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ABSTRACT

Data- and model-driven computer simulations are increas-
ingly critical in many application domains. These simula-
tions may track 100s or 1000s of inter-dependent parame-
ters, spanning multiple layers and spatial-temporal frames,
affected by complex dynamic processes operating at differ-
ent resolutions. Because of the size and complexity of the
data and the varying spatial and temporal scales at which
the key processes operate, experts often lack the means to
analyze results of large simulation ensembles, understand
relevant processes, and assess the robustness of conclusions
driven from the resulting simulations. Moreover, data and
models dynamically evolve over time requiring continuous
adaptation of simulation ensembles. The simDMS platform
aims to address the key challenges underlying the creation
and use of large simulation ensembles and enables (a) execu-
tion, storage, and indexing of large ensemble simulation data
sets and the corresponding models; and (b) search, analysis,
and exploration of ensemble simulation data sets to enable
ensemble-based decision support.
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1. INTRODUCTION

Data- and model-driven computer simulations are increas-
ingly critical in many application domains.
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Figure 1: Simulation ensembles are (a) multi-
variate, (b) multi-modal (temporal, spatial, hi-

erarchical, graphical), (c) multi-layer, (d) multi-
resolution, and (e) inter-dependent (i.e., observa-
tions of interest depend on and impact each other)

Epidemic Simulation Ensembles: For example, for pre-
dicting geo-temporal evolution of epidemics and assessing
the impact of interventions, experts often rely on epidemic
spread simulation software such as (e.g., GLEaM [2] and
STEM [3]). The GLEaM simulation engine, for example,
consists of three layers: (a) a population layer, (b) a mo-
bility layer which includes both long-range air travel and
short-range commuting patterns between adjacent subpop-
ulations, and (c) an epidemic layer which allows the user to
specify parameters (such as reproductive number and sea-
sonality) for the infectious disease, initial outbreak condi-
tions (e.g. seeding of the epidemic and the immunity profile
of the subpopulation), and intervention measures.

Building Energy Simulation Ensembles: Similarly, ef-
fective building energy management, leading to more sus-
tainable building systems and architectural designs with
monitoring, prioritization, and adaptation of building com-
ponents and subsystems, requires large data-driven simula-
tions involving (a) location and climate information for the
city in which the building is located, (b) building construc-
tion information, such as building geometry and surface con-
structions (including exterior walls, interior walls, partitions,
floors, ceilings, roofs, windows and doors), (c) building use
information, including the lighting and other equipment (e.g.
electric, gas, etc.) and the number of people in each area of
the building, (d) building thermostatic control information,
including the temperature control strategy for each area, (e)
heating, ventilation, and air conditioning (HVAC) operation
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Figure 2: simDMS system overview (instantiated with
epidemic simulation ensembles)
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and scheduling information, and (f) central plant informa-
tion for specification and scheduling of boilers, chillers, and
other equipment. EnergyPlus software, for example, relies
on the description of the building’s physical make-up and
associated mechanical and other systems and includes time-
step based simulation for many energy-related building pa-
rameters [1].

1.1 Challenge: Ensemble based Decisions

While, in most cases, very powerful simulation software
exist, using these simulation software for decision making
faces several significant challenges: (a) Creating correct sim-
ulation models is a costly operation, and it is often the case
that the designed simulation models are incomplete or im-
precise. (b) Also, the execution of a simulation can be very
costly, given the fact that complex, inter-dependent param-
eters affected by complex dynamic processes at varying spa-
tial and temporal scales have to be taken into account. (c) A
third magjor source of cost is the simulation ensemble anal-
ysis: because of the size and complexity of the data and
the varying spatial and temporal scales at which the key
processes operate, experts often lack the means of analyzing
results of large simulation ensembles, understanding relevant
processes, and assessing the robustness of conclusions driven
from the resulting simulations.

As visualized in Figure 1, the key characteristics of the
simulation data sets include the following: (a) multi-variate,
(b) multi-modal (temporal, spatial, hierarchical, graphical),
(c) multi-layer, (d) multi-resolution, and (e) inter-dependent
(i.e., observations of interest depend on and impact each
other). In particular, simulations may track 100s or 1000s
of inter-dependent parameters, spanning multiple layers and
spatial-temporal frames, affected by complex dynamic pro-
cesses operating at different resolutions. Moreover, generat-
ing an appropriate ensemble of stochastic realizations may
require multiple simulations, each with different parameter
settings corresponding to slightly different, but plausible,
scenarios. As a consequence, running simulations and inter-
preting simulation results (along with the real-world obser-
vations) to generate timely actionable results are difficult.

We argue that these challenges can be significantly alle-
viated using a data-driven approach that addresses the fol-
lowing fundamental questions:

e Given a large parameter space and fixed budget of sim-
ulations, can we decide which simulations to execute
in the ensemble? Can we revise the ensemble as we
receive a stream of real world observations?

e Can we compare a large number of simulation en-
sembles and observations (under different parameter
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(a) Query and exploration interface
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(b) Simulation visualization interface

Figure 3: simVIZ simulation query, visualization,
and analysis interfaces (instantiated with epidemic
simulation ensembles): visualizing an epidemic sim-
ulation as a multi-variate time series and the key
robust multivariate (RMT) events [9] identified on
a given simulation

settings) to identify their similarities and differences?
Can we analyze one or more simulation ensembles
to discover patterns and relationships between input
parameters, key events/interventions, and simulation
outcomes? Can we discover key events and summarize
a large simulation ensemble to highlight these events?
Can we classify these key events?

e Can we search and explore simulation ensembles based
on the underlying key events or the overall simulation
similarities? Can we keep track of the most relevant
and most outlier simulations in an ensemble as we re-
ceive a stream of real world observations?

1.2 simDMSOverview

The simDMS system (Figure 2) and its visualization engine
simVIZ (Figure 3) aim at assisting users to explore large
simulation ensembles while limiting the impact of aforemen-
tioned challenges [4, 5, 6, 7, 8]. In particular, simDMS sup-
ports

e analysis and indexing of simulation data sets, includ-
ing extraction of salient multi-variate temporal fea-
tures from inter-dependent parameters (spanning mul-
tiple layers and spatial-temporal frames, driven by
complex dynamic processes operating at different reso-
lutions) and indexing of these features for efficient and
accurate search and alignment;
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FOR $p in fn:collection(’EpidemicSimulationEnsemble’) ~
LET $diseaseModel := $p/project/scenario/model/disease
LET $triggerModel := $p/project/scenario/trigger
LET $epidemicScenario := $p/project/scenario ~
WHERE
$diseaseModel/transmissionRate <= 0.6 and
$diseaseModel/transmissionRate >= 0.3 and
$diseaseModel/recoveryRate = 0.5 and
$triggerModel/@type="Vaccination" and
($epidemicScenario/infector/@targetISOKey="US-CA" or
$epidemicScenario/infector/@targetISOKey="US-NY" ) and
($epidemicScenario/graph = "mobility_graph_7.xml" or
$epidemicScenario/graph = "mobility_graph_8.xml") -
RETURN
$diseaseModel/transmissionRate,
$diseaseModel/recoveryRate,
$epidemicScenario/graph
STATE={AZ,CA,NM};
MODEL={SEIR,SIR};
PROPERTIES={Infected,Incidence,Deaths};
FROM ={01/01/2012 12:00:00}; T0={08/31/2012 12:00:00};
BY={1-D}; FUNCTION ={avg};

Figure 4: A metadata query over an epidemic sim-
ulation ensemble

e parameter and feature analysis, including identification

of unknown dependencies across the input parameters

and output variables spanning the different layers of

the observation and simulation data. These, and the

processes they imply, can be used for understanding

and refining the parameter dependencies and models.

Query and visualization interfaces for the epi-
demic  (epiDMS) and building energy (eDMS)
instantiations of the simDMS platform can Dbe
found at http://aria.asu.edu/epidms and

http://aria.asu.edu/edms, respectively. You can watch a
tutorial at https://youtu.be/9w-4nDhXv3k .

2. DEMONSTRATION SCENARIOS

We will demonstrate the system on (a) epidemic simula-
tion data sets created using the Spatiotemporal Epidemio-
logical Modeler (STEM) [3] and (b) building energy simula-
tion data sets, created using the EnergyPlus building energy
simulation program [1]. The simulations will be stored in
simDMS and will be visually analyzed during the demonstra-
tion using simVIZ.

2.1 Simulation Ensemble Planning

A simulation ensemble (consisting of a set of simulation
instances sampled from an input parameter space) can be
seen as defining an outcome-surface for each of the out-
put variables (such as the number of deaths that will re-
sult from an epidemic): each outcome-surface describes the
probability distribution of the potential outcomes for the
corresponding variable. These simulation ensembles, con-
sisting of potentially tens of thousands of simulations, are
expensive to obtain: therefore we need sampling strategies
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for the input parameter spaces that eliminate irrelevant sce-
narios in such a way that more accurate simulation results
are obtained where they are more relevant. Moreover, these
simulation ensembles need to be continuously revised and
refined as the situation on the ground changes: (a) revisions
involve incorporating real-world observations into existing
simulations to alter their outcomes; (b) refinements involve
identifying new simulations to run based on the changing
situation on the ground. Therefore, we will demonstrate
data-driven sampling strategies to decide (given a budget
of simulations) which simulations to run and incremental
non-uniform sample-based data construction techniques to
revise outcome-surfaces. We will specifically highlight how
to assign utility- and cost-functions for each potential sample
(based on how well the observed data are fitting the previ-
ous simulations, how likely a new simulation at the given
sample improves the accuracy of fit, and how costly the cor-
responding simulation would be) and use these functions to
decide the optimal re-sampling strategy.

2.2 Scenario- and Similarity-based Querying

A basic function of the simDMS system is to retrieve simula-
tions based on a user-specified scenario description. Figure 4
presents a sample query:

e The “FOR” statement allows the user to select the sim-
ulation dataset to query. In this example, the user
focuses on the stored simulation set “EpidemicSimula-
tionEnsemble”.

e The “LET” statement allows the user to associate
variables representing disease and intervention trigger
models with epidemic scenarios.

e The “WHERE” clause allows the user to specify con-
ditions on the simulation models to filter those simu-
lations that are relevant for the current analysis. In
this example, the user specifies that for the returned
simulations, the transmission rate parameter should
be between 0.3 and 0.6, the recovery rate parameter
should be set to 0.5, and that a “vaccination” type trig-
ger should be included in the simulation model. The
user also specifies that epidemic should have started
in California (CA) or New York (NY) and the “mo-
bility_graph_7.xml” or “mobility_graph_8.xml” should
have been used to generate the simulations.

o The “RETURN?” clause lists the simulation parame-
ters to be returned in the result. In this example, the
user is interested in the transmission rate, recovery
rate, the mobility graph for each returned simulation.
In addition, the query asks the system to return the
time series corresponding to the “infected”, “incidence”,
and “deaths” simulation output parameters for Arizona
(AZ), California (CA), and New Mexico (NM).

e The user further specifies that s/he is interested in only
the first 8 months of the simulation.

e Finally, the user specifies that the system returns daily
(1-D) averages of the simulation parameters for the
specified duration.

Note that, in order to process this single query, simDMS com-
bines data of different forms (structured, semi-structured,
and temporal), stored in different back-end storage engines.

In addition to scenario-based filtering and search, the plat-
form also enables searching and/or triggering based on par-
ticular temporal patterns on the ensembles. This feature
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(d) Feature-based comparison

(c) Metadata comparison
Figure 5: Sample interfaces for exploring ensembles

allows the expert to identify relevant subsets of stored simu-
lations that match actual real-world observations or specific
targets for intervention measures.

2.3 Analysisand Exploration of Ensembles

Once the query is executed and the relevant simulations
are identified, the system then organizes the results into a
navigable hierarchy, based on the temporal dynamics of the
simulation results (Figure 5): Since simulation data sets can
be viewed as multi-variate time series, simVIZ focuses on vi-
sual analysis (e.g. event detection, similarity and difference
analysis) of single and multiple multi-variate simulation data
sets. Scenarios that result in similar patterns are grouped
under the same branch, while simulations that show major
differences in disease development are placed under differ-
ent branches of the navigation hierarchy. The user can then
navigate this hierarchy using “drill-down” and “roll-up” op-
erations and pick sets of simulations to study and compare
the corresponding scenarios in further detail.

The interface presents both conventional series plots as
well as heatmap visualizations, where each series is shown
as a row of pixels. It is important to note that, while
the temporal (i.e., horizontal) axis is ordered, the vertical
axis corresponding to the different states is not ordered, in
that two nearby states according to user mobility may not
be neighboring rows on the interface due to the complex-
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ity of the mobility graph. The interface also highlights,
on the heatmap, the major robust multi-variate time se-
ries (RMT) features (optimized for supporting alignments
of multi-variate time series, leveraging known correlations
and dependencies among the variates [9]) identified on the
heatmap. An RMT feature is a part of the time series that
is different in structure from its immediate context in time
and/or variate relationships. A key property of these RMT
features is that they are robust against noise and common
transformations, such as temporal shifts or missing variates.
This is illustrated in Figure 5(d), which shows two differ-
ent epidemic simulations, with the same starting state, but
different disease parameters and interventions. While the re-
sulting disease evolutions are visibly different in shape, the
same multi-variate feature (corresponding to the onset of
the disease on the same nearby states) is identified on both
simulations. This robustness property of RMT features en-
ables various simVIZ functions, such as search, clustering,
classification, and summarization of simulations and large
simulation data sets [4, 5, 6, 7, 8.

3. CONCLUSIONS

The simDMS platform provides metadata and event-driven
analysis and visualization of simulation ensembles to assist
decision makers to query and explore ensemble simulations
and decide which additional simulations to execute.
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