of sorting

is crucial: being Rijk a tensor sorted on the i-th coordinate, cal-

culating Rijkvi is optimized, but Rijkvk is not [2]. Moreover, all

CRS descendants suffer from the same drawbacks of their ancestor:

they highly depend on the assumption that elements are evenly dis-

tributed among rows. Moreover, such data structures are bounded

to particular dimensions of a tensor, or in simpler terms, chang-

ing the size of a coordinate—e.g., introducing a new property—is

a burdensome operation (cf. [14]).

We therefore chose another common data format to model RDF

graphs as tensors, the Coordinate Sparse Tensors [2], or CST. This

format, already introduced in Section 2, memorizes tensors as a list

of tuples: we memorize a list of nnz entries, describing the en-

try value and coordinates, parallel to the description illustrated in

Figure 3. The main advantage of this organization is its simplicity

and adaptability: it is order independent with respect to the RDF

tuples, allows fast parallel access to data, requires no particular in-

dex sorting on coordinates, and allows run-time dimension changes

with the addition of new entries.

As previously said, we chose HDF5 as the hierarchical perma-

nent storage medium. The root of the HDF5 storage will contain a

header with pointers to two main data structured: the Literals list

and the RDF tensor itself. The former, as exemplified in Figure 6,

contains the list of all literals needed by a user to identify objects in

the RDF graph: in other words, it incorporates the list of literals and

constants found in RDF groups S, P , and O, hence, it implicitly

defines S, P, and O. The latter group is the RDF tensor, stored as a

list of triples by means of Coordinate Sparse Tensor representation.

By definition if a triple is not present in the list, then its associated

boolean value is false, hence omitted.

Parallel Operations. Our storage exploits the performance boost

obtainable by a binary interface and numerical data. We are able,

therefore, to split data over different processes, so that I/O overhead

may be further ameliorated. The CST data structure does not rely

on any particular ordering, and therefore given p processes, and

being n the number of triples stored in the RDF tensor, we may

simply distribute evenly n/p 3-tuples on each process, owing to the

associative and distributive properties of linear forms. In fact, given

Rijkvℓ, with ℓ ∈ {i, j, k}, it is perfectly licit to obtain the result as

Rijkvℓ =

(
p∑

z=1

Rz
ijk

)
vℓ =

p∑

z=1

(
Rz

ijk vℓ
)
, (1)
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typedef __uint128_t rdft;

// Returns an 128-bit integer from components

inline rdft toStorage(long s, long p, long o)

{

return (static_cast<rdft>(s) << 0x4E) |

(static_cast<rdft>(p) << 0x32) |

(static_cast<rdft>(o));

}

auto it = std::find_if(p.begin(), p.end(),

[](rdft d){ return d &

toStorage(42, 0xFFFFFFF, 256); });

Figure 7: A representative search with 128-bits integer encod-

ing, searching for a triple matching 〈S−1(42), ?x, O−1(256) 〉.

being Rz
ijk the z-th tensor partition, i.e., a set of n/p triples as-

signed to each process. As the reader may perceive, a parallel im-

plementation of all the operators introduced in the previous sections

is straightforward, being inherently data-parallel [3].

We remind that our environment shall handle highly unstable

data-sets, and as such we do not perform any indexing, as said

before. Therefore, each and every computational node in our en-

vironment will read a portion of all RDF triples independently of

any order, i.e., as they appear in the dataset. Having access to the

Lustre distributed file system, each node in the cluster may read its

contiguous portion of data, i.e., z-th processor will read n/p triples,

with offset equal to zn/p, with z ∈ N ≤ p being the processor

unique id, and p being equal to the number of available processes.

Hence, each process will hold a fragment of the whole tensor R,

being the part in itself a valid sparse tensor.

Equation (1) shows that the application of a tensor to a vector

may be conducted independently on each process, multiplying the

partial tensor Rz with the vector v. In order to reconstruct the

complete result R v, we shall sum all the contribution computed

by each process, an operation that, in distributed terms, is named

reduction. The reduction operator combines all data from every

process with an associative operation, in our case, we employ re-

ductions over boolean rings and vector spaces (cf. Algorithm 1),

and are carried on communicating among processes using binary

trees [22].

Tensor Application. Our implementation has the primary objec-

tive of exploiting the underlying hardware for accelerating tensor

applications. This paragraph briefly describes the implementation

of tensor application described in Section 3.2, and leveraged on

each computational node as reported in the previous paragraph.

The tensorial framework we developed relies on the latest ISO

C++11 specification, utilizing an unordered vector as the main com-

putational node in-memory data structure. The vector contains all

triples stored in a single computational node, encoded as a single

128-bit unsigned integer; each integer is decomposed bit-by-bit,

i.e., interpreted as a sequence of bits representing, in order, S, P,

and O. In our implementation, we reserved 50 bits for subject

and object, and 28 bits for the property, as detailed in the function

toStorage in Figure 7. Applying the tensor to a vector falls into

one of the four cases exposed in Section 3.2, dependently on each

triple pattern’s degree of freedom: each DOF case shall multiply

the tensor with one or more Dirac deltas (i.e., it is a generalization

of Kronecker delta). However, we may conduct those operations si-

multaneously by scanning the vector for matching triples, encoded

in a single 128-bit integer.

Scanning the vector, which is guaranteed to be allocated in a

single contiguous block of memory, leverages memory caches and

minimizes cache misses. In other words, the naïve data structure

allows us to employ a simple bit-wise cache-oblivious search al-

gorithm [7]. In order to optimize queries, searching is performed

by utilizing the bit-wise and operator: a SPARQL triple pattern is

encoded as a single 128-bit integer, shifting their numerical values

and or-ing them; free variables, as for instance in Figure 7, are

represented by a sequence of bit set to 1. Our implementation op-

timises further comparisons by exploiting CPU-level SSE2/SSE3

instructions, available on every modern processors, and used as ac-

celerators in several computational fields, as for instance bioinfor-

matics or databases. Hence, a triple 〈s, p, ?x〉 is encoded combin-

ing S
−1(s), P−1(p), and a sequence of 50 bit set in a single 128-bit

integer number, treated via XMM 128-bit capable registers.

6. THEORETICAL ANALYSIS
The ensuing paragraphs analyze the theoretical complexity of

all the operations involved in SPARQL queries, according to Sec-

tions 3 and 4. In the following, we will employ the notation nnz(M),
with M being the rank-3 RDF tensor under analysis, denoting the

number of its non-zero values—analogously nnz(v) yields the num-

ber of non-zero entries of a vector v.

Insertion. The assembly of a sparse tensor requires the basic oper-

ation of inserting an element into the list of non-zero values, if not

present. The operation has therefore a complexity of O (nnz(M)),
and O (nnz(v)) for vectors.

Deletion and Update. Such basic actions mimic the above in-

sertion operation, and therefore have an asymptotic complexity of

O (nnz(M)).

Hadamard Product. The Hadamard product of two vectors u ◦ v
has a complexity of O (nnz(u) nnz(v)).

Tensor Application. For a suitable vector v, the tensor application

on the ℓ-th dimention Mijkvℓ, with ℓ ∈ {i, j, k}, has asymptotic

complexity of O (nnz(M)), as detailed in [2].

Mapping. Mapping a function on a tensor or a vector, i.e., filter-

ing information, has clearly a linear complexity O(nnz(M)) and

O(nnz(v)). All other non-zero element will be mapped once, and

eventually inserted in the result, if the mapping yields a non-false

value.

Scheduling. The naïve scheduler described in Section 4.1 is op-

timal. First, let us consider a (computational) cost function of a

triple pattern. In our environment, where no statistical information

about the SPARQL dataset is available, we may assume the degree

of freedom of each triplet as an indicator of the supposed computa-

tional cost. Let s∗ = {s1, . . . , st} be the optimal scheduled triple

patterns in a SPARQL query, i.e., the scheduling with the minimal

cost; if the actual scheduling s differs from s∗ therefore at least one

step i, the algorithm chose a different triple pattern, i.e., si 6= s∗i ,

with dof(si) > dof(s∗i ). However, this contradicts the step 2 of

the algorithm presented in Section 4.1: if this were the case, the

chosen scheduled triplet would have been s∗i , hence, we have that

necessarily s∗ = s.

7. RESULTS
We implemented our framework into TENSORRDF, a C++ sys-

tem using OpenMPI v1.8 library for answering SPARQL queries

over RDF datasets. We performed a series of experiments aimed at
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Figure 8: Data loading times in seconds (a) and query memory

footprint expressed in MB (b). Light gray bars refer to system

memory overhead, while dark gray ones show data set size.

evaluating the performance of our approach, with the main results

detailed in this section.

Benchmark Environment. We deployed TENSORRDF on a clus-

ter, wherein each machine is supported by 48 GB DDR3 RAM, 16

CPUs 2.67 GHz Intel Xeon (i.e., each with 4 cores and 8 threads),

running Scientific Linux 5.7, with the TORQUE Resource Man-

ager process scheduler. The system is provided with the Lustre

file system v2.1, coupled with HDF5 library v1.8.7. The perfor-

mance of our systems has been measured with respect to data load-

ing, memory footprint, and query execution time with reference

to z processes running on z hosts. We evaluated the performance

of TENSORRDF comparing with centralized triple stores Sesame,

Jena-TDB, and BigOWLIM, and open-source systems BitMat [1]

and RDF-3X [18], as well as distributed MapReduce-RDF-3X [11],

Trinity.RDF [30] and TriAD-SG [8] (i.e., since neither Trinity.RDF

and TriAD are openly available, we will refer to the running times

reported in [30] and [8]).

In our experiments, we employed the popular LUBM synthetic

benchmark (i.e. LUBM-4450 which consists of about 800M triples)

and two real-life datasets: DBPEDIA v3.6, i.e., 200M triples loaded

into the official SPARQL endpoint, and BTC-12, the dataset of

2012 Billion Triples Challenge, that is more than 1000M triples.

For each dataset we involved a set of test queries. For DBPEDIA

we wrote 25 queries of increasing complexity (available at https:

//www.dropbox.com/sh/pz0i67s9ohbpb9t/oEGo-J8yui). Such queries in-

volve SELECT SPARQL queries embedding concatenation “ . ”,

FILTER, OPTIONAL and UNION operators. We use such dataset for

comparison with centralized approaches. In this case, we set up

TENSORRDF on a single machine. Referring to BTC-12, we ex-

ploit the test queries defined in [18]; in both LUBM-4450 and

BTC-12 we have SELECT SPARQL queries involving only con-

catenation. This two last datasets are used for comparison with

distributed approaches.

Loading and Memory Footprint. Referring to data management,

we are able to achieve three main goals. First, we are able to per-

form loading without any particular relational schema, when com-

pared to triple store approaches, where a schema coupled with ap-

propriate indexes have to be maintained by the system. Second,

owing to the flexibility of CST we are capable of modifying sub-

stantially the tensor dimension, i.e., introducing novel literals in ei-

ther RDF sets is a trivial operation: whereas a DBMS must perform

a re-indexing, we may carry this operation without any additional

overhead. As last objective, owing to the distributivity and associa-

tivity properties of our theoretical model, we are able to distribute

data and computational power over different hosts, allowing also

parallel access to the data. In this case, we refer to a 12-server

cluster deployment. Data loading times are 45, 110 and 130 sec-

onds for DBPEDIA, LUBM-4450, and BTC-12, respectively. In

particular, as showed in Figure 8(a), data loading times are 0.395,

6.194, 21.068, and 129.699 seconds, for all examined dimensions

in BTC-12. Another significant advantage of our system relies in

memory consumption. In particular, always referring to a 12-server

cluster deployment, the overall memory overhead needed to main-

tain a distributed tensor representation of RDF data almost con-

stant, and amounts to circa 1 MB of RAM. Referring to BTC-12,

the total distributed memory consumption for our tests were 549.3
MB, 5.391, 44.121, and 332.918 GB for all examined dimensions;

both memory overhead and RAM occupation are depicted in Fig-

ure 8(b). On average, all triple store systems require a data space

10 times greater, BitMat 5 times greater, RDF-3X, Trinity.RDF and

TriAD-SG 2-3 times greater.

Query Analysis. We ran the queries ten times and measured the

average response time (including the I/O times) in ms. On disk-

based systems, we performed both cold-cache and warm-cache ex-

periments. Figure 9 illustrates the response times on DBPEDIA

in a 1-server cluster (i.e., centralized environment). On average,

Sesame and Jena-TDB perform poorly, BigOWLIM and BitMat

better, and RDF-3X is competitive. TENSORRDF outperforms all

competitors, in particular RDF-3X by a large margin. TENSOR-

RDF is 18 times better than RDF-3X, 128 times on the maxi-

mum (i.e., Q21). In particular the queries involving OPTIONAL and

UNION operators (e.g., Q20) require the most complex computa-

tion: triple stores, i.e., BigOWLIM, Sesame and Jena-TDB, de-

pend on the physical organization of indexes, not always matching

the joins between patterns. RDF-3X provides a permutation of all

combinations of indexes on subject, property and object of a triple

to improve efficiency. However queries, embedding OPTIONAL and

UNION operators in a graph pattern with a considerable size, re-

quire complex joins between huge number of triples (i.e., Q20) that

compromises the performance. On the other hand, we exploit the

sparsity of our tensor and compute in parallel map functions, ten-

sor applications, and Hadamard products. Another strong point of

our system is a very low consumption of memory for query execu-

tion, due to the sparse matrix representation of tensors and vectors.

Figure 10 shows the memory usage (KB) to query DBPEDIA in a

1-server cluster. On the average, all queries (also the most com-

plex) require very few bytes of memory (i.e., dozens of KBytes),

whereas all competitors require dozens of MB.

As distributed systems, we measured times for TENSORRDF,

TriAD-SG (i.e., TriAD using Summary Graph), Trinity.RDF and

MapReduce-RDF-3X (simply MR-RDF-3X) on a 12-server cluster

with 1GBit LAN connection for both LUBM-4450 and BTC-12.

We highlight that we used a set of SELECT queries embedding only

concatenation, on which competitors exploit own physical index-

ing in a profitable way. Figure 11 presents the results, showing

that our system performs 9 times better than MR-RDF-3X and 5

times better thanTrinity.RDF for LUBM-4450, while 100 times

better than MR-RDF-3X and 1,5 times better thanTrinity.RDF for

BTC-12. TriAD-SG is the most competitive system: however for

queries non selective (i.e. LUBM-4450) our system is comparable

to TriAD-SG, while for selective queries (i.e. BTC-12) our sys-

tem outperforms TriAD-SG. This is due by exploiting the algebraic

properties of our tensorial representation that allows us to process

in parallel triples in small chunks and by embedding DOF evalua-

tion to speed-up selective triples execution. Referring to memory

consumption, querying LUBM-4450 and BTC-12 presents a be-

havior (i.e., dozens of KBytes) similar to DBPEDIA, while com-

petitors dozens of MB. For space constraints, we do not report the

diagram.
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Figure 10: Memory Usage to query DBPEDIA in KB.

We also performed warm-cache experiments, but we are unable

to report them due to space constraints; however while TENSOR-

RDF improves performance from milliseconds to microseconds

(e.g., from 1 ms to 0.1 µs), the other competitors improves per-

formance in milliseconds magnitude (e.g., from 100 ms to 1 ms).

As last experiment, we tested TENSORRDF’s scalability, reported

in Figure 12 with a limited representative number of queries (i.e.,

Q3, Q6 and Q7 in BTC-12 since they are the most complex). As

the dimension of our problem increases, from 500MB to 300GB,

the time increases from approximately 10−3 ms, to 101 ms for the

largest dimension, i.e., for a number of triples of 109.
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Figure 11: Response Times in ms on LUBM-4450 (a), and

BTC-12 (b), for MR-RDF-3X (in black), Trinity.RDF (in gray),

TriAD-SG (striped filled) and TENSORRDF (in white).
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Figure 12: Scalability on BTC-12: times (ms) are plotted

against number of triples. Solid, dotted and dashed lines re-

fer respectively to Q4, Q7, and Q8.

8. RELATED WORKS
Existing systems for the management of Semantic-Web data can

be discussed according to two major issues: storage and query-

ing. Considering the storage, two main approaches can be iden-

tified: developing native storage systems with ad-hoc optimiza-

tions, and making use of traditional DBMSs (such as relational

and object-oriented). Native storage systems (such as OWLIM,

or RDF-3X [18]) are more efficient in terms of load and update

time, whereas the adoption of mature data management systems

exploit consolidate and effective optimizations. Indeed, native ap-

proaches need re-thinking query optimization and transaction pro-

cessing techniques. However, the number of required self-joins

makes this approach impractical, and the optimizations introduced

to overcome this problem have proven to be query-dependent, or to

introduce significant computational overhead (cf. [4]).

On the querying side, current research in SPARQL pattern pro-

cessing (cf. [18, 8] and [27]) focuses on optimizing the class of so-

called conjunctive patterns (possibly with filters) under the assump-

tion that these patterns are more commonly used than the others.

Nevertheless, a keen observation of SPARQL queries from real-

life logs [12]showed that non-conjunctive queries are employed in

non-negligible numbers, providing detailed statistics. An interest-

ing approach was given in [1] by Atre et al., which start from a

dense (i.e., not sparse) tensorial representation, and generate all

possible combinations of two dimensional matrices of relations,

named BitMats, discarding some pairings such as Object-Property

“since based on [our] experience, usage of those BitMats is rare”;

finally, they compress row-wise with a RLE scheme, amounting on

a total of 2|P| + |S| + |O| matrices. Query computation require
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significant workload and post-processing.

On the other hand, our approach exploits algebraic properties

for both storage and computation, and owing to the DOF sorting,

is able to schedule triplets in an efficient order; additionally, our

framework may deal with non-conjunctive queries and data change.

As illustrated in Section 7, all the above approaches are optimized

for centralized analysis requiring significant amount of resources,

both in terms of memory and storage. In opposite, Trinity.RDF [30]

and TriAD [8] exploit in-memory frameworks to provide efficient

general-purpose query processing on RDF in a distributed environ-

ment. However, as shown in Section 7, the efficiency on such pro-

posals is strictly depending on the logical and physical organization

of data, and on the complexity of the query. Differently from the

other approaches, TENSORRDF provides a general-purpose stor-

age policy for RDF graphs. Our approach exploits linear algebra

and tensor calculus principles to define an abstract model, inde-

pendent from any logical or physical organization, allowing RDF

dataset to change comfortably and to distribute computation over

several hosts, without any a priori knowledge about RDF dataset

or querying statistics.

9. CONCLUSIONS AND FUTURE WORK
We have presented an abstract algebraic framework for the effi-

cient and effective analysis of RDF data. Our approach leverages

tensorial calculus, proposing a general model that exhibits a great

flexibility with queries, at diverse granularity and complexity lev-

els (i.e., both conjunctive and non-conjunctive patterns with filters).

Experimental results proved our method efficient when compared

to recent approaches, yielding the requested outcomes in memory

constrained architectures. For future developments we are investi-

gating the introduction of reasoning capabilities, along with a thor-

ough deployment in highly distributed Cloud environments.
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