
Efficient spatio-temporal event processing with STARK

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-ilmenau.de

Timo Räth
TU Ilmenau, Germany

timo.raeth@tu-ilmenau.de

ABSTRACT
For Big Data processing, Apache Spark has been widely ac-
cepted. However, when dealing with events or any other
spatio-temporal data sets, Spark becomes very inefficient as
it does not include any spatial or temporal data types and
operators. In this paper we demonstrate our STARK project
that adds the required data types and operators, such as
spatio-temporal filter and join with various predicates to
Spark. Additionally, it includes k nearest neighbor search
and a density based clustering operator for data analysis
tasks as well as spatial partitioning and indexing techniques
for efficient processing. During the demo, programs can be
created on real world event data sets using STARK’s Scala
API or our Pig Latin derivative Piglet in a web front end
which also visualizes the results.

1. INTRODUCTION
Spatio-temporal data is used in various application ar-

eas: for example by (mobile) location aware devices that
periodically report their position as well as in news articles
describing events that happen at some time and location.
Spatio-temporal event data can, e.g., be extracted from text
documents using spatial and temporal taggers that identify
the respective expressions in a text corpus. The extraction of
the structured event data from text is just a first step and
data needs to further be analyzed using appropriate data
mining operations to gain new insight.

As the event data sets may become very large, scalable
tools are needed for the event analysis pipelines. Apache
Spark has become a very popular platform for such Big Data
analytics because of its in memory data model that allows
much faster execution than with Hadoop MapReduce pro-
grams. However, Spark has a general data model which does
not take the spatial and temporal aspects of the data into
account, e.g., for partitioning. Furthermore, dedicated data
types and operators for this spatio-temporal are missing.

In this paper we demonstrate our STARK1 framework for

1https://github.com/dbis-ilm/stark

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

scalable spatio-temporal data analytics on Spark, with the
following features:

• STARK is built on top of Spark and provides a domain
specific language (DSL) that seamlessly integrates into
any (Scala) Spark program.
• It includes an expressive set of spatio-temporal opera-

tors for filter, join with various predicates as well as k
nearest neighbor search.
• A density based clustering operator allows to find groups

of similar events.
• Spatial partitioning and indexing techniques for fast

and efficient execution of the data analysis tasks.

In contrast to similar existing solutions for Spark, STARK
is the only framework that addresses not only spatial but
also spatio-temporal data. Unlike other frameworks, STARK
is seamlessly integrated into the Spark API so that spatio-
temporal operators can directly be called on standard RDDs.
Furthermore, we provide a Pig Latin extension in our Piglet
engine to create (spatio-temporal) data processing pipelines
using an easy to learn scripting language. A web front end
supports users with interactive graphical selection tools and
also visualizes the results. We evaluated STARK in a mirco
benchmark against other solutions and showed that we can
outperform them.

2. THE STARK FRAMEWORK
STARK is tightly integrated into the Apache Spark API

and users can directly invoke the spatio-temporal operators
and their RDDs. To achieve this, we created new data type
and operator classes that make use of already existing Spark
operations, but also extend internal Spark classes. Figure 1
gives an overview of STARK’s architecture and its integra-
tion into Spark.

In the following, we describe the internal components for
spatial partitioning and indexing as well as the API/DSL
for spatio-temporal operations and integration into Spark.

2.1 Partitioning
Partitioning has a significant impact in data parallel plat-

forms like Spark. If the partitions sizes, i.e., the number
of elements per partition, are not balanced, a single worker
node has to perform all the work while other nodes idle.

Spark already includes partitioners, but they do not ex-
ploit the spatial (or spatio-temporal) characteristics. Spatial-
temporal partitioning means that partitions are not created
by using, e.g., a simple hash function, but by considering
the location in space and/or time of occurrence. Thus, after

Demonstration

Series ISSN: 2367-2005 570 10.5441/002/edbt.2017.72

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.72

Scala API

Partitioner

RDD

Spark Core

Spatial Partitioner

Distance
Functions

PredicatesSpatial RDD
Indexes

Figure 1: Overview of STARK architecture and integration into
Spark.

store to HDFS

query execution

load from HDFS

spatial
partitioning

optional
indexing

raw data

Figure 2: Internal workflow for converting, partitioning, and query-
ing spatio-temporal data

a spatio-temporal partitioner was applied on a data set, a
partition contains all elements that are near to each other
in time and/or space and the bounds of a partition repre-
sent a spatial region and/or temporal interval which cover
all items of that partition. This bound is very useful to de-
termine what partitions actually have to be processed for a
query. For example, an intersects query only has to check
the items of partitions where the partition bounds them-
selves intersect with the query object. Such a check can
decrease the number of data items to process significantly
and thus, also reduce the processing time drastically.

When the spatial and temporal objects of a data set are
not points or instants, respectively, these regions and in-
tervals may span across multiple partitions. There are two
options to handle such scenarios:

• The item is replicated into every of these partitions and
the resulting duplicates have to be pruned afterwards.

• The items are assigned to only one partition and the
partition bounds are adjusted accordingly which re-
sults in overlapping partitions.

STARK uses the latter approach by assigning polygons to
partitions based on their centroid point. Beside the parti-
tion bounds, we keep an additional extent information that
is adjusted with the minimum and maximum values of the
respective objects in each dimension. We decide which par-
tition has to be checked during query execution based on
this extent information and prune partitions that cannot
contribute to the final result.

In its current version, STARK only considers the spa-
tial component for partitioning. The partitioners implement
Spark’s Partitioner interface and can be used to spatially
partition an RDD with the RDD’s partitionBy method.

Grid Partitioner.
The first partitioner included in STARK is a fixed grid

partitioner. Here, the data space is divided into a number of
intervals per dimension resulting in a grid of rectangular cells
(partitions) with equal dimensions. The bounds of these
partitions are computed in a first step and afterwards with a
single pass over the data, each item is assigned to a partition
by calculating in which grid cell this item is contained.

Cost-Based Binary Space Partitioner.
As the fixed grid partitioner created partitions of equal

size over the data space, it might create some partitions
that contain the majority of the data items, while other
partitions are empty. As an example consider the world
map where events only occur on land, but not on sea. With

a grid partitioning, there might be empty cells on sea and
overfilled partitions in densely populated areas. To overcome
this problem, we implemented a cost based binary space
partitioning algorithm, based on [1]. This partitioner divides
the space into two partitions with equal cost (number of
contained items). If the cost for one partition exceeds a
threshold, it is recursively divided again into two partitions
of equal cost. This way, large regions with only a few items
will belong to the same partition, while dense regions are
split into multiple partitions. The recursion stops when a
partition does not exceed the cost threshold or the algorithm
reached a granularity threshold, i.e., a minimum side length
of a partition.

2.2 Indexing
Just as in relational DBMS, indexing the content can sig-

nificantly improve query performance. STARK uses the
JTS2 library for spatial operations. This library also pro-
vides an R-tree implementation (more accurately, an STR-
tree) for indexing. STARK can use this index structure to
index the content of a partition. A spatial partitioning is
not mandatory to use index, but might bring additional
performance benefits. Basically, STARK has three index-
ing modes, that can be chosen by the user:

No Indexing.
The partitions are not indexed and all items within a par-

tition have to be evaluated with the respective predicate
function.

Live Indexing.
When a partition is processed for evaluating a predicate,

the content of that partition is first put into an R-tree and
then, this index is queried using the query object. Since the
results of the R-tree query are only candidates where the
minimum bounding boxes match the query, these candidates
have to be checked again if they really match the query
object. During this candidate pruning step, the temporal
predicate is evaluated as well, if needed. Live indexing can
be used in a program by calling the liveIndex method on an
RDD. This method takes the order of the tree as well as an
optional partitioner as parameters, in case the RDD should
be repartitioned before indexing.

Persistent Indexing.
Creating an index may be time consuming and often the

same index will be reused in subsequent runs of the same
or in another program. For such cases, STARK allows to

2http://tsusiatsoftware.net/jts/main.html

571

persist the index to disk/HDFS using Spark’s method to
save binary objects. An indexing that should be persisted
can also be used by that same program. Thus, users don’t
need to do an extra run to just persist the index, but can
already perform their operations. Such an index mode is
done using the index method, which also takes the order of
the tree as well as an optional partitioner as parameter.

2.3 DSL
One important design goal of STARK was to create an

DSL that can be intuitively used by users within any (Scala)
Spark program. This DSL provides all required operations
for flexibly working with spatio-temporal data. This means
that raw data loaded from HDFS or any other source can
easily be processed by spatio-temporal operators and may
be spatially partitioned and optionally indexed. The parti-
tioning and indexing is transparent to the subsequent query
operators which means they can be executed with or with-
out spatial partitioning and indexing (and any combination
thereof). Furthermore, the created indexes can be material-
ized, e.g., to HDFS, and be re-used within other programs.
Figure 2 gives an overview of these possibilities.

In order to represent spatio-temporal data, STARK pro-
vides the STObject class. This class has only two fields: (1)
geo that stores the spatial attribute and (2) and optional
time field which holds the temporal information of an ob-
ject. The time is optional to support spatial-only data that
does not need any temporal information.

Beside these fields, the STObject class provides methods
which check the relation to other spatio-temporal objects:

intersect(o) checks if the two instances (this and o) inter-
sect in their spatial and/or temporal component,

contains(o) tests if this object completely contains o in
their spatial and/or temporal component, and

containedBy(o) which is implemented as the reverse op-
eration of contains

A formal definition for two objects o and p of type STOb-

ject and a predicate Φ can be given as:

Φ(o, p) ⇔ Φs(s(o), s(p)) ∧ ((1)

(t(o) = ⊥ ∧ t(p) = ⊥) ∨ (2)

(t(o) 6= ⊥ ∧ t(p) 6= ⊥ ∧ Φt(t(o), t(p)))) (3)

Where s(x) denotes the spatial component of x, t(x) the
temporal component of x, Φs and Φt denote predicates that
check spatial or temporal objects, respectively, and ⊥ stands
for undefined or null. This says that the predicate Φ is true
for two spatio-temporal objects o and p, if the predicate
on the spatial components of o and p is true (1), and both
temporal components are not defined (2), or they are defined
and the predicate on the temporal components of o and p is
true as well (3).

To add the spatio-temporal operations to an RDD, STARK
implements a special helper class called SpatialRDDFunc-

tion that has one plain Spark RDD as attribute and imple-
ments the supported spatio-temporal operations. In plain
Spark, when an RDD contains 2-tuples of (k,v) an implicit
conversion method creates a PairRDDFunction object, which
provides, e.g., the join functionality using k as the join key.
STARK follows the same approach: for an RDD of 2-tuples
(k,v) we create a SpatialRDDFunction object implicitly, if

k is of type STObject3. This implicit conversion is trans-
parent to users and creates a seamless integration into any
Spark program. Users don’t have to explicitly create an in-
stance of any of STARK’s classes (except STObject) to use
the spatio-temporal operators.

STARK has an intersects, contains, and containedBy pred-
icate. In addition to that, we support a withinDistance oper-
ation, which finds all elements that are within a given max-
imum distance around the query object. Here, the distance
function can be passed as a parameter so that users can
implement their own function and adjust STARK to their
requirements. However, we also include standard distance
functions that can be used out of the box. Furthermore,
there is a k nearest neighbor search operator.

An important data mining operation is clustering. STARK
implements the DBSCAN algorithm for Spark inspired by
MR-DBSCAN for MapReduce described in [1]. The im-
plementation exploits the spatial partitioning: points that
are within ε-distance from the partition border (where ε is
the DBSCAN parameter), are replicated into the respective
neighboring partition. In a next step a local partitioning
is performed locally and in parallel on each partition. In a
subsequent merge step, these local clusterings are merged
using the replicated points, which may connect two clusters
to a single one.

The following example shows the usage the spatio-temporal
operator on an RDD with STARK. Consider an input file
with a schema (id: Int, category: String, time: Long, wkt:
String). After pre-processing, we get an RDD of exactly that
type: RDD[(Int, String, Long, String)]. We then cre-
ate an STObject representing the location from the WKT
string and time of occurrence from the time field of each
entry:
val events = rawInput.map {
case (id, ctgry, time, wkt) =>

(STObject(wkt, time), (id, ctgry)) }

The events RDD of type RDD[(STObject, (Int, String))]

and can now be used with any supported spatial-temporal
predicate function:

val qry = STObject("POLYGON((...))", begin, end)
val contain = events.containedBy(qry)
val intersect = events.liveIndex(order = 5)

.intersect(qry)

We create a query object with a spatial polygon defined as
a WKT string and a temporal interval. Here begin and
end are Long values that describe the begin and end of a
temporal time window for querying. With the containedBy
function we can find all items in the events RDD that are
contained by the query object. In the second example, the
RDD is indexed using live indexing with an order of the R-
tree of 5. We can then simply call the intersects (or any
other supported function) on that indexed RDD.

3. EVALUATION
We evaluated our STARK implementation against other

existing Hadoop- and Spark-based solutions for spatial data
processing. In this evaluation we looked at provided features
and further performed a micro benchmark. During this eval-
uation we found that not only do some systems have serious
bugs and produce wrong results, but they are also not intu-
itively to use and have a very limited or even no API (only a

3i.e., RDD[(STObject , V), where V can be any type.

572

Figure 3: The user interface for querying data from the repository.

GeoSpark SpatialSpark STARK
0

20

40

60

80

100

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

V
o
ro

n
o
i

T
ile

B
sp

N/A

51.9

31.1

95.9

19.8

6.3

No Partitioning

Best Partitioner

Figure 4: Execution times for self join operation for best parti-
tioner and indexing.

command line interface). Figure 4 shows the result of a self
join operation on a data set with 1,000,000 points comparing
STARK with the Spark-based frameworks SpatialSpark [2]
and GeoSpark [3]. The figure shows the execution time with-
out partitioning as well as for the partitioner that resulted in
the fasted execution time. For GeoSpark we experienced dif-
ferent result counts in each repetition of the experiment for
two spatial partitioners. The results show that STARK out-
performs the other frameworks in both cases. More results
of the performance evaluation can be found in our GitHub
repository4.

4. DEMONSTRATION SCENARIOS
STARK is integrated into a larger project in which event

information is extracted from text articles, stored as struc-
tured data, and analyzed using STARK’s operators. We will
prepare real world data sets with events from Wikipedia
(created in the context of that project) as well as other

4https://github.com/dbis-ilm/spatialbm

spatio-temporal data sets with different contents. During
the demonstration, visitors will be able to create and exe-
cute simple queries and complex data analysis pipelines or
choose from prepared programs using our web front end. For
that we will prepare different real world use case queries that
include (reverse) geocoding, spatio-temporal join and aggre-
gation, as well as clustering/co-location. Figure 3 shows
the web front end with the query interface which supports
the formulation of the spatio-temporal components by pro-
viding graphical selection tools using maps and date/time
pickers that make the selected values available in the pro-
gram. Queries and pipelines can be created as Scala pro-
grams, but we also allow to create these programs as Pig
Latin scripts using our Piglet [4] engine that extends the
original Pig Latin language with the before mentioned data
types and operators. The results of the queries will be dy-
namically visualized in the web front end.

Acknowledgments.
This work was partially funded by the German Research

Foundation (DFG) under grant no. SA782/22.

5. REFERENCES
[1] Y. He, H. Tan et al., “MR-DBSCAN: a scalable

MapReduce-based DBSCAN algorithm for heavily
skewed data,” FCS, vol. 8, no. 1, pp. 83–99, 2014.

[2] S. You, J. Zhang, and L. Gruenwald, “Large-scale
spatial join query processing in cloud.” ICDEW, 2015.

[3] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster
computing framework for processing large-scale spatial
data.” SIGSPATIAL, 2015, p. 70.

[4] S. Hagedorn and K.-U. Sattler, “Piglet: Interactive and
platform transparent analytics for rdf & dynamic data,”
in WWW, April 2016, pp. 187–190.

573

	Efficient spatio-temporal event processing with STARKStefan Hagedorn, Timo Räth

