
Insights into the Comparative Evaluation of
Lightweight Data Compression Algorithms

Patrick Damme, Dirk Habich, Juliana Hildebrandt, Wolfgang Lehner
Database Systems Group

Technische Universität Dresden
01062 Dresden, Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Lightweight data compression is frequently applied in in-
memory database systems to tackle the growing gap be-
tween processor speed and main memory bandwidth. In re-
cent years, the number of available compression algorithms
has grown considerably. Since the correct choice of one
of these algorithms requires understanding of their perfor-
mance behavior, we systematically evaluated several state-
of-the-art compression algorithms on a multitude of differ-
ent data characteristics. In this demonstration, the attendee
will learn our findings in an interactive tour through our ob-
tained measurements. The most important insight is that
there is no single-best algorithm, but that the choice depends
on the data characteristics and is non-trivial.

1. INTRODUCTION
The continuous growth of data volumes is a major chal-

lenge for the efficient data processing. With the growing
capacity of the main memory, efficient analytical data pro-
cessing becomes possible [6]. However, the gap between com-
puting power of the CPUs and main memory bandwidth
continuously increases, which is now the main bottleneck
for an efficient data processing. To overcome this bottle-
neck, data compression plays a crucial role [1, 11]. Aside
from reducing the amount of data, compressed data offers
several advantages such as less time spent on load and store
instructions, a better utilization of the cache hierarchy, and
less misses in the translation lookaside buffer.

This compression solution is heavily exploited in modern
in-memory column stores for efficient query processing [1,
11]. Here, relational data is maintained using the decom-
position storage model [3]. That is, an n-attribute relation
is replaced by n binary relations, each consisting of one at-
tribute and a surrogate indicating the record identity. Since
the latter contains only virtual ids, it is not stored explicitly.
Thus, each attribute is stored separately as a sequence of val-
ues. For the lossless compression of sequences of values (in
particular integer values), a large variety of lightweight algo-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

rithms has been developed [1, 2, 7, 8, 9, 10, 11]1. In contrast
to heavyweight algorithms, lightweight algorithms achieve
comparable or even better compression rates. Moreover,
the computational effort for the (de)compression is lower
than for heavyweight algorithms. To achieve these unique
properties, each lightweight compression algorithm employs
one or more basic compression techniques such as frame-of-
reference [11] or null suppression [1], which allow the appro-
priate utilization of contextual knowledge like value distri-
bution, sorting, or data locality.

In recent years, the efficient vectorized implementation of
these lightweight compression algorithms using SIMD (Sin-
gle Instruction Multiple Data) instructions has attracted a
lot of attention [7, 8, 9, 10], since it further reduces the
computational effort. To better understand these vectorized
lightweight compression algorithms and to be able to select
a suitable algorithm for a given data set, the behavior of the
algorithms regarding different data characteristics has to be
known. In particular, the behavior in terms of performance
(compression, decompression and processing) and compres-
sion rate is of interest. Therefore, we have done an experi-
mental survey of a broad range of algorithms with different
data characteristics in a systematic way. We used a multi-
tude of synthetic data sets as well as two commonly used
real data sets. While we have already published selected re-
sults of our exhaustive evaluation in [5], this demonstration
makes use of our entire corpus of measurements, which we
obtained from an even larger collection of data characteris-
tics than we could discuss in [5]. More precisely, the goals
of this demonstration are the following:

1. We present our experimental methodology. This in-
cludes our selection of data characteristics and algo-
rithms as well as our benchmark framework [4].

2. We explain the employed implementations of the com-
pression algorithms and thus provide background knowl-
edge for understanding the empirical results.

3. We explore various visualizations of the results of our
systematic evaluation using an interactive web-interface.

4. Finally, we provide detailed insights into the behavior
of the considered lightweight compression algorithms
depending on the properties of the uncompressed data.

The remainder of the paper is organized as follows: In Sec-
tion 2, we provide some important background knowledge
on the area of lightweight data compression. An overview of

1Without claim of completeness.

Demonstration

 

 

Series ISSN: 2367-2005 562 10.5441/002/edbt.2017.70

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.70


our underlying systematic evaluation is given in Section 3.
Finally, Section 4 describes what attendees will experience
in our demonstration.

2. LIGHTWEIGHT DATA COMPRESSION
This section gives an overview of the basic concepts of

lightweight data compression. We distinguish between com-
pression techniques and compression algorithms, whereby
each algorithm implements one or more techniques.

2.1 Techniques
There are five basic lightweight techniques to compress

a sequence of values: frame-of-reference (FOR) [11], delta
coding (DELTA) [7], dictionary compression (DICT) [1, 11],
run-length encoding (RLE) [1], and null suppression (NS)
[1]. FOR and DELTA represent each value as the differ-
ence to either a certain given reference value (FOR) or to
its predecessor value (DELTA). DICT replaces each value by
its unique key in a dictionary. The objective of these three
well-known techniques is to represent the original data as a
sequence of small integers, which is then suited for actual
compression using the NS technique. NS is the most stud-
ied lightweight compression technique. Its basic idea is the
omission of leading zeros in the bit representation of small
integers. Finally, RLE tackles uninterrupted sequences of
occurrences of the same value, so called runs. Each run is
represented by its value and length. Hence, the compressed
data is a sequence of such pairs.

Generally, these five techniques address different data lev-
els. While FOR, DELTA, DICT, and RLE consider the
logical data level, NS addresses the physical level of bits
or bytes. This explains why lightweight data compression
algorithms are always composed of one or more of these
techniques. The techniques can be further divided into two
groups depending on how the input values are mapped to
output values. FOR, DELTA, and DICT map each input
value to exactly one integer as output value (1:1 mapping).
The objective of these three techniques is to achieve smaller
numbers which can be better compressed on the bit level.
In RLE, not every input value is necessarily mapped to an
encoded output value, because a successive subsequence of
equal values is encoded in the output as a pair of run value
and run length (N:1 mapping). In this case, a compression is
already done at the logical level. The NS technique is either
a 1:1 or an N:1 mapping depending on the implementation.

2.2 Algorithms
The genericity of these techniques is the foundation to tai-

lor the algorithms to different data characteristics. There-
fore, a lightweight data compression algorithm can be de-
scribed as a cascade of one or more of these basic techniques.
On the level of the algorithms, the NS technique has been
studied most extensively. There is a very large number of
specific algorithms showing the diversity of the implemen-
tations for a single technique. The pure NS algorithms can
be divided into the following classes [10]: (i) bit-aligned, (ii)
byte-aligned, and (iii) word-aligned.2 While bit-aligned NS
algorithms try to compress an integer using a minimal num-
ber of bits, byte-aligned NS algorithms compress an integer
with a minimal number of bytes (1:1 mapping). The word-

2[10] also defines a frame-based class, which we omit, as the
representatives we consider also match the bit-aligned class.

aligned NS algorithms encode as many integers as possible
into 32-bit or 64-bit words (N:1 mapping).

The logical-level techniques have not been considered to
such an extent as the NS technique on the algorithm level.
In most cases, they have been investigated in connection
with the NS technique. For instance, PFOR-based algo-
rithms implement the FOR technique in combination with
a bit-aligned NS algorithm [11]. These algorithms usually
subdivide the input in subsequences of a fixed length and
calculate two parameters per subsequence: a reference value
for the FOR technique and a common bit width for NS.
Each subsequence is encoded using their specific parame-
ters, thereby the parameters are data-dependently derived.
The values that cannot be encoded with the given bit width
are stored separately with a greater bit width.

3. SYSTEMATIC EVALUATION
The effective employment of these lightweight compression

algorithms requires a thorough understanding of their be-
havior in terms of performance and compression rate. There-
fore, we have conducted an extensive experimental evalua-
tion of several lightweight compression algorithms on a mul-
titude of different data characteristics. Furthermore, we
have already published some of the results in [5]. In this
section, we present the key facts about our systematic eval-
uation, which is the basis of the demonstration. Besides
the considered algorithms and data characteristics, we also
provide details on our experimental setup.

3.1 Considered Algorithms
Our selection of algorithms follows two principal goals:

Firstly, all five techniques of lightweight data compression
should be represented. Secondly, the implementations should
reflect the state-of-the-art in terms of efficiency.

Regarding efficiency, the use of SIMD (Single Instruction
Multiple Data) instruction set extensions such as Intel’s SSE
and AVX plays a crucial role. These allow the application of
one operation to multiple elements of so-called vector regis-
ters at once. The available operations include parallel arith-
metic, logical, and shift operations as well as permutations.
These are highly relevant to lightweight compression algo-
rithms. In fact, the main focus of recent research [7, 8, 9,
10] in this field has been the employment of SIMD instruc-
tions to speed up (de)compression. Consequently, most of
the algorithms we evaluated make use of SIMD extensions.

Regarding the techniques, we consider both, algorithms
implementing a single technique and cascades of one logical-
level and one physical-level technique. Since implementa-
tions of the logical-level techniques are hardly available in
isolation, i.e., without the combination with NS, we use
our own vectorized reimplementions of RLE, DELTA, and
FOR, and a sequential reimplementation of DICT. Concern-
ing the physical-level technique NS, however, there are sev-
eral publicly available high-quality implementations, e.g.,
the FastPFOR-library by Lemire et al.3. We used such avail-
able implementations whenever possible and reimplemented
only the recently introduced algorithm SIMD-GroupSimple
[10], since we could not find an implementation of it. Table 1
gives an overview of the NS algorithms in our systematic
evaluation. Note that all three classes of NS are represented
in this selection. Due to space limitations, we cannot elab-

3https://github.com/lemire/FastPFOR

563



Class Algorithm Ref. Code origin SIMD

bit- 4-Gamma [9] Schlegel et al. yes
aligned SIMD-BP128 [7] FastPFOR-lib3 yes

SIMD-FastPFOR [7] FastPFOR-lib3 yes
byte- 4-Wise NS [9] Schlegel et al. yes
aligned Masked-VByte [8] FastPFOR-lib3 no/yes

word- Simple-8b [2] FastPFOR-lib3 no
aligned SIMD-GroupSimple [10] our own code yes

Table 1: The considered NS algorithms.

orate further on these algorithms. Instead, we recommend
to read [5], which contains high-level descriptions of these.

To enable the systematic investigation of combinations of
logical-level and physical-level algorithms, we implemented
a generic cascade algorithm, which can be specialized for
any pair of compression algorithms. This cascade algorithm
partitions the uncompressed data into blocks of a certain
size and does the following for each block: First, it applies
the logical-level algorithm to the uncompressed block storing
the result to a small intermediate buffer. Second, it applies
the physical-level algorithm to that intermediate buffer and
appends the result to the output. The decompression works
the opposite way. We choose the block size such that it fits
into the L1 data cache in order to achieve high performance.

To sum up, we investigated 4 logical-level algorithms, 7
physical level algorithms, and 4 × 7 = 28 cascades, yield-
ing a total of 39 algorithms. For each of these algorithms,
we consider the compression and decompression part. Ad-
ditionally, we implemented a summation of the compressed
data for each algorithm as an example of data processing.

3.2 Considered Data Sets
We made extensive use of synthetic data, since it allows

us to carefully vary all relevant data properties. More pre-
cisely, we experimented with various combinations of the
total number of data elements, the number of distinct data
elements, the distribution of the data elements, the distribu-
tion of run lengths, and the sort order. We employed random
distributions which are frequently encountered in practice,
such as uniform, normal, and zipf. Additionally we intro-
duced different amounts of outliers. For each data set, we
vary one of these properties, while the others are fixed. That
way, we can easily observe the impact of the varied property.
To give an example, one of our data sets consists of 100 M
uncompressed 32-bit integers, 90% of which follow a nor-
mal distribution with a small mean, while 10% are normally
distributed outliers for which we vary the mean.

Additionally, we employed two real data sets which are
commonly used in the literature on lightweight compression:
the postings lists of the GOV2 and ClueWeb09b document
collections.

3.3 Experimental Setup
All algorithms are implemented in C/C++ and we com-

piled them with g++ 4.8 using the optimization flag -O3. Our
Ubuntu 14.04 machine was equipped with an Intel Core i7-
4710MQ (Haswell) processor with 4 physical and 8 logical
cores running at 2.5 GHz. The L1 data, L2, and L3 caches
have a capacity of 32 KB, 256 KB and 6 MB, respectively.
We use only one core at any time of our evaluation to avoid
competition for the shared L3 cache. The capacity of the

DDR3 main memory was 16 GB.
All experiments happened entirely in main memory. The

disk was never accessed during the time measurements. We
conducted the evaluation using our benchmark framework
[4]. The synthetic data was generated by our data gener-
ator once per configuration of the data properties. During
the executions, the runtimes and the compression rates were
measured. To achieve reliable measurements, we emptied
the cache before each algorithm execution (by copying an
array much larger than the L3 cache) and repeated all time
measurements 12 times, whereby we used the wallclock-time.

4. DEMONSTRATION SCENARIO
For our demonstration we will use an interactive web-

interface (Fig. 1a). This interface is based on jupyter4,
a tool widely used for interactive scientific data processing.
While we are able to present how we conducted our sys-
tematic evaluation using our benchmark framework [4], the
main focus of the demonstration will be the exploration of
the collection of measurements.

Our demonstration offers several opportunities for involv-
ing the attendee. He or she can select the algorithms to be
compared as well as the data characteristics (Fig. 1a). Op-
tionally, the attendee can define a trade-off between the pos-
sible optimization goals of lightweight compression. For in-
stance, there are scenarios in which the decompression speed
is most relevant, while the compression speed is not of inter-
est, or in which the compression rate is more important than
the speeds. Defining such a trade-off can help to determine
the best algorithm for a given use case.

Regarding the available data sets, we already have a very
large collection of measurements, which we obtained in our
systematic evaluation as mentioned in Section 3.2. These
reflect a multitude of combinations of relevant data proper-
ties. Nevertheless, if the attendee wishes so, he or she can
also define a configuration of data characteristics, we have
not considered so far. In this case, we would simply run the
evaluation on the fly.

While it is possible to investigate any of the considered
compression algorithms on any data in an interactive and
spontaneous way, we would like to highlight the following
prepared scenarios:

• Impact of the data distribution on the physical-level al-
gorithms (Fig. 1b). In this scenario, the attendee will
learn about the general behavior of null suppression
algorithms depending on their class. Furthermore, he
or she will find out, how different data distributions
influence this behavior additionally.

• Impact of the logical-level algorithms on the data char-
acteristics (Fig. 1c). Here, the attendee can observe
how the application of purely logical-level algorithms
such as RLE and FOR changes the properties of the
underlying data. For this purpose, we employ, e.g., vi-
sualizations of the data distributions. We will discuss
with the attendee, in how far these changed properties
are suited for the following application of a physical-
level algorithm.

• Cascades of logical-level and physical-level algorithms
(Fig. 1d). Finally, the attendee will learn that the com-
bination of logical-level and physical-level algorithms

4http://www.jupyter.org

564



(a) (b)

(c) (d)

Figure 1: Screenshots of our demonstration web-interface.

can yield significant improvements in terms of speed or
compression rate, but not necessarily both. Defining
a trade-off can help to make a final decision. More-
over, depending on the data, not all combinations are
beneficial. The attendee will understand that even if
the logical-level technique is fixed, the choice of the NS
algorithm can make a significant difference.

By the end of the demonstration, the attendee will ap-
preciate that there is no single-best lightweight compression
algorithm, but that the choice depends on the data charac-
teristics as well as the optimization goal and is non-trivial.
At this point, the results of our systematic evaluation can
help to select the best algorithm for a given data set.

Acknowledgments
This work was partly funded by the German Research Foun-
dation (DFG) in the context of the project ”Lightweight
Compression Techniques for the Optimization of Complex
Database Queries” (LE-1416/26-1).

5. REFERENCES
[1] D. J. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented
database systems. In SIGMOD, 2006.

[2] V. N. Anh and A. Moffat. Index compression using
64-bit words. Softw., Pract. Exper., 40(2), 2010.

[3] G. P. Copeland and S. N. Khoshafian. A
decomposition storage model. SIGMOD Rec., 14(4),
1985.

[4] P. Damme, D. Habich, and W. Lehner. A benchmark
framework for data compression techniques. In
TPCTC, 2015.

[5] P. Damme, D. Habich, and W. Lehner. Lightweight
data compression algorithms: An experimental survey.
In EDBT, 2017.

[6] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich,
D. Molka, and W. Lehner. ERIS: A numa-aware
in-memory storage engine for analytical workloads. In
ADMS, 2014.

[7] D. Lemire and L. Boytsov. Decoding billions of
integers per second through vectorization. Softw.,
Pract. Exper., 45(1), 2015.

[8] J. Plaisance, N. Kurz, and D. Lemire. Vectorized
vbyte decoding. CoRR, abs/1503.07387, 2015.

[9] B. Schlegel, R. Gemulla, and W. Lehner. Fast integer
compression using SIMD instructions. In DaMoN,
2010.

[10] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie,
H. Yan, and J. Wen. A general simd-based approach
to accelerating compression algorithms. ACM Trans.
Inf. Syst., 33(3), 2015.

[11] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In ICDE,
2006.

565


	Insights into the Comparative Evaluation of Lightweight Data Compression AlgorithmsPatrick Damme, Dirk Habich, Juliana Hildebrandt, Wolfgang Lehner

