
GnosisMiner: Reading Order Recommendations
over Document Collections

Georgia Koutrika
HP Labs

Palo Alto, CA, USA

Alkis Simitsis
Hewlett Packard Labs

Palo Alto, CA, USA

Yannis Ioannidis
University of Athens and

"Athena" Research Center
Athens, Greece

ABSTRACT

Given a document collection, existing systems allow users to locate

documents either using search keywords or by navigating through

some predefined organization of the collection. Other approaches

help the user understand a collection by generating summaries or

clusters of the documents at hand. However, often users would like

to understand how the documents may be related to each other and

access them in some logical order. In this work, we present an

interactive reading recommendation system, called GnosisMiner.

Given a collection of documents and a theme, the system returns

a partial order of documents relevant to that theme organized from

more general to more specific. The recommended reading order

resembles the human approach of learning as we typically start our

path to knowledge from more general documents that help us un-

derstand the domain and then we proceed with more specific, more

specialized documents to increase our knowledge of the matter.

1. INTRODUCTION
Given a document collection, existing systems allow users to

locate documents either using search keywords or by navigating

through some predefined organization of the collection. However,

search engines hide document relationships, and navigational inter-

faces capture only fixed relationships that do not dynamically adapt

to the users’ specific needs. Therefore, while these systems work

fine when users try to locate specific documents, they are insuffi-

cient when users would like to understand how the documents may

be related to each other and access them in some logical order.

We advocate that given a document collection, it is very useful to

recommend to a user a possible reading order over this collection

so that she can access the documents in an organized, structured

way. In the past, there have been efforts towards helping a user

understand and access a corpus of documents in some meaning-

ful way. These efforts include corpus summarization approaches,

which try to generate a textual summary of the collection [9, 10],

hierarchical document clustering methods, which segment the cor-

pus [6, 7, 11], and document linking, which connect documents

through specific types of links such as ‘consequence of’ or ‘follow-

up’ [2, 8]. Google’s advanced search interface [3] organizes search

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

results into three reading levels: basic, intermediate, and advanced,

offering a very coarse document ordering.

In this work, we present an interactive reading recommendation

system, called GnosisMiner. Given a collection of documents and

given a theme (i.e., a set of keywords), our system returns a par-

tial order of documents relevant to that theme organized from more

general to more specific. The recommended reading order resem-

bles the human approach of learning as we typically start our path

to knowledge from more general documents that help us under-

stand the domain and then we proceed with more specific, more

specialized documents to increase our knowledge of the matter.

GnosisMiner represents a reading order as a tree and users may

select which path on the tree they would like to follow and, hence,

which documents they would like to read in order. To help them

further, the system shows the topics found in each document as

well at each level of the tree. Users may modify the recommended

reading orders through parameters that determine how fine-grained

the ordering should be. Finally, the system provides several visual-

izations of the underlying collection aimed at the expert user who

would like to gain insights into the similarities and topics of the

documents and tune the recommendations accordingly.

Recommending reading orders is useful in many areas, such as

(a) education, for organizing online educational material, (b) patent

searching, for helping users (e.g. patent attorneys) to understand

which patents have more general cover than others, (c) research, for

organizing publications or news articles to help researchers study a

topic, (d) publishing, for helping editors select and organize articles

to publish on a web site, and so forth.

2. RECOMMENDING READING ORDERS
Given a collection of documents, a reading order is a partial or-

der of the documents from general to more specific documents. In

this partial order, there are two types of document relationships,

equivalence and precedence, which can be informally described as

follows. If two documents are about the same topics, then they are

considered equivalent, denoted a ↔ b, and are grouped together. If

they are about related topics but document b is more specific than

a, then a precedes b in the order, denoted a → b.

As an example, consider the following documents: a is an in-

troduction to data mining, b is on classification methods, and c is

another introductory document on data mining. Both a and c cover

the same topic to a similar extent and hence they are considered

equivalent. Consequently, one can choose to read any of them.

However, b is more focused, hence it has precedence relationships

to the other documents: a → b and c → b.

We quantitatively define the equivalence and precedence rela-

tionships in a reading order using two metrics: document generality

and document overlap. We will first describe the metrics and then

show how the two relationships are defined with their help.

Demonstration

Series ISSN: 2367-2005 538 10.5441/002/edbt.2017.64

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.64

Given documents a and b, the document generality for a doc-

ument a is captured by the generality score, g(a), a real number

such that higher values mean higher generality. In other words, a is

more general than b iff g(a) ≥ g(b). The document overlap for the

pair a and b is captured by the overlap score, o(a, b), a real number

typically in the range of [0, 1], where 0 means no overlap between

a and b, and 1 means maximum overlap.

We measure document overlap and generality based on the doc-

uments’ topical relationships. To derive the topics describing the

documents, we use topic modeling. Topic models [1] are based

upon the idea that documents are mixtures of topics, where a topic

is a probability distribution over words. A topic model aims at dis-

covering the hidden thematic structure of a collection of documents

by finding how topics are assigned to documents, and how topics

are described by words in the documents. Representing a document

using topics rather than document keywords is more effective be-

cause it allows capturing implicit relationships between documents,

not just the explicit similarity of their common words.

Document generality. We compute the document generality as a

measure of the document’s entropy over the topics it covers. The

basic intuition behind the entropy is that the higher a document’s

entropy is, the more topics it covers in less depth hence the more

general it is. Given a collection D of n documents and s topics,

we denote Fn×s the document-topic matrix that captures how the s

topics are assigned to the n documents in D. Fij ∈ [0, 1] with i ≤
n and j ≤ s describes how well topic tj describes document ai.

Using the Shannon entropy, the generality score g(ai) of document

ai can be defined as follows:

g(ai) = H(ai) =
∑

j

−Fij log(Fij) (1)

Document overlap. The topic overlap o(a, b) of two documents

a and b can be defined using the weighted Jaccard score [4]. The

weighted Jaccard extends the classic Jaccard index, which is de-

fined as the size of the intersection divided by the size of the union

of the topic sets assigned to each document, by taking into account

how well a topic represents a document. The topic overlap can be

defined as follows:

o(a, b) = Jaccard(a, b) =
Fa · Fb

|Fa|2 + |Fb|2 − Fa · Fb

(2)

where Fa (Fb) is the topic vector associated with a (b, resp.). Larger

values indicate more common topics between two documents.

Note that other metrics for measuring document generality and

overlap are possible. For example, instead of the Shannon entropy,

we could use the residual entropy (entropy of non-common terms)

or the distribution entropy (entropy of the location of common,

non-common, or both types of terms throughout the document).

Now we can formally define the document equivalence and prece-

dence relationships in a reading order as follows:

document equivalence: a ↔ b iff |g(a)− g(b)| ≤ κ∧ o(a, b) ≥ τ

(3)

document precedence: a → b iff g(a) > g(b) ∧ o(a, b) > 0

∧ (|g(a)− g(b)| > κ ∨ o(a, b) < τ)
(4)

τ defines the minimum topic overlap between two equivalent doc-

uments and κ defines the maximum difference of their generality

scores.

Figure 1(a) shows an example reading order over six documents.

A user can follow different reading paths following the document

relationships, such as the example reading path: d1 → d4 → d6,

shown in the figure. Furthermore, there may be more than one read-

ing orders for the same set of documents. For example, consider

(b)(a)

d1 d5

d4 d3

d2 d6

d1 d2

d3

d2 d3

d1

Figure 1: Example reading orders

Figure 2: System architecture

documents d1, d2 and d3, which have some overlap and d1 ↔ d2
and d2 ↔ d3 but d1 is not equivalent to d3. Figure 1(b) shows two

possible reading orders.

3. SYSTEM OVERVIEW
We present GnosisMiner, a prototype system for recommend-

ing ordered readings over document collections. The system ar-

chitecture is depicted in Figure 2. Its main components are: pre-

processing, topic extraction, reading recommendation, and visual-

ization. The users interact with the system through the visualiza-

tion component to specify the document collection and the theme of

their interest, interact with the recommended reading order and the

documents, modify the recommendation parameters, and examine

the various visualizations over the collection.

Next, we describe the main components of our system. For more

details on the algorithms used for topic extraction and reading order

recommendation we refer the interested reader to [5].

3.1 Pre-processing
Pre-processing removes noisy and stop words, performs stem-

ming, and transforms each document to a term vector using a tf-idf

weighting scheme. We perform this task incrementally; we skip

documents already processed in a previous run and only work on

documents never processed before.

3.2 Topic extraction
To measure the generality and overlap of the documents, and

identify the topical relationships among them, we first derive the

topics that describe the documents. The topic extraction module

works in two phases. First, it extracts the topics that occur in the

documents using the Latent Dirichlet Allocation (LDA) model with

Gibbs sampling [1]. However, topic models often misassign or miss

topics for documents. To reduce such errors, subsequently, the topic

extraction uses a score propagation method that allows the topic

scores of a document to be influenced by the topics of its most sim-

ilar neighbors. This module leverages the content similarity of the

documents by comparing their term representations and propagates

document-topic scores between strongly similar documents on the

basis that due to their similarity they likely have similar topics.

For this purpose, this module first builds the document similar-

ity graph, where each node maps to a document, and each edge

between two documents captures their similarity (i.e., the similar-

ity of their term-based representations) in the edge weight. Then,

the document-topic scores, returned by LDA during the first step

of topic extraction, are propagated over the document similarity

graph, so the potential topics of a document take into consideration

the topic scores of their neighbors (which in turn, depend on the

scores of their respective neighbors, and so on). The algorithm iter-

atively updates the topic scores of a node (document) based on the

weighted average of the scores of its neighbors.

539

Figure 3: Collect and Mine components

3.3 Reading Recommendation
The reading recommendation uses the document-topic scores

learnt from the topic extraction module to determine the equiva-

lence and precedence relations among the documents and mine a

reading order for them. This module takes as input a set of doc-

uments, the document-topic assignments, and the parameters τ ,

which defines the minimum topic overlap between two equivalent

documents, and κ, which defines the maximum difference of their

generality scores. The module uses an iterative method to build a

tree that represents the recommended reading order.

In this tree, nodes correspond to the input documents and edges

capture precedence relationships between the documents. In par-

ticular, a node maps a non-empty set of equivalent documents. An

edge between nodes A and B signifies that documents belonging

to the corresponding document set of A precede the documents be-

longing to the respective node B.

For the root of this tree, the method puts together the most gen-

eral, equivalent documents (i.e, documents whose generality dif-

ference is small (< κ) and whose overlap is high (> τ)). From

the remaining documents, the method creates clusters of documents

that can be grouped together because they overlap with each other

and they also have some overlap (0 < and < τ) with the root of

the tree. Each of these clusters will be used to grow a subtree that

will be connected to the current node (let’s call it the parent node

of the cluster) in subsequent rounds. The reading recommendation

module takes each of the clusters created in the previous cycle and

selects the most general, equivalent documents. This set becomes a

new node that is added under the parent node of the cluster. Then,

the remaining documents are clustered. Note that in each cluster-

ing step, documents that were un-clustered before may get grouped

now. This process repeats until no more tree growing is possible

and there are no documents unprocessed.

3.4 Visualization
The visualization component allows the user to interact with the

system. The user can specify the document collection they would

like to explore and the theme of their interest (e.g., as a set of key-

words), interact with the recommended reading order of the docu-

ments, modify the recommendation parameters, and examine vari-

ous visualizations over the collection.

GnosisMiner visualizes a reading order as a tree, where each

node corresponds to a set of equivalent documents. The system

shows the topics found in each document as well as at each node of

the tree. The user can interact with the tree in a table-of-contents

manner, and choose which documents to read in the proposed or-

der. The user can modify the recommended reading order through

parameters that determine how fine-grained the ordering should be.

These parameters include the number of topics to use for describ-

ing the documents of interest, the minimum topic overlap (τ) be-

tween equivalent documents, and the maximum difference (κ) of

their generality scores.

Finally, the system provides several visualizations of the un-

derlying collection that offer a look under the hood at the doc-

ument relationships as well as at the operation and performance

of the system. The user can visually examine the topics describ-

ing the selected set of documents, how these topics are assigned to

documents, the document content similarities, and their generality

scores. For instance, the document content similarities are visual-

ized using a heatmap. The user can also review details regarding

the operation of the various components of the system, such as ex-

ecution times, number of iterations of the topic extraction, number

of iterations of the reading recommendation, and so forth.

4. OUR PRESENTATION
Our presentation will demonstrate GnosisMiner’s features us-

ing a collection of data management related papers as our corpus.

Our demonstration script starts with a small number of representa-

tive examples. With these examples we will show how a user can

choose a collection and specify which part of the collection she is

interested in. For example, Figure 3 shows an example navigation

and run of the system, using a collection of papers, example param-

eters for topic extraction, and an example filter limiting the search

to 200 papers with a theme ‘XML Tree Patterns’. When a reading

order has been generated, it is shown in the View component.

Figure 4 shows a snapshot of an abridged result for this example.

The left panel contains the tree representing the reading order cho-

sen. Each node contains a set of topics along with links to papers

related to those topics. Hovering over a node shows the complete

540

Figure 4: View component (main picture) and example analysis chart: similarity heatmap (bottom-left corner)

list of topics of the node. In the figure, the root node of the tree

contains the paper entitled “M. Hachicha, J. Darmont: A Survey of

XML Tree Patterns. IEEE Trans. Knowl. Data Eng. 25(1): 29-46

(2013)”, which is a survey paper on the specified subject matter,

and it covers several topics in XML patterns. We observe that un-

der this node, nodes 001 and 002 cover more focused topics: the

former related to tree pattern mining, frequent patterns, structure

mining, and so forth, and the latter related to XML queries, twig

patterns, query evaluation, etc.

Selecting a paper link in a node opens the right panel, which

shows the recommended list of papers for the corresponding set of

topics and a summary listing of these topics. Choosing a paper from

the list, shows the text in a viewer. For instance, in the figure, the

document entitled “Twig Patterns: From XML Trees to Graphs” is

viewed. A user can read the paper, perform a text search, and so on.

There is also a show/hide topics feature that highlights the relevant

topics in the text (enabled in the figure).

The advanced user may use the Analyze component to examine

analysis charts (e.g., document-topics assignments, document sim-

ilarities, performance statistics) to get insights into the document

collection and refine the mining process if needed. The bottom-

left corner of Figure 4 shows an example snapshot of a similarity

heatmap for the 8 documents shown in the reading tree of Figure 4.

For instance, one can see how documents 02 - 05 are closer in sim-

ilarity to 01, which is the root of the tree in the figure, while 06 - 08

are more distant. One could also see that a slightly more flexible

similarity threshold could group documents 06 - 08 together.

Finally, for off-script presentation and discussion, we will pro-

vide interactivity, where the participants can explore the data set

themselves and experiment with GnosisMiner.

5. REFERENCES
[1] David M. Blei. Probabilistic topic models. Commun. ACM,

55(4):77–84, April 2012.

[2] Ao Feng and James Allan. Incident threading for news passages. In
CIKM, 2009.

[3] Google. Advanced search interface. Available at:
http://www.google.ca/advancedsearch, 2016.

[4] G. Grefenstette. Explorations in Automatic Thesaurus Discovery.
Kluwer Academic Publishers, 1994.

[5] Georgia Koutrika, Lei Liu, Steven J. Simske. Generating reading
orders over document collections. ICDE, 507-518, 2015.

[6] Qirong Ho, Jacob Eisenstein, and Eric P. Xing. Document hierarchies
from text and links. In WWW, 2012.

[7] Nachiketa Sahoo, Jamie Callan, Ramayya Krishnan, George Duncan,
and Rema Padman. Incremental hierarchical clustering of text
documents. In CIKM, 2006.

[8] Dafna Shahaf and Carlos Guestrin. Connecting two (or less) dots:
Discovering structure in news articles. ACM Trans. Knowl. Discov.

Data, 5(4):24:1–24:31, February 2012.

[9] B. Shaparenko and T. Joachims. Information genealogy: Uncovering
the flow of ideas in non-hyperlinked document databases. In KDD,
2007.

[10] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and
Thorsten Joachims. Temporal corpus summarization using
submodular word coverage. In CIKM, 2012.

[11] Ying Zhao, George Karypis, and Usama Fayyad. Hierarchical
clustering algorithms for document datasets. Data Min. Knowl.

Discov., 10(2), March 2005.

541

	GnosisMiner: Reading Order Recommendations over Document CollectionsGeorgia Koutrika, Alkis Simitsis, Yannis Ioannidis

