

Buddy Instance - A Mechanism for Increasing Availability
in Shared-Disk Clusters

Anjan Kumar Amirishetty, Yunrui Li, Tolga Yurek, Mahesh Girkar, Wilson Chan, Graham Ivey,
Vsevolod Panteleenko, Ken Wong

Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065, U.S.A.

{Anjan.Kumar.Amirishetty}@oracle.com

ABSTRACT

Oracle’s Real Application Cluster (RAC) allows multiple database

instances to run on different server nodes in a cluster against a

shared set of data files. A critical aspect of an Oracle RAC system

is that of instance recovery. When a node suffers from a hardware

failure, or a database instance suffers from a software failure,

instance recovery is performed by a surviving instance to ensure

that the database remains in a consistent state. High-availability

comes from the surviving database instances, each running on a

surviving node, that are still able to provide database services.

During instance recovery, the set of database resources that are in

need of recovery must be identified and then repaired. Until such

time as the identification of these resources has been done, Oracle

needs to block any requests by database clients to all database

resources. The whole database appears to be frozen during this

time, a period that is called application brown-out. In the interests

of availability it is therefore important that instance recovery

endeavors to keep this period of identification as short as possible.

In doing so, not only is the brown-out period reduced, but also the

overall time to make available those resources that need repair, is

reduced.

This paper describes the use of a Buddy Instance, a mechanism

that significantly reduces the brown-out time and therefore also,

the duration of instance recovery. Each database instance has a

buddy database instance whose purpose is to construct in-memory

metadata that describes the resources needing recovery, on a

continuous basis at run-time. In the event of node or instance

failure, the buddy instance for the failed instance uses the in-

memory metadata in performing instance recovery. The buddy

instance mechanism for single instance failures is available in the

12.2 release of Oracle Database. Performance results show a

significant reduction in brown-out time and also in overall

instance recovery time.

Categories and Subject Descriptors

H.2.4 [Database Management Systems]: Database transaction

processing➝ Database recovery, C.4 [Performance of Systems]:

reliability availability and serviceability

General Terms

Algorithms, Design, Performance

Keywords

Database, Real Application Cluster, Recovery, Availability

1. INTRODUCTION
Oracle RAC [1] transparently extends database applications from

single-node systems to multi-node systems which share the disks

that provide storage for the database. The database spans multiple

hardware systems yet appears as a single unified database to the

application. An instance is a collection of processes and memory

accessing a set of data files. Single-instance Oracle databases have

a one-to-one relationship between the database and the instance.

Oracle RAC environments, however, have a one-to-many

relationship between the database and instances.

Figure 1. Real Application Cluster Architecture

�� ������ �	
��
����
�� �
��� ���� ����	���� ����
�����
�� ��	��� ����� ��������
	����
�	��������� 	�� � ����
��� !�������� "����	�	��� #�!$"%�� &����� ��'�(�� ����� '�
)��
���� �����*� �+$,� -�.'/'.-/�.'��/'.�� 	�� 0
����	����
����	���� !
���
���
	�� 	��
��
��
�
���
��
��1
������������������1��	�����������
2���	11	����
��������'��'
��'���(���

instance 1

 instance 2

 server processes

redo

log

buffer

redo

log

buffer

cache

Fast inter-node messaging

 instance N

datafiles

shared storage

Industrial and Applications Paper

Series ISSN: 2367-2005 680 10.5441/002/edbt.2017.88

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.88

An interconnect serves as the communication path between each

node in the cluster database. Each Oracle instance uses the

interconnect to exchange messages that synchronize each

instance's use of shared resources.

RAC is so called since it transparently allows any database

application to run on a cluster without requiring any application

changes. RAC improves application performance since the

application is executed in parallel across multiple systems. RAC

also improves availability since the application is available as

long as at least one of the cluster nodes is alive.

Each database instance in RAC has its own redo log. The redo log

is a set of files that records all the changes to the database that

have been made by the instance.

An Oracle RAC database is a shared everything database. All data

files and redo log files must reside on cluster-aware shared disks

so that all the instances can access these storage components.

In Oracle RAC, Cache Fusion [3] allows the data blocks to be

shipped directly between Oracle instances through fast inter-node

messaging, without requiring expensive disk I/O. Oracle instances

therefore directly share the contents of their volatile buffer caches

[8], resulting in a shared-cache clustered database architecture.

When some but not all instances of an Oracle RAC database fail,

instance recovery is performed automatically by a surviving

instance in the cluster. Instance recovery ensures that the database

is in a consistent state after such a failure.

Instance recovery is done in two phases. The first phase, cache

recovery or rolling forward [7], involves reapplying (or rolling

forward) all necessary changes recorded in the redo log to the data

blocks of data files. After cache recovery, data files could contain

the changes of transactions that had not yet been committed at the

time of failure.

The second phase of instance recovery, transaction recovery or

rolling back [7], uses changes recorded in the undo segment to

roll back uncommitted changes in data blocks. After transaction

recovery, data files reflect a transactionally-consistent image of

the database at the time of failure.

Figure 2. Recovery Phases: Cache Recovery and Transaction

Recovery

Cache recovery must scan the redo log of each failed instance to

recover the data blocks that were lost when these instances failed.

Cache recovery scans the redo log in two passes [2]. The first pass

constructs the metadata that is subsequently used by the second

pass to speed-up recovery. Section 2 discusses the details of

cache recovery in more detail.

The buddy instance mechanism potentially eliminates the first

pass of cache recovery, thereby improving the performance of

instance recovery.

Each instance in the cluster becomes a protected instance when

another instance is designated to serve it as its buddy instance. As

the protected instance records changes to the database in its redo

log at runtime, its buddy instance proactively scans its log to build

the metadata that the second pass can make use of if a failure were

to happen at this moment. When the protected instance fails, its

buddy instance performs cache recovery for the failed instance

and uses the metadata it has accumulated to shortcut this process.

The rest of this paper is organized as follows. First, the motivation

behind this new technique is described. After this, the existing

two-pass recovery scheme is outlined. Then, the buddy instance

mechanism that optimizes the two-pass recovery scheme for

single instance failure is detailed. Following this there is a

discussion on extending the buddy instance mechanism to multi-

instance failure. Finally a performance study is tabled and related

work is looked at.

2. MOTIVATING USE CASE
A major e-retail customer of the Oracle RAC database has been

impacted by application brown-out that happens during instance

recovery. The vast majority of these failures were single instance

failures. A mechanism was needed to improve availability by

reducing the length of brown-out. It was clear that this use case

was not a specific one and that any improvements made, would

benefit the majority of customers using RAC.

As the number of nodes increase in Oracle RAC database,

probability of node failure increases and there is a need to perform

instance recovery in a seamless manner, without affecting the

database throughput.

The result was the buddy instance functionality, made available in

the 12.2 release of Oracle Database.

3. CACHE RECOVERY
Each Oracle RAC instance is configured with its own cache of

disk buffers which together, form a global buffer cache. In order

to maintain cache coherency across this, global resource control is

needed. The Global Cache Service (GCS) [3] tracks and maintains

the locations and access modes of all data blocks in the global

cache thereby maintaining the consistency of the database at the

cluster level. Database blocks accessed concurrently by cluster

instances have corresponding GCS resources to ensure the same

data block is not updated without coordination across different

instances.

GCS adopts a distributed architecture. Each instance shares the

responsibility of managing a subset of the global cache. GCS

maintains the status of global cache resources to ensure the

overall consistency of database. When one or more instances fail,

Oracle needs to rebuild the global cache resource information.

Only the cache resources that reside on or are mastered by the

GCS on the failed instances, need to be rebuilt or re-mastered.

 redo log undo
 segment

 √
 √

 ?

 ?
 √

 √

 √

 ?
 √ √

 √ √

database database database

Database requiring
instance recovery

 Database with
committed and
 uncommitted
 changes

 Database with
only committed
 transactions

681

3.1 Checkpointing
Cache recovery uses checkpoints to determine the set of changes

that must be applied to the data files. A checkpoint represents the

point at which all changes to the database have been made

persistent.

Each instance in Oracle has its own redo log which is effectively,

an ever-growing list of redo records generated by an instance [4].

The position of each record in the redo log may be identified by

its redo byte address (RBA) [4]. The location of the checkpoint is

identified using the checkpoint RBA. This is the position in the

redo log of an instance at which all changes to data blocks made

by that instance are known to be on disk. Hence, recovery for that

instance needs to recover only those data blocks whose redo

records occur between the checkpoint RBA and the end of the log

[4].

Figure 3. Checkpoint Position in Redo Log

Cache recovery must scan the redo log of each failed instance and

apply the changes that occur between the marker for the last

checkpoint and the end of the redo log.

3.1.1 Instance Checkpoint
The low RBA for a disk buffer is the RBA corresponding to the

first (in-memory) modification of the data block. Oracle Database

maintains a buffer checkpoint queue [4] which contains modified

buffers linked in ascending order of their low RBA. Each buffer

header contains the value of the low RBA associated with the

buffer; this value is set when the buffer is first modified. A buffer

that contains a yet-to-be-changed block does not have a low RBA

in its buffer header and is not linked on the checkpoint queue.

After a changed buffer is written, it is unlinked from its

checkpoint queue.

As buffers from the head of the queue are written to disk, the

instance checkpoint (lowest low-RBA of the modified buffers)

will keep advancing [4]. This lowest low-RBA is referred to as the

current position of the instance checkpoint for the instance. The

instance checkpoint advances the database checkpoint RBA as a

lightweight background activity.

3.1.2 Database Checkpoint
Each change in Oracle is associated with a time, known as the

system change number (SCN). Instance checkpoint is also

associated with a SCN. The database checkpoint in RAC is the

instance checkpoint that has the lowest checkpoint SCN of all the

instances.

3.2 Two-pass Recovery Scheme
Instance recovery for all failed instances is triggered automatically

on a surviving instance. Oracle uses a two-pass database recovery

scheme [2] to recover the changes to data blocks that were lost on

the failed instances. The first pass scans the redo logs of each

failed instance to decide the data blocks that need to be recovered.

This list of blocks is referred to as the recovery set. The second

pass applies redo from the redo logs to the blocks in the recovery

set.

A Block Written Record (BWR) is recorded in the redo log

whenever an instance writes a block to a data file. When the first

pass encounters a BWR, the corresponding data block entry in the

recovery set is removed because it is known that at this point in

time, the block changes have been made persistent on disk. BWRs

allow instance recovery to avoid unnecessary reads of data blocks

that were not modified between being written to disk and the

point at which instance failure occurred. BWRs ensure that the

recovery set constructed by the first pass is much smaller than the

total number of blocks that were actually modified on the failed

instances.

The first and second passes both start at the lowest checkpoint

SCN of all failed instances. The redo records of all the failed

instances are merged in SCN order. In both passes, Oracle scans

the redo until the end of all redo logs for all the failed instances,

proceeding through as many log files as necessary to complete

cache recovery and roll forward the database to the state it was in

at the time of instance failure. Because changes to blocks in the

undo segment are recorded in the redo log, rolling forward the

redo log also regenerates the corresponding undo blocks that

contain a record of changes that need to be undone when

transaction recovery is run to roll back incomplete transactions.

Oracle can initiate the first pass of the recovery process

concurrently with the GCS rebuild process. After the first pass

completes, the database is made available for service to

applications for all but the data blocks impacted by the failure [2]

(that is, for all data blocks but those in the recovery set). The

buddy instance mechanism can potentially eliminate the first pass

thereby making the database available for service almost

immediately.

4. BUDDY INSTANCE MECHANISM TO

HANDLE SINGLE INSTANCE FAILURES
Under the buddy instance mechanism, each RAC instance

becomes a protected instance by virtue of having a designated

instance to serve as its buddy. In a two instance RAC database

shown in Figure 4, instance-1 is designated to serve instance-2 as

its buddy instance and instance-2 is designated to serve instance-1

as its buddy instance. This designation of buddy instances is

referred to as buddy instance map. This is also called as one-on-

one buddy instance map as each protected instance has one

designated buddy instance.

 ? √ √

 Change in data file √ Committed change

 Change not in data file ? Uncommitted change

Instance recovery

 ? √ ?

 √ √

 √

 ?

 ? ?

Checkpoint
position

Writes to the redo log

End of redo
log

682

As changes to the database are recorded at run-time by an instance

in its redo log, a server process in its buddy instance continuously

scans that redo to construct the recovery set. The server process

starts at the checkpoint RBA (referred to as the start RBA) and

scans the redo till the end of the log. By default, the rate at which

this server process scans the redo is adjusted to the ongoing redo

generation rate. This can be overridden by using the

_buddy_instance_num_read_buffers parameter to establish a

constant redo scan rate. This parameter dictates the number of

buffers, each of size 4MB, which will be read and processed

approximately every three seconds. If the value of the parameter

is low, the server process scans less aggressively. This results in

less load on the system but has the disadvantage that the amount

of work required by the first pass of instance recovery may

increase.

Figure 4. Buddy instance map in two instance RAC database

At regular intervals, the server process estimates the amount of

time required for the first pass of instance recovery, if a crash

were to happen at that time. If that amount of time is less than the

value of the _buddy_instance_scan_phase_threshold parameter

(which has a default value of 3 seconds), the redo is not scanned.

For each block in the recovery set, Oracle maintains the last RBA

which refers to the RBA of the last redo record that changed or

created that block. If defined, this RBA must be between the start

RBA and the end of the log.

4.1 Recovery Set Pruning
As the checkpoint of an instance progresses, its buddy instance

must advance its start RBA to that of the instance’s checkpoint

RBA. After advancing this, the recovery set can be pruned by

removing blocks which have a last RBA that is less than the new

start RBA.

4.2 RAC Membership Changes
Oracle RAC Database maintains the buddy instance map and

automatically updates it as and when instances join or leave the

cluster. Instances can be added or taken out of an Oracle RAC

system without shutting the database down. When an instance

joins or leaves the cluster, the buddy instance map must be

dynamically adjusted to reflect the new cluster configuration.

When instance-3 joins the Oracle RAC system shown in Figure 4,

the buddy instance map is updated to that shown in Figure 5.

Here, instance-1 is designated to serve instance-2 as its buddy

instance, instance-2 is designated to serve instance-3 as its buddy

instance and instance-3 is designated to serve instance-1 as its

buddy instance.

In the similar way, when instance-3 leaves the Oracle RAC system

shown in Figure 5, the buddy instance map is updated to that

shown in Figure 4.

Figure 5. Buddy instance map in three instance RAC database

to handle single instance failure

4.3 Handshake with Instance Recovery
When an instance fails, its buddy instance is asked to perform

instance recovery of the failed instance. In the first pass of

instance recovery, the buddy instance uses the recovery set that

was constructed during run-time. If the checkpoint RBA of the

recovery set that was constructed during runtime is behind the

checkpoint RBA as determined by instance recovery, the buddy

instance prunes the recovery set using the checkpoint RBA for

instance recovery. If the buddy instance had not scanned till the

end of the redo log prior to instance failure, it will do so during

the first pass of instance recovery.

GCS can make the global cache available to surviving instances as

soon as the recovery set is constructed by the first pass of instance

recovery. Since Oracle is expected to spend significantly less in

the first pass, the availability of the database is significantly

increased by using the buddy instance mechanism.

5. EXTENDING BUDDY INSTANCE

MECHANISM TO HANDLE MULTI-

INSTANCE FAILURES
The buddy instance mechanism of Oracle RAC currently handles

single instance failure only. This section presents a possible

implementation of the buddy instance mechanism for multi-

instance failures. This does not constitute a commitment by

Oracle to deliver any code or functionality and should not be

relied upon in making purchasing decisions.

 instance 2 instance 1

server processes

recovery set

server processes

recovery set

redo log redo log

buddy designation

 instance 2

 instance 1

server processes

recovery set

redo log

instance 3

683

One possible implementation to handle multi-instance failure is to

give each protected RAC instance more than one buddy instance

each continuously scanning the redo log of the protected instance

during runtime to construct its recovery set. The number of

instances that serve as buddies determines the degree of multi-

instance failure that can be handled while fully getting the benefit

of the buddy instance mechanism. In a RAC of n-instances, each

instance can have up to (n-1) buddies.

The recommended buddies for an instance depend on statistics

such as number of instances that previously failed together and

which instances failed together. It is possible for Oracle Database

to recommend the buddies for each of the RAC instances based on

the statistics that were collected during previous instance failures.

Figure 6. Buddy instance map in three instance RAC database

to handle multi-instance failure

Figure 6 shows an example of a three instance Oracle RAC system

in which a single instance is protected by two buddies. This

system can tolerate up to two instances failing simultaneously,

while still taking advantage of the buddy instance mechanism.

5.1 Recovery Set Pruning
For each protected RAC instance, all its buddy instances must

perform the steps detailed in Section 4.1.

As the checkpoint of an instance progresses, all its buddy

instances must advance the start RBA to that of the instance’s

checkpoint RBA and prune its recovery set by removing the

blocks which have a last RBA that is less than the new start RBA.

5.2 RAC Membership Changes
This is an extension of the RAC membership changes described in

Section 4.2, where instances can be added or taken out of an

Oracle RAC system without shutting the database down.

When an instance joins or leaves the cluster configuration, the

buddy map needs to be updated based on the statistics that were

collected during previous instance failures with the same cluster

configuration.

5.3 Handshake with Instance Recovery
When one or more instances fail, instance recovery is performed

by a surviving buddy instance which has the recovery set for the

most number of failed instances. This instance is designated the

recovery instance. Below is the sequence of events that are

performed on recovery instance during the first pass of recovery.

1. If the recovery instance is the buddy of a failed instance and

it did not scan the redo till the end of the log prior to the

failure, the recovery instance needs to do so now.

2. If the recovery instance does not have the recovery set for a

specific failed instance, it needs to receive the recovery set

from the buddy of that specific instance (if there is one). If

that buddy instance had not scanned the redo till the end of

the log prior to the failure, the recovery instance needs to do

so now.

3. If a failed instance does not have a surviving buddy instance,

the recovery instance needs to scan the entire redo of that

failed instance from the checkpoint of the failed instance to

the end of the log.

4. The recovery instance needs to merge the recovery sets of all

the failed instances.

In the Oracle RAC system shown in Figure 6, if both instance-1

and instance-2 fail, instance recovery needs to be performed by

instance-3 which has the recovery set for both of the failed

instances.

6. PERFORMANCE STUDY
Experiments were conducted to measure the impact on database

throughput and also to measure the acceleration in instance

recovery.

6.1 Impact on Run Time Performance
Experiments were conducted using a TPC-C workload to evaluate

the impact on database throughput with the buddy instance

mechanism enabled.

6.1.1 Hardware Setup
The study was conducted using an Oracle Exadata Database

Machine [6] with an InfiniBand cluster interconnection for Oracle

RAC servers. An X3-2 RAC configuration was used, comprising

two database server nodes, each equipped with 32, 8-core Intel

Xeon processors running at 2.9 GHz and 128 GB of memory.

6.1.2 TPC-C Workload
TPC-C benchmark is the industry standard for evaluating the

performance of OLTP systems [5]. The setup consisted of 1000

warehouses and 512 clients.

CPU utilization at 91%, was not affected when using the buddy

instance mechanism. Not surprisingly however, the number of

reads of the redo log increased.

Figure 7 shows the impact on database throughput for a fully-

cached TPC-C workload (where the buffer cache is sized large

enough to accommodate the entire database), and a partially-

cached TPC-C workload (where the buffer cache is sized at

approximately 20% of the database size). For a fully-cached TPC-

C workload, no impact was observed on database throughput

 instance 2

 instance 1

server processes

recovery set

redo log

 instance 3

684

when the buddy instance mechanism was enabled. Due to the

nature of the workload, around 1% variation is expected across

different runs. The impact on database throughput was less than

2% for the partially cached TPC-C workload.

0

50

100

150

200

250

300

350

400

450

fully-cached partially-cached

tp
m

C
 (

th
o

u
sa

n
d

s)

with buddy instance without buddy instance

Figure 7. Impact on database throughput (tpmC) for a TPC-C

workload

6.2 Acceleration in Instance Recovery

6.2.1 Hardware Setup
This study was also conducted using an Oracle Exadata Database

Machine [6] with an InfiniBand cluster interconnection for Oracle

RAC servers. An X2-8 RAC configuration was used, comprising

two database server nodes, each equipped with 8, 12-core Intel

Xeon processors running at 2.40 GHz, 2 TB of memory and 14

shared storage servers amounting to 200 TB total storage capacity

over a Direct-to-Wire 3 x 36 port QDR (40 Gb/sec) InfiniBand

interconnect.

6.2.2 TPC-C Workload
The TPC-C benchmark application was run to generate a

workload. The FAST_START_MTTR_TARGET parameter [10]

which affects the rate of checkpointing and hence the duration of

instance recovery, was set to its default value of “0” in line with

what is done on most customer systems. After running the TPC-C

benchmark for 27 minutes, an instance was crashed. Figure 8

shows the time taken both by the first pass of instance recovery

and the time taken overall by instance recovery. The time taken

for instance recovery as a whole has been reduced because of the

decrease in the time taken for the first pass.

Without making use of the buddy instance, instance recovery

spent 130 seconds in its first pass when the second pass needed to

apply 11.5 GB of redo. By comparison, when using the buddy

instance mechanism, instance recovery spent only 1 second in its

first pass when the second pass needed to apply a similar amount

of redo.

Since the first pass correlates with brown-out time, the time that

the database was completely unavailable to applications was

reduced from 130 seconds to 1 second.

0

50

100

150

200

250

300

350

400

first pass overall instance

recovery

Elapsed Times

with buddy instance without buddy instance

Figure 8. Elapsed times (seconds) for a TPC-C workload

6.2.3 Results for a Commercial Workload
The experiment was repeated using a real customer workload. The

database consisted of 31 tables and 35 indexes. The total on-disk

size of the database was approximately 200GB. This workload

generated redo by having multiple concurrent users repeatedly

perform updates and inserts into their own tables. An instance was

then crashed. Figure 9 shows the time taken by the first pass and

the time taken overall for instance recovery. This experiment had

set the FAST_START_MTTR_TARGET [10] parameter to 100.

0

10

20

30

40

50

first pass overall instance recovery

Elapsed Times

with buddy instance without buddy instance

Figure 9. Elapsed times (seconds) for a commercial workload

685

Without using the buddy instance, instance recovery spent 20

seconds in its first pass when the second pass needed to apply

1.5GB of redo. By comparison, when using the buddy instance

mechanism, instance recovery spent only 3 seconds in the first

pass when the second pass needed to apply a similar amount of

redo.

Oracle database became available on surviving instances in 3

seconds versus 20 seconds. In addition, the overall time for

instance recovery was reduced from 48 seconds to 29 seconds.

This experiment validates the key claims in this paper by reducing

both the brown-out time and overall time for instance recovery.

7. RELATED WORK
The fast-start fault recovery [10] technology in Oracle Database

allows control over the duration of the roll-forward phase by

adaptively varying the rate of checkpointing. This is applicable

more to crash recovery which takes place when every RAC

instance fails. In Oracle RAC Database, each instance may have

differing amounts of workload and different instances may

perform checkpoint activity at different rates. The database

checkpoint in RAC is the instance checkpoint that has the lowest

checkpoint SCN of all the instances. For instance recovery, the

instance checkpoint determines the set of redo log changes that

need to be applied. Unlike fast-start fault recovery which relies

on the database checkpoint, the buddy instance mechanism relies

on the instance checkpoint and is therefore a more customized

solution for instance recovery in Oracle RAC Database. Since

checkpoint issues disk writes for data blocks, aggressive

checkpoint activity can be detrimental for database throughput.

The buddy instance mechanism only issues disk reads for the redo

log which do not mandate acquisition of locks as no

synchronization is required. The buddy instance mechanism is

therefore less intrusive than using fast-start fault recovery. This

paper recommends that the buddy instance mechanism be used in

conjunction with fast-start fault recovery technology for best

results.

Regarding other database vendors that have a shared disk cluster

database solution, published documentation for both SAP Sybase

ASE Cluster Edition [11] and IBM DB2 pureScale Clustered

Database [12] indicates that neither make use of a scheme similar

to the buddy instance mechanism.

8. CONCLUSION
The availability of a cluster system can be improved by making

use of the buddy instance mechanism1 which significantly reduces

the amount of time the database spends in the first pass of

instance recovery. Since the database can be made available as

soon as the first pass of instance recovery completes, the

availability of the cluster increases significantly. In addition, the

overall time taken for instance recovery is reduced.

9. REFERENCES
[1] Oracle Corporation. Oracle 9i Real Application Clusters

concepts Release 2 (9.2), Part Number A96597-01.

1 The technique presented in the paper has been granted a U.S.

patent.

[2] Building Highly Available Database Servers Using Oracle

Real Application Clusters, An Oracle White Paper, May

2002.

[3] Lahari, T., Srihari, V., Chan, W., Macnaughton, N.,

Chandrasekaran, S. Cache Fusion: Extending Shared-Disk

Clusters with Shared Caches. Proceedings of the VLDB

Conference 2001.

[4] Joshi, A., Bridge, Loaiza, J., W., Lahiri, T. Checkpointing in

Oracle. Proceedings of the 24th VLDB conference 1998.

[5] The Transaction Processing Council. TPC-C Benchmark.

http://www.tpc.org/tpcc/, 2016.

[6] Oracle Exadata Database Machine System Overview

12c Release 1 (12.1), Part Number E51953-14, Feb 2017

[7] Oracle Database Concepts 12c Release (12.1), Part Number

E41396-13.

[8] Bridge, W., Joshi, A., Keihl, M., Lahiri, T., Loaiza, J. The

Oracle Universal Server Buffer Manager. Proceedings of the

23rd VLDB Conference, pp. 590-594, 1997.

[9] Lahari, T., Ganesh, A., Weiss, R., Joshi, A. Fast-Start: quick

fault recovery in oracle, Proceedings of the ACM SIGMOD

international conference on Management of data, 2001.

[10] Oracle9i Database Performance Tuning Guide and Reference

Release 2 (9.2), Part Number A96533-02.

[11] Technical Comparison of Oracle Real Application Clusters

11g vs. IBM DB2 v9 for Linux, Unix, and Windows, An

Oracle White Paper, December 2009.

[12] Adaptive Server® Enterprise Cluster Edition 15.5 Users

Guide, Document ID: DC00768-01-1550-01

686

	Buddy Instance - A Mechanism for Increasing Availability in Shared-Disk ClustersAnjan Kumar Amirishetty, Yunrui Li, Tolga Yurek, Mahesh Girkar, Wilson Chan, Graham Ivey, Vsevolod Panteleen, Ken Wong

