
Multi-workflow optimization in PAW

Maxim Filatov
University of Geneva

maxim.filatov@unige.ch

Verena Kantere
University of Geneva

verena.kantere@unige.ch

ABSTRACT

As business decisions and strategies become more and more
automated, real-time, and data-driven, enterprises need to
create, manage and execute end-to-end analytics workflows
that process increasing data volumes, from new heteroge-
neous data sources, on specialized processing engines. De-
signing and optimizing such workflows is a challenging task
since they span a variety of systems and tools. To address
these needs, we present the Platform for Analytics Workflows
(PAW). PAW enables workflow design, execution, analysis
and optimization with respect to time efficiency, over multi-
ple execution engines and storage repositories. In this paper,
we focus on the demonstration of the functionality of PAW
related to multi-workflow optimization. We demonstrate the
functionality of PAW for users with various expertise and its
capabilities with respect to workflow analysis and optimiza-
tion. We employ several scenarios of running workloads of
workflows with and without PAW’s optimization on real use
cases and data from the telecommunication domain and web
analytics, but also on synthetic use cases and data.

1. INTRODUCTION
The analysis of Big Data is a core and critical task in multi-

farious domains of science and industry. Such analysis needs
to be performed on a range of data stores, both traditional
and modern, on data sources that are heterogeneous in their
schemas and formats, and on a diversity of query engines.
Moreover, such analysis is also intensive and systematic. This
means that many users access the same data at the same time
with different or similar target results, and, such results are
the output of an analytics process. Thus, a system that en-
ables such analytics processes on Big Data needs to be able
to manage several workflows and execute them in an optimal
manner. Workflow execution can be extremely resource- and
time-consuming. Therefore, the optimization of the execu-
tion of a single workflow but also of the joint execution of
several workflows is very important for the efficiency of such
a system.

Commercial Extract-Transform-Load (ETL) tools (e.g. [3],
[2]) provide little support for automatic optimization. They
provide hooks for the ETL designer to specify for example
which flows may run in parallel or where to partition flows

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

for pipeline parallelism. Some ETL engines such as Pow-
erCenter [3] support PushDown optimization, which pushes
operators expressed in SQL from the ETL flow down to the
source or target database engine. The rest of the transforma-
tions are executed in the data integration server. The chal-
lenge of optimizing the entire workflow remains unsolved.

Towards this direction, HFMS [4] performs optimization
and execution across multiple engines. Work related to HFMS [5]
focuses on optimizing flows for several objectives: perfor-
mance, fault-tolerance and freshness over multiple execution
engines. HFMS uses many optimization strategies, such as
parallelization, recovery points, function shipping, data ship-
ping, decomposition, etc. However, HFMS does not focus on
managing or optimizing in a joint manner multiple workflows.

We demonstrate a novel technique for multi-workflow op-
timization that is implemented as part of our system called
PAW (Platform for Analytics Workflows), a platform for the
design, analysis and execution of analytics workflows. To the
best of our knowledge, there is no previous work on multi-
workflow optimization. The first version of PAW is presented
in [1]. A workflow created in PAW is prepared for execu-
tion in three steps: First, the tasks are analyzed and the
workflow is augmented with associative tasks; the new ver-
sion of the workflow, which we call the analyzed workflow,
represents not only the logic flow of the analytics process
but also its execution semantics. Second, workflows are ma-
nipulated by swapping, composing/decomposing and factor-
izing/distributing transitions, in order to achieve workflows
that have equivalent outputs with their original state, but
have a form that can result in optimized execution. Third,
PAW schedules the execution of a set of workflows follow-
ing the novel technique of multi-workflow optimization, on
which we focus in this demonstration. This technique is
based on the joint execution of the common parts of two
or more workflows. PAW can be employed on top of any
system that executes analytics processes on big data sources.
The platform mediates between users and a set of available
data management technologies, such as relational DBMSs,
key-value stores and column stores.

2. OVERVIEW OF PAW
PAW is a part of a larger system, called Adaptable Scalable

Analytics Platform (ASAP) [6], but it can also stand as an in-
dependent tool for workflow management and optimization.
Other ASAP components include execution, monitoring, vi-
sualization of results, online adaptation, etc. PAW presents
a unified interface for users to create, modify, analyze, opti-
mize and execute analytics workflows over a diverse collection

Demonstration

 

 

Series ISSN: 2367-2005 566 10.5441/002/edbt.2017.71

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.71


O
p
tim

ize
r

E
x
e
c
u
to
r

Decision	

Making

Versions	Space	

Generator

Planner

Cost	

Estimator
Enforcer

Cost	

Models
Monitor

P
ro
c
e
ssin

g
	

E
n
v
iro

n
m
e
n
t

Profiling
Implement

ations

Meta	

language	

GUI

History

Logs

Data

Storages
Execution	

Engines

O
p
e
ra
to
rs	L

ib
ra
ry

In
te
rfa

c
e

Figure 1: The architecture of PAW

of data stores and processing engines. Figure 1 depicts the
architecture of PAW, as well as its interaction with the rest
of ASAP. The components of PAW communicate using the
internal workflow representation and are:

Operators library. This library contains operators, and
their corresponding implementations with cost functions. The
operators are classified as, either logical operators, which per-
form the core analytics jobs over the data, or the associative
operators, which serve as ‘glue’ between different engines and
perform move and transformation operations.

Interface. The GUI allows users to interactively create
and/or modify a workflow, and add new operators to the
Library. The user designs a workflow graph in the inter-
active tool and describes data and operators in the Tree-

metadata language, which captures structural information,
operator properties, and so on.

Optimizer. The orchestration of the optimization process
is performed by the Planner. It takes as an input a workflow
from the Interface and sends it to the Decision Making mod-
ule, that returns back an optimized version of a workflow. All
possible versions are produced in the Versions Space Gener-

ator and their costs are estimated by the Cost Estimator.
The Decision Making module chooses the version with the
minimal cost as an optimal one.

Executor. The executor performs several tasks. The
Enforcer schedules workflows for execution, generates exe-
cutable code and dispatches workflow fragments to execu-
tion engines. The Monitor observes the system state, tracks
the progress of executing workflows and stores History Logs

of runs. These logs are used to construct more precise cost

functions of operators through the Profiling module. This
module in PAW is external, it is also developed as a part of
ASAP project, and called IRES [10].

PAW implements a novel workflow model [7, 8]. A work-
flow W is a directed, acyclic graph (DAG) G = (V,E). The
vertices V represent data processing tasks and the edges E

represent the flow of data. Each task is a set of inputs, outputs
and an operator. Data and operators need to be accompa-
nied by a set of metadata, i.e., properties that describe them.
Such properties include input data types and parameters of
operators, the location of data objects or operator invocation
scripts, data schemas, implementation details, engines etc.

3. MULTI-WORKFLOW OPTIMIZATION
Our technique of multi-workflow optimization (MWO) is

based on the joint execution of the common parts of work-
flows. Specifically, a set of workflows is combined to one joint
workflow, so that one or more common subgraphs in these
workflows, appear only once in the joint workflow and, there-
fore, are executed only once. The technique consists of four
steps: (1) for each workflow generate all possible equivalent
workflow versions and prune them using heuristics; (2) de-
tect common tasks and find the common parts in workflow
versions; (3) estimate the processing cost of joint executions;
(4) choose workflow versions and common parts in them for
the joint execution.

3.1 Generating workflow versions
Two workflow versions are equivalent if they produce the

same output, given the same input. We generate all possible
versions by applying the following transitions:
Swap. The swap transition applies to a pair of vertices,

v1 and v2, which occur in adjacent positions in a workflow
graph G, and produces a new graph G′ in which the positions
of v1 and v2 have been interchanged. The goal of swap is to
change the execution order of tasks.
Compose. The compose transition takes as input two

vertices and produces one new vertex that includes the tasks
of both initial vertices. The goal of compose is to allow for a
united optimisation of the tasks included in the two vertices,
e.g. joint micro-optimization on an execution engine.
Decompose. The decompose transition takes as input one

vertex and produces two new vertices that, together, include
all the tasks of the initial vertex. The new vertices may or
may not be connected. The goal of decompose is to lead to
separate optimisation of subgroups of the tasks.
Factorize. The factorize transition replaces multiple iden-

tical vertices that all feed (or are fed by) one branching ver-
tex and take as input different datasets, with one such vertex
that is performed on the output (input) data of the branch-

ing vertex. The optimization derives from the fact that the
operation of the replaced vertices is performed only once in-
stead of several times, and, moreover, on a reduced in size
aggregated dataset.
Distribute. The distribute transition replaces one ver-

tex with multiple identical ones, which are distributed on
the input (or output) paths of a preceding (or succeeding)
branching vertex. The optimization opportunity is created
either by the parallelization of the execution of the identical
vertices, their distribution over the input dataset, or even by
the reduction of size of the aggregated input data due to their
being pushed toward the root of the workflow.
If the version space is big, exploration methods more effi-

cient than exhaustive search are required. We improve search
performance by pruning the space with several heuristics
based on the following categorization of operators:

• Blocking operators require knowledge of the whole dataset.

• Non-blocking operators process each tuple separately.

• Restrictive operators output a smaller data volume than
the incoming data volume.

R1-2 are a list of rules, following which the process of gen-
erating the search space speeds up. Heuristics H1-2 prunes
the search space.

• R1: Find branching operators and check if they are con-
nected with operators that are identical instances of a log-
ical operator. Try to factorize this set of operators.

• R2: Find (linear) paths and try to swap the operators in

567



A !"#

C D

!"$ B

!"#

E G!"$

A

!"# !"$

B

G

E

D

C

%#

%$

%&

%'

Figure 2: Example of multi-optimization of three workflows

Figure 3: Independently executable and not independently
executable subgraphs

each of such paths.

• H1: Move restrictive operators to the root of the workflow,
e.g. change extract → function → filter to extract → filter

→ function, if possible.

• H2: Group non-blocking operators together and separately
from blocking operators, e.g., change filter → sort → func-

tion → group to filter → function → sort → group.

3.2 Creating the joint workflow
A set of workflows W = {W1, . . . ,Wm} may be combined

in a joint workflow denoted as Wo = W1 ◦ · · · ◦ Wm. We
find common parts in the workflows and use them as joint
subgraphs connected with the rest of the workflow graphs.
Figure 2 depicts three workflows W1, W2, W3 and a joint
workflow of them, Wo. CP1 and CP2 represent common
parts of W1, W2 and W1, W3, respectively, and A..G are the
remaining parts of workflows.

3.2.1 Finding common parts

A common part consists of common tasks. Two common
tasks consist of the same operators, inputs and outputs. We
detect common tasks by comparing properties of metadata
of tasks, such as input and output data schemas, parameters
of operators etc.

After detecting common tasks, we look for subgraphs con-
sisting only of common tasks and compare their structures. If
such subgraphs are identical, then they constitute a common

part. Formally, the latter is defined as follows:

Definition 1. A common part CP (W1, . . . ,Wm) of a set
of workflows {W1, . . . ,Wm} is a subgraph S, so that S is part
of every one of the workflows, i.e. S ∈ W1 ∧ · · · ∧ S ∈ Wm,
and operators of corresponding vertices in a subgraph S of
every workflow are identical.

3.2.2 Evaluation of a common part

After finding a common part, we determine if it can be used
for the creation of the joint workflow. We do this based on
the concepts of execution state and independently executable

subgraph.
An execution state ES of a workflow W is a state for which

some of the vertices are assumed to have been executed and
no vertices are executing. An independently executable sub-

graph S ∈ W with respect to some execution state ESW , is a
subgraph that can be executed without executing any vertex
in W \ (ESW ∪ S).

Figure 3 depicts two workflows W1 and W2. In W1, sub-
graph A is independently executable with respect to the ex-
ecution state, the executed vertices of which are colored in

Figure 4: Mutual arrangement of subgraphs A and B

blue. In W2, subgraph A is not independently executable
with respect to any execution state, because vertex 4 cannot
be executed before vertex 2, and vertex 2 cannot be executed
before vertex 3, so vertex 2 has to be executed between ver-
tices 3 and 4.

The creation of a joint workflow Wo of a set of workflows
W = {W1, . . . ,Wm} that have one common part CP , is pos-
sible if CP is independently executable for some execution
state for every W ∈ W.

3.2.3 Evaluation of a set of common parts

A set of workflows to be composed may contain not one,
but several common parts. There can be cases for which not
all of the common parts can be used for the creation of the
joint workflow. To evaluate if a set of common parts CP can
be used in combination for the creation of the joint workflow,
we check the mutual arrangement of common parts in this
set in pairs CPi, CPj ∈ CP.

A vertex v is reachable from another vertex u if there is a
directed path that starts from u and ends at v. A subgraph S

depends on vertex v if there exists a vertex u in the subgraph
and u reachable from v. The possible mutual arrangement of
the subgraphs corresponding to two common parts CPi and
CPj is one of the following (Figure 4):

1. Independent, if there does not exist a pair of vertices {vi, vj},
vi ∈ CPi, vj ∈ CPj for which CPi depends on vj or CPj

depends on vi.

2. CPi depends on CPj , if there is a vertex v ∈ CPj and CPi

depends on v, but there is not a vertex in CPi so that CPj

depends on it.

3. CPi and CPj are cross-dependent if there are vertices vi ∈
CPi, vj ∈ CPj and CPj depends on vi and CPi depends
on vj .

Depending on their mutual arrangement in the set of work-
flows, a pair of common parts can be selected for the con-
struction of the joint workflow or not: If the common parts
are mutually arranged as (1) in all workflows, both can be
selected; if they are mutually arranged as in (3), even in one
workflow, they cannot be both selected. If they are mutually
arranged as in (2) in some of the workflows, they can be both
selected if they have the same dependency in all these work-
flows. Hence, in some cases, we are forced to select only some
of the common parts. We do this based on the estimation
of processing cost of different choices for the construction of
the joint workflow.

3.3 Estimation of processing costs
We estimate the performance and cost of operators by ac-

tually running the operator in representative configuration
combinations. Using these measurements, surrogate estima-
tor models are trained that can be used to approximate op-
erators performance for non-tested configurations. The pro-
cessing cost of a workflow W , CW , is the sum of the cost of
the its tasks: CW =

∑n

i=1
CTi

.

568



cdr

result

extract_ts calc_num

filter_test

filter_regionfilter_train LO_join

antennas

LO_join filter_region

calc_train
_sum

calc_test
_sum

week_aggr join4

calc_ratio

filter_peaks

Figure 5: ‘Peak Detection’ workflow

Let us consider a pair of workflows {W1, W2} with a com-
mon part CP and execution states ES1 and ES2, respec-
tively. The cost of the joint workflow Wo = W1 ◦ W2 is
the sum of the cost of execution states C(ES1) and C(ES2),
the cost of the common part C(CP ), the costs of the rest
of workflows C(W1 \ {CP,ES1}), C(W2 \ {CP,ES2}), and
a synchronization cost C(sync), which captures the cost for
creating the joint workflow:

C(W1 ◦W2) = C(ES1) + C(ES2) + C(CP ) + C(sync)+

+C(W1 \ {CP,ES1}) + C(W2 \ {CP,ES2}) =

= C(W1) + C(W2)− C(CP ) + C(sync)

The processing cost of workflows W = {W1, . . . ,Wm} with
common parts {CP1, . . . , CPn} is:

C(W1 ◦ · · · ◦Wm) =

=
m∑

i=1

C(Wi)−
n∑

i=1

((ni − 1)C(CPi)− C(synci))

where ni is the number of occurrences of common part
CPi in W. After estimating the processing costs of all work-
flow versions and common parts, exhaustive search chooses
common parts and workflows with the lowest cost.

3.4 Online Multi-Workflow Optimization
MWO is applicable, when the user launches multiple work-

flows simultaneously. Usually, a frequent case is when PAW
receives new workflows one by one or in batches, while some
workflows are currently executing. To cover this case PAW
offers an Online Multi-Workflow Optimization (OMWO). It
re-optimizes currently running workflows on each addition of
a new workflow to our platform. As soon as a new work-
flow is inserted to PAW the optimizer gets the current states
of execution of workflows, i.e. which vertices have been ex-
ecuted, are executing and have not yet started execution.
Next, it applies MWO to a set of workflows, that consist of
the new workflow and not-executed parts of workflows that
are currently executing. Their intermediate results are used
as inputs in these partial workflows.

4. DEMONSTRATION
In the following, we describe the proposed demonstration.
System setup. PAW is demonstrated on a cluster,

with the following configuration: The cluster consists of 4
server-grade physical nodes. Each one of those is equipped
with a 3rd generation i5 CPU (@ 2.90 GHz) and 16GB of
physical memory and an array of two HDDs on RAID-0. The
operating system is Debian 6 (squeeze) Linux. For the time
being, three software platforms are running: Hadoop (CDH
4.6.0), Spark (1.4.1) and Weka (3.6.13).

Workloads. The demonstration uses synthetic and
real workflows on real data. The synthetic workflows are
constructed based on ETL benchmarking [9]. Real work-
flows and data come from the two use cases of ASAP [6]
and belong to the domains of telecommunications and web
analytics. Figure 5 displays one of the telecommunication
workflows. The telecommunication use case involves process-
ing anonymised Call Detail Records (CDR) data collected in

Rome for 2015 year and stored in HDFS. All workflows’ op-
erators have implementations in Spark and Postgres. The
web analytics use case involves anonymization of web con-
tent (WARC files) stored in ElasticSearch. The workflows
are implemented in Spark and run over varying data set sizes
ranging from 1 million to 4 billion rows. There are two types
of workflows: one models entity recognition/disambiguation
and k-means, and another models continuous processing of
incoming data, e.g., subscription/notification at scale.
Demonstration scenarios. The demonstration focuses

on the multi-workflow optimization functionality of PAW. It
includes three types of scenarios that aim to show a distinct
view of the benefit of our novel technique and create discus-
sion on the potential of multi-workflow optimization. The
demonstration is interactive with the audience. The partic-
ipants are invited to experience all functionalities of PAW,
create workflows from scratch or change existing ones, watch
the automated management of the workflow as well as re-
view the internals of the platform, e.g. internal workflow
representation. They are also enabled to play with the man-
agement of multiple workflows, by selecting workflows for op-
timization and execution, pausing and resuming execution,
selecting common parts for optimization, etc.
Scenarios A. Their goal is the comparison of single and

multi-workflow optimization. We show exemplary cases of
small sets of workflows, in which the versions selected by
single-workflow optimization differ or identify with the ver-
sions selected by multi-workflow optimization.

Scenarios B. Their goal is to show the overall perfor-
mance of multi-workflow optimization for a variety of work-
flow workloads. The workloads include workflows with a va-
riety of tasks, short-running and long-running, in a variety
of combinations, with an emphasis on long chain paths or
numerous parallel paths. Also, the scenarios show how the
existence of common parts affects optimization, by varying
their number and their size.

Scenarios C. Their goal is to show the continuous arriv-
ing, optimization and execution of workflows. We create time
series of workflows from scenarios B. We emphasize in the
effect of ranging the size of the window on the arrival time-
line, within which workflows are optimized by online multi-
workflow optimization.

5. REFERENCES
[1] M. Filatov and V. Kantere. PAW: A Platform for Analytics

Workflows. In EDBT, 2016.

[2] Oracle warehouse builder 10g.
http://www.oracle.com/technology/products/warehouse/.

[3] Informatica ‘powercenter’.
http://www.informatica.com/products/powercenter/.

[4] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.
Optimizing analytic data flows for multiple execution
engines. In ACM SIGMOD, 2012.

[5] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu. HFMS:
Managing the lifecycle and complexity of hybrid analytic
data flows. In ICDE, 2013.

[6] Asap. http://www.asap-fp7.eu/.
[7] V. Kantere and M. Filatov. A framework for big data

analytics. In C3S2E, 2015.
[8] V. Kantere and M. Filatov. Modelling processes of big data

analytics. In WISE, 2015.
[9] A. Simitsis, P. Vassiliadis, U. Dayal and V. Tziovara.

Benchmarking ETL workflows. In TPCTC, 2009.
[10] K. Doka, N. Papailiou, D. Tsoumakos and N. Koziris:

IReS: Intelligent, Multi-Engine Resource Scheduler for Big
Data Analytics Workflows. In SIGMOD, 2015.

569


	Multi-workflow optimization in PAWMaxim Filatov, Verena Kantere

