
ChaseFUN: a Data Exchange Engine
for Functional Dependencies at Scale

Angela Bonifati
University of Lyon 1

angela.bonifati@univ-lyon1.fr

Ioana Ileana
Paris Descartes University

ioana.ileana@parisdescartes.fr

Michele Linardi
Paris Descartes University

michele.linardi@parisdescartes.fr

ABSTRACT
Despite their wide use and importance, target functional de-
pendencies (fds) are still a bottleneck for the state-of-the-art
Data Exchange (DE) engines. The consequences range from
incomplete support to support at the expense of an impor-
tant overhead in performance. We demonstrate here Chase-
FUN, a DE engine that succeeds in effectively mitigating
and taming this overhead, thus making target fds affordable
even for very large-sized, complex scenarios. ChaseFUN is
a custom chase-based system that essentially relies on ex-
ploiting chase step ordering and constraint interaction, so as
to piecemeal process, parallelize and dramatically speed-up
the chase. Interestingly, the structures and concepts at the
core of our system moreover allow it to seamlessly uncover
a range of usually opaque details of the chase. As a result,
ChaseFUN’s two main strengths are: (i) its significant scala-
bility and performance and (ii) its ability to provide detailed,
granular insight on the DE process. Across our demonstra-
tion scenarios, we will emphasize our system’s practical per-
formance and ability to scale to very large source instances
and sets of constraints. Furthermore, we will aim at pro-
viding the user with a novel, behind-the-scenes view on the
internals of the ongoing chase process, as well as on the in-
trinsic structure of a DE scenario.

CCS Concepts
•Information systems Ñ Data exchange;

1. INTRODUCTION
Over the last decade, a plethora of mapping systems, in-

cluding commercial ones such as IBM Rational Data Archi-
tect and research prototypes [1], have been developed for
data transformation and data integration tasks. Data Ex-
change (DE) is one of the core processes of data transforma-
tion, relying on first-order logic and as such mainly pursued
in research implementations. It revolves around translating
data adhering to a source schema into data compliant with a
target schema, and satisfying a set of logic-based constraints.
These constraints typically include: source-to-target (s-t)
tuple-generating dependencies (tgds) and target constraints

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

such as target tgds and target equality-generating depen-
dencies (egds). Target egds in turn include primary keys,
and more general functional dependencies (fds) on the target
schema. The produced solution of a DE process, called tar-
get solution, is generally obtained using the chase algorithm.
Such algorithm iteratively applies s-t and target constraints
until a fix point (i.e termination) is reached; the chase result
upon termination then yields the target solution.

Existing DE engines span from completely covering all
the above classes of constraints to supporting only subsets
thereof. Indeed, custom chase engines [3] have been con-
ceived for computing DE solutions under a wide range of
constraints. While such engines may show high efficiency
when dealing with tgds and other complex constraints, tar-
get fds yet hinder their performance and scalability. Alter-
natively, to aim for performance, DE engines like [4] have
focused on outputting a set of SQL queries whose execution
yields the target solution. While fast indeed, this approach
is, however, mostly limited to s-t constraints. Extensions
to subsets of target fds were shown possible, but typically
requiring the additional input of source constraints [4].

Contributions. We demonstrate ChaseFUN, a novel
chase-based engine for Data Exchange in the presence of ar-
bitrary target fds and in the absence of source constraints.
Our demonstration’s first focus will be on emphasizing our
system’s performance on such DE scenarios. Indeed, as we
will show, ChaseFUN is able to dramatically speed-up fd
evaluation by leveraging constraints’ interaction and chase
step ordering, and exploiting the granular processing and
parallelization opportunities yielded by such concepts. By
showcasing our system’s performance and scalability on large
and complex DE scenarios, we then aim at showing that effi-
cient support is yet attainable for general target fds, despite
the overhead brought in by these constraints.

Interestingly, the concepts that stand at the core of Chase-
FUN’s performance endorse our system with an additional
property: the ability of shedding light on the internals of
DE scenarios and the corresponding chase sequences. To
this end, ChaseFUN offers several features allowing the user
to consult and examine scenario and chase-related data, in-
cluding a particularly informative step-by-step execution of
the chase procedure. Accordingly, our demonstration’s sec-
ond focus will be on showcasing such features, thus providing
the user with a novel, behind-the-scenes view on the under-
pinnings of DE. To the best of our knowledge, such view has
never been previosuly proposed by a chase-based DE engine.

Paper layout. We present an overview of ChaseFUN in
Section 2 and the demonstration details in Section 3.

Demonstration

 

 

Series ISSN: 2367-2005 534 10.5441/002/edbt.2017.63

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.63


(i) Source Instance I

Active Actors
name surname age

Leonardo Di Caprio 40
John Redmayne 33

Awarded Actor
name surname oscarName year
John Redmayne Best Actor 2014

Wallace Beery Best Actor 1932
Fredric March Best Actor 1932
Marlon Brando Jr Best Actor 1954
Marlon Brando Jr Best Actor 1972

Actor Collaboration
name1 surname1 name2 surname2

Leonardo Di Caprio Matthew David
Fredric March Miriam Hopkins

(ii) Dependencies (uppercase for existential variables)

m1 :
Active Actorspn, s, aq Ñ Actorpn, s, Y1, Y2q

m2 :
Awarded Actorpn1, s1, p1, w1q Ñ

Actorpn1, s1, T, T1q ^Oscar Prizepp1, w1, T q
m3 :
Actor Collaborationpn2, s2, n3, s3q Ñ

Actorpn2, s2, E1, E2q ^Actorpn3, s3, E3, E2q

e1 :
Actorpn, s, p, wq ^Actorpn, s, p1, w1q Ñ
pp “ p1q ^ pw “ w1q

e2 :
Oscar Prizepp, w, zq ^Oscar Prizepp, w, z1q Ñ pz “ z1q

(iii) Target Instance (Solution) J
(values Nx are labelled nulls)

Actor
name˚ surname˚ idRewarding idClub
John Redmayne N5 N6

Wallace Beery N7 N8

Marlon Brando Jr N13 N14

Leonardo Di Caprio N15 N16

Matthew David N17 N16

Fredric March N7 N19

Miriam Hopkins N20 N19

Oscar Prize
oscarName˚ year˚ idActor
Best Actor 2014 N5

Best Actor 1932 N7

Best Actor 1954 N13

Best Actor 1972 N13

Figure 1: Running example: DE scenario involving actors, prizes and collaborations.

m1

a1m1= {n : Leonardo, s : Di Caprio, a : 40, Y1 : N1, Y2 : N2}
a2m1= {n : John, s : Redmayne, a : 33, Y1 : N3, Y2 : N4}
m2

a1m2= {n1 : John, s : Redmayne, p1 : BestActor, w1 : 2014, T : N5, T1 : N6}
a2m2= {n1 : Wallace, s : Beery, p1 : BestActor, w1 : 1932, T : N7, T1 : N8}
a3m2= {n1 : Fredric, s : March, p1 : BestActor, w1 : 1932, T : N9, T1 : N10}
a4m2= {n1 : Marlon, s : Brando Jr, p1 : BestActor, w1 : 1954, T : N11,

T1 : N12}
a5m2= {n1 : Marlon, s : Brando Jr, p1 : BestActor, w1 : 1972, T : N13,

T1 : N14}
m3

a1m3= {n2 : Leonardo, s2 : Di Caprio, n3 : Matthew, s3 : David,
E1 : N15, E2 : N16, E3 : N17}

a2m3= {n2 : Fredric, s2 : March, n3 : Miriam, s3 : Hopkins,
E1 : N18, E2 : N19, E3 : N20}

(i) Set of assignments in their initial form (values Nx are labelled nulls)

S1= {a1m1, a1m3}
S2= {a2m1, a1m2}
S3= {a2m2, a3m2, a2m3}
S4= {a4m2, a5m2}

(ii) Saturation Sets

a1m1= {n : Leonardo, s : Di Caprio,
a : 40, Y1 : N15, Y2 : N16}

a1m3= {n2 : Leonardo, s2 : Di Caprio,
n3 : Matthew, s3 : David,
E1 : N15, E2 : N16, E3 : N17}

(iii) S1 after chase

Actor:
Leonardo Di Caprio N15 N16

Matthew David N17 N16

(iv) Materialization of S1 after chase

Figure 2: Assignments and Saturation Sets for the DE scenario in Figure 1.

2. SYSTEM OVERVIEW
Main algorithmic concepts. To efficiently produce DE
solutions, ChaseFUN relies on a series of algorithmic con-
cepts which we synthetically illustrate hereafter1 by means
of a DE example depicted in Figure 1: Figure 1(i) shows
the source instance I; (ii) shows the s-t tgds (m1, m2, m3)
and target fds (e1 and e2); finally, (iii) shows the target so-
lution J . This example shows a recurring transformation
task, that of taking overlapping data across source tables
(e.g. the actors who are active, who collaborate with each
other, and win prizes) and injecting them into one or two
target tables by merging duplicates via target functional de-
pendencies. Transformations of this kind, involving general
target fds and no source constraints, are indeed crucial in
DE. Using our example, we describe hereafter the key con-
cepts and tools used by ChaseFUN:
• Chase and assignments. Our chase flavor relies on the

construction, selection and modification of a set of full s-t
tgd assignments corresponding to the DE scenario. Each
assignment is initially a mapping of universal variables in
the s-t tgd body to source constants, further enriched with
a mapping of existential variables in the s-t tgd head to
fresh labelled nulls. Initial assignments for our running ex-
ample are illustrated in Figure 2(i). Chase steps with s-t
tgds consist in the selection of a yet available assignment,
which is marked as no longer available and added to a target
set. Chase steps with egds (fds) in turn modify assignments
within the current target set. Upon termination of the chase,

1A detailed description of these concepts is available in [2].

the target set comprises the final (i.e. potentially modified
by egd application) form of all assignments. We obtain the
tuples in the target instance J by materializing this final
form, i.e. by replacing variables in the tgds heads with their
assigned values.

• Saturation Sets and chase order. One of the main rea-
sons behind ChaseFUN’s performance is its ability to tame
the size of the intermediate target set during the chase, thus
systematically reducing the egd application scope. To achieve
such reduced size, we group assignments that are estimated
to be at some point interacting via fds. We call such groups
of assignments Saturation Sets. The chase of a Saturation
Set will typically alternate between tgd steps and series of
egd steps, applied to termination (i.e., until no egd remains
applicable). Each Saturation Set thus acts as an indepen-
dent chase unit that provides a part of the target solution.
Figure 2(ii) shows a possible partition of the assignments in
our running example into four Saturation Sets. We further
show, in Figure 2(iii), the result of chasing S1 (two s-t tgd
steps corresponding to the assignments’ selection, followed
by an egd step with e1 that modifies a1m1). Materializ-
ing this chase result yields the Actor tuples in Figure 2(iv).
Note that these are indeed part of the target instance J in
Figure 1(iii).

• The Conflict Graph and parallelization. To efficiently
build Saturation Sets, our system uses a statically-built data
structure called the Conflict Graph. Conflict Graph nodes
correspond to s-t tgds, whereas edges witness the fact that
the two s-t tgds, representing the connected nodes, have
assignments that should potentially belong together in the

535



same Saturation Set. We call this kind of relation a conflict
between two s-t tgds. The Conflict Graph further charac-
terizes, via conflict areas adorning vertices, the interaction
we would expect between assignments of the respective s-t
tgds. The Conflict Graph for our running example is de-
picted below, with vertices v1, v2, v3 corresponding to s-t
tgds m1, m2, m3.

v1v2 v3

Areaspv1q “ tca
1
1 “ xpn, sq, e1yu.

Areaspv2q “ tca
1
2 “ xpn

1, s1q, e1y, ca
2
2 “ xpp

1, w1q, e2yu.
Areaspv3q “ tca

1
3 “ xpn

2, s2q, e1y, ca
2
3 “ xpn

3, s3q, e1yu.

By v1 and v2’s adornments we infer that any assignments
of m1 and m2 may trigger the fd e1, if they agree on the
values for n and n1, respectively s and s1. Thus, since they
exhibit such agreement, a2m1 and a1m2 must belong to-
gether in the same Saturation Set, i.e. S2 in Figure 2(ii).

Besides its important role in Saturation Set construction,
the Conflict Graph also provides very interesting paralleliza-
tion opportunities. Indeed, one can show that a Satura-
tion Set can never span across several connected compo-
nents of the graph. ChaseFUN thus proceeds to Saturation
Set construction and chase in parallel for each of the Con-
flict Graph’s connected components. Coupled to the Satura-
tion Set-chase paradigm, parallel processing in turn further
boosts our system’s speed and scalability.

Implementation and assessment. We have implemented
ChaseFUN in Java (JVM version 1.8) using a JDBC inter-
face for communication with an underlying PostgreSql9.4
DBMS system. To stress-test ChaseFUN we have used sev-
eral scenarios generated by using iBench[1], a novel data
integration benchmark for generating arbitrarily large and
complex schemas and constraints. We have considered three
types of scenarios, in increasing complexity order: (i) OF
scenarios generated with the default iBench object fusion
primitive; (ii) OF` scenarios, generated by combining the
iBench object fusion and vertical partitioning primitives; (ii)
OF`` scenarios, obtained by further modifying OF` to yield
s-t tgds with up to three atoms in the head. To further pro-
vide scale and assess the signficance of ChaseFUN’s perfor-
mance, we comparatively ran, on the same scenarios, one of
the best DE engines currently available, namely the Llunatic
system[3]. Figure 3 shows several measures obtained during
this comparative evaluation2.

Scenarios
SCENARIO s-t tgds OF OF+ OF++ # source tuples

A 15 5 egds 10 egds 15 egds 500K
C 45 15 egds 30 egds 45 egds 1.5M
F 90 30 egds 60 egds 90 egds 3M

Figure 3: Evaluation and comparative assessment.

2We ran experiments on a 4-cores, i7-6600U 2.6 Ghz, 8GB
RAM machine. We set a 15min timeout for all runs. We
used the latest, most optimized version of Llunatic, as pro-
vided by its authors.

DE workflow. Our system runs the DE process as a tran-
sition among four states, detailed hereafter.
• 1. Initial state: waiting to load scenario. Prior to any in-
teraction, ChaseFUN bootstraps with loading a Data Ex-
change scenario, comprising source and target schemas, con-
straints (s-t tgds and target fds) and source instance tuples.
• 2. Ready to chase state. Once a scenario has been loaded,
the Conflict Graph and the initial assignments are further
computed. The system then reaches the Ready to chase
state, where the user can browse scenario-related data: source
and target schemas, source instance, s-t tgds and their as-
signments, target fds, as well as the Conflict Graph.

Figure 4: Ready to chase state for Scenario 2.

ChaseFUN provides windows and subwindows where base-
line information can be selectively displayed by clicking on
the corresponding tabs. Details can be further obtained by
clicking on displayed elements. Figure 4 shows some of the
system’s visual feedback in the Ready to chase state for our
demonstration Scenario 2.
• 3. Chase in progress state. Pressing the Start Chase but-
ton triggers the start of the chase procedure, with a choice
among three chase modes. The first two modes both imply
a continuous run, corresponding to a serial (sequential) and
respectively parallel processing of the connected components
in the Conflict Graph. The third mode in turn is aimed at
allowing the user to peak into the chase, via a step-by-step
execution. We detail this mode at the end of this section.

Figure 5: Progress information for Scenario 2.

Throughout the chase, our system displays a range of useful
information regarding the current state and evolution of the
chase. This comprises progress bars for each connected com-
ponent, the time spent chasing so far, as well as the evolving
size of the solution so far constructed, by progressive mate-
rialization of completed Saturation Sets. Figure 5 illustrates
such progress-related information.
• 4. Final state: chase completed. Upon chase completion,
in addition to previously available information, the user has
access to the contents of the solution, as well as to a wide
range of time and size statistics. She may export these

536



statistics and/or wraparound to the initial state to run Chase-
FUN on a new DE scenario.

Step-by-step chase. An essential feature of ChaseFUN is
that of providing a detail-oriented, debug-like, step-by-step
chase mode, aimed towards learning and understanding how
the chase goes and what ChaseFUN’s unit actions are. When
the step-by-step option is selected, a new window pops up,
allowing the user to incrementally run and inspect the results
of each Saturation Set’s construction and chase, alternating
between tgds and egds. To improve the understanding of
this process, ChaseFUN will provide a range of additional
status information and visual cues.

Figure 6: Step-by-step chase for Scenario 1

Figure 6 shows a snapshot of the step-by-step chase for our
demonstrated Scenario 1. This scenario corresponds to our
running example in Figure 1 and we refer the reader to the
detailed description of this example above. The snapshot
corresponds to the construction and chase of the Satura-
tion Set S1. In particular, it depicts the state reached after
the addition of the assignment a1m3 to S1. The user has
thus previously launched two tgd steps, namely for m1 and
m3, whose corresponding Conflict Graph nodes have accord-
ingly changed colour. Furthermore, the last tgd to add an
assignment being m3, its corresponding node is emphasized
(enlarged). The edge linking m1 and m3 is equally empha-
sized (shown in blue), since a1m3 has been added because
of its estimated interaction with an assignment of m1 (i.e.
a1m1). A subwindow displays the tuples obtained by the
materialization of the current Saturation Set. Since after
each tgd step egds must be applied, this is signaled to the
user via the status information and the available button.
Expectedly, once the user launches the next egds step, the
tuples shown in Figure 6 will evolve to become the tuples
shown in Figure 2(iv).

The step-by-step chase is importantly made available by
our system’s “by design” granular processing of the chase,
keeping the user-intended information small enough to re-
main easily accessible and understandable. To account for
large-sized scenarios, ChaseFUN additionally provides pause/
continue-like interactions, by letting the user alternate be-
tween the continuous serial and the step-by-step mode over
the course of a single chase sequence.

3. DEMONSTRATION OVERVIEW
Scenarios. We will demonstrate our system on scenarios of
increasing complexity in terms of both the number of con-
straints and the source instance size, namely one synthetic
and three iBench-based[1] DE scenarios detailed hereafter.
• Scenario 1 is our simplest scenario, corresponding to our

running example in Figure 1 and comprising 9 tuples in the
source, 3 s-t tgds, 2 egds and a single connected component
in the Conflict Graph.

• Scenario 2 is on the mid-low side of the complexity spec-
trum. It comprises 400K tuples in the source and is built

using twice the iBench default object fusion primitive (see
Section 2), yielding 6 s-t tgds, 2 egds, and 2 connected com-
ponents in the Conflict Graph.

• Scenario 3 increases the source instance size to 1M tu-
ples, and further raises complexity by (i) increasing the num-
ber of iBench object fusion primitives applied and (ii) fur-
ther plugging-in the vertical partitioning iBench primitive
(in terms of Section 2 notation, this is an OF` scenario). It
includes 30 s-t tgds, 30 egds, and 10 connected components
in the Conflict Graph.

• Scenario 4 raises the bar to 3M tuples in the source,
and a larger yet number of constraints: 90 s-t tgds and 90
egds, yielding a Conflict Graph of 30 connected components.
We obtain this scenario by plugging in both object fusion
and vertical partitioning primitives and further increasing
the number of atoms in the s-t tgds heads. Scenario 4 is in
fact our OF`` stress-test scenario F in Figure 3.

Showcased features and messages conveyed. On the
above scenarios, we will demonstrate our system’s features
and interactions described in Section 2, emphasizing Chase-
FUN’s two main strengths:

• Performance. We will showcase our system’s processing
speed and ability to scale for large and complex Data Ex-
change scenarios with target fds. As also witnessed by our
experimental assessment, we are indeed not aware of a pre-
vious DE engine able to equate or outperform ChaseFUN in
such settings. Since parallelization is one of our key perfor-
mance factors, we will moreover show its impact and benefits
by providing comparative runs using the parallel and serial
chase modes offered by ChaseFUN. To present performance
results, we will in particular focus on Scenarios 3 and 4. We
also offer the possibility of live running comparative assess-
ments of our system, such as the one charted in Section 2.

• User-intended view on the DE internals. We will show-
case the available Conflict Graph metadata, enabling a global,
synthetic view on the links and interplay of constraints in the
demonstrated DE scenarios. We will further emphasize the
usefulness of the chase progress information provided by our
system, as a first and important solution against the opac-
ity problem of the chase operated by DE engines. Finally,
we will extensively present the step-by-step chase mode de-
scribed in Section 2, aimed at offering a novel, behind-the-
scenes, refined view of the “low-level” granular operations of
the DE process. We will showcase these capabilities on all
demonstrated scenarios, and use Scenario 1 for an end-to-
end presentation of the step-by-step run. Our demonstration
will particularly focus on these detail and introspection op-
portunities provided by ChaseFUN. Indeed, to the best of
our knowledge, ours is the first DE engine to provide the
users with such informative and instructive features.

4. REFERENCES
[1] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. The

ibench integration metadata generator. PVLDB,
9(3):108–119, 2015.

[2] A. Bonifati, I. Ileana, and M. Linardi. Functional
dependencies unleashed for scalable data exchange. In
Proceedings of SSDBM, pages 2:1–2:12, 2016.

[3] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping
and cleaning. In Proceedings of ICDE, p. 232–243, 2014.

[4] B. Marnette, G. Mecca, P. Papotti, S. Raunich, and
D. Santoro. ++Spicy: an OpenSource Tool for
Second-Generation Schema Mapping and Data Exchange.
PVLDB, 4(12):1438–1441, 2011.

537


	ChaseFUN: a Data Exchange Engine for Functional Dependencies at ScaleAngela Bonifati, Ioana Ileana, Michele Linardi

