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ABSTRACT
Given a social network of experts, we address the problem of dis-
covering a team of experts that collectively hold a set of skills re-
quired to complete a given project. Prior work ranks possible so-
lutions by communication cost, represented by edge weights in the
expert network. Our contribution is to take experts’ authority into
account, represented by node weights. We formulate several prob-
lems that combine communication cost and authority, we prove that
these problems are NP-hard, and we propose and experimentally
evaluate greedy algorithms to solve them.

1. INTRODUCTION
An expert network is a social network containing profession-

als who provide specialized skills or services. Expert network
providers include the employment-oriented service LinkedIn, the
repository hosting service GitHub, and bibliography-based Web-
sites such as DBLP and Google Scholar. A node in an expert net-
work corresponds to a person and node labels denote his or her
areas of expertise. Experts may be connected if they have previ-
ously worked together, co-authored a paper, etc. Edge weights may
denote the strength of a relationship, the number of co-authored
publications, or the communication cost between experts [4, 5].

There has been recent interest in the problem of finding teams of
experts from such networks; see, e.g, [3, 5]. A common approach
has been to find a subgraph of the expert network whose nodes col-
lectively contain a given set of skills and whose communication
cost is minimal. In this paper, we argue that in many practical ap-
plications, other factors should also be considered. For example,
experts may be associated with authority metric such as h-index or
number of publications. Here, we may want to minimize commu-
nication costs and maximize authority. Furthermore, in large social
networks, experts holding the desired skills may not be directly
connected. Thus, we may obtain a subgraph with some nodes, the
skill holders, corresponding to team members who have the desired
skills, and other nodes serving as connectors. The authority of con-
nectors may also affect the quality of the team; e.g., connectors
may serve as mentors for the skill holders.

For instance, consider the two teams of researchers in Figure 1,
both having expertise in social networks (SN) and text mining
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Figure 1: Two teams with expertise in SN and TM.

(TM). Team (a) and (b) both have two skill holders and a connector
node; in this example, we use graduate students as skill holders and
professors as connectors. Assuming equal communication costs,
i.e., each edge having the same weight, previous work cannot dis-
tinguish between these two teams. However, the experts in team (a)
have higher authority (h-index). Furthermore, even if all the skill
holders were to have the same authority, team (a) may be preferable
because its connector has higher authority.

Our contributions are as follows.
1. We formally define the problem of authority-based team for-

mation in expert networks. We formulate three ranking ob-
jectives which optimize communication cost, skill holder au-
thority, connector authority and combinations of them. We
prove that optimizing these objectives is NP-hard.

2. Since these problems are NP-hard, we propose greedy algo-
rithms to solve them. We present an algorithm to optimize
communication cost over an expert networkG. We then give
a transformation which moves authority (node weights) onto
the edges of a new graph, G′, and prove that our algorithm
also optimizes the other objectives over G′.

3. We perform a comprehensive evaluation using the DBLP
dataset to confirm the effectiveness and efficiency of our ap-
proach. In particular, we show that the teams discovered
by our techniques perform higher-quality research than those
found using prior work.

2. PRELIMINARIES
Let C = {c1, c2, . . . , cm} be a set of m experts, and S =
{s1, s2, . . . , sr} be a set of r skills. An expert ci has a set of skills,
denoted as S(ci), and S(ci) ⊆ S. If sj ∈ S(ci), expert ci has skill
sj . Furthermore, a subset of expertsC′ ⊆ C have skill sj if at least
one of them has sj . For each skill sj , the set of all experts having
skill sj is denoted as C(sj) = {ci|sj ∈ S(ci)}. A project P ⊆ S
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Figure 2: The Proposed Approach

is a set of required skills. A subset of experts C′ ⊆ C covers a
project P if ∀sj ∈ P ∃ ci ∈ C′, sj ∈ S(ci).

We model the social network of experts as an undirected graph
G. Each node in G is an expert in C (we use the terms expert
and node interchangeably). Each expert ci has an application-
dependent authority a(ci). To convert authority maximization into
a minimization problem, we set a′(ci) = 1

a(ci)
. Furthermore, let

w(ci, cj) be the weight of the edge between two experts ci and cj .
Edge weights correspond to application-dependent communication
cost or relationship strength. There is no edge between experts who
have no relationship or prior collaboration. Formally:

Definition 1. Team of Experts: Given an expert network G
and a project P that requires the set of skills {s1, s2, . . . , sn},
a team of experts T is a connected subgraph of G whose nodes
cover P . With each team, we associate a set of n skill-expert pairs:
{〈s1, cs1〉, 〈s2, cs2〉, . . . , 〈sn, csn〉}, where csj is an expert in T
that has skill sj for j = 1, . . . , n.

The same expert may cover more than one required skill, i.e.,
csi can be the same as csj for i 6= j. Also, there may not be a
direct edge between some two experts csi and csj in G. Thus, T
may include connector nodes that may not hold any skill in P (e.g.,
Han and Lappas in Figure 1). Assuming that edge weights denote
communication costs, minimizing communication costs amounts to
minimizing the sum of the weights of the team’s edges [3].

Definition 2. Communication Cost (CC): Suppose the edges
of a team T are denoted as {e1, e2, . . . , et}. The communication
cost of T is defined as CC(T ) =

∑t
i=1 w(ei), where w(ei) is the

weight of edge ei.

Problem 1. Given a graph G and a project P , find a team of
experts T for P with minimal communication cost CC(T ).

This is an NP-hard problem [3] which has been studied before.
Extensions of this problem have also been considered, e.g., opti-
mizing personnel cost and proficiency of skill holders [2, 7], or
recommending replacements when a team member becomes un-
available [4]. However, to the best of our knowledge, existing ap-
proaches do not optimize the authority of skill holders and connec-
tors.

3. TEAM FORMATION FRAMEWORK
3.1 Foundations

We are interested in optimizing both communication cost and
authority. Note that we optimize the authority of connectors and
skill holders separately. Some applications may find the authority
of skill holders more important than that of the connectors (and vice
versa), e.g., those where skill holders execute the project and con-
nectors only provide guidance. Therefore, we optimize them with
different tradeoff parameters, γ and λ, with respect to the commu-
nication cost and to each other. Figure 2 summarizes the problems
we tackle and the remainder of this section discusses them in detail.
First, we define the connector authority of a team as the sum of the
inverse-authorities a′(ci) of its connectors.

Definition 3. Connector Authority (CA): Suppose that the
connectors of a team T (all nodes excluding skill holders) are de-
noted as {c1, c2, . . . , cq}. The connector authority of T is defined
as CA(T ) =

∑q
i=1 a

′(ci).

Problem 2. Given a graph G and a project P , find a team of
experts T for P with minimal connector authority CA(T ).

THEOREM 1. Problem 2 is NP-hard.
Due to space limitations, we refer the reader to the extended ver-

sion of this paper (technical report) for all proofs [6]. Furthermore,
we are interested in the bi-criteria optimization problem of mini-
mizing CC and CA. To do so, we combine these two objectives
into one with a tradeoff parameter γ (after normalizing edge and
node weights since they may have different scales).

Definition 4. CA-CC Objective: Given a team T and a tradeoff
parameter γ, where 0 ≤ γ ≤ 1, the CA-CC score of T is defined
as CA-CC(T ) = γ×CA(T ) + (1− γ)×CC(T ).

Problem 3. Given a graph G, a project P , and a tradeoff param-
eter γ, find a team of experts T for P with minimal CA-CC(T ).

THEOREM 2. Problem 3 is NP-hard.
We are also interested in optimizing the authority of skill holders.

Definition 5. Skill Holder Authority (SA): Suppose that the
skill holders of a team T are denoted as {c1, c2, . . . , cn}. The skill
holder authority of T is defined as SA(T ) =

∑n
i=1 a

′(ci).

Problem 4. Given a graph G and a project P , find a team of
experts T for P with minimal skill holder authority SA(T ).

Problem 4 can be solved in polynomial time: for each skill in P ,
we find an expert with the highest a (lowest a′), and then produce a
connected subgraph containing the selected experts. However, this
ignores communication cost and connectors’ authority. We now put
all three objectives together.

Definition 6. SA-CA-CC Objective: Given a team T and a
tradeoff parameter λ, where 0 ≤ λ ≤ 1, the SA-CA-CC objective
of T is defined as SA-CA-CC(T ) = λ×SA(T ) + (1 − λ)×CA-
CC(T ).

Problem 5. Given a graph G, a project P , and a tradeoff param-
eter λ, find a team of experts T for P with minimal SA-CA-CC(T ).

THEOREM 3. Problem 5 is NP-hard.
Since the tradeoff parameters γ and λ are application-dependent,

we leverage user and domain expert feedback to set and update
them over time (see experiment in Figure 5). Incorporating user
feedback is important for achieving high precision.

3.2 Search Algorithms
Since Problems 1, 2, 3 and 5 are NP-hard, we propose efficient

and effective greedy algorithms to solve them in polynomial time.
Optimizing CC: Algorithm 1 returns a subtree of G corre-

sponding to a team with optimized communication cost (sum of
edge weights). The for-loop in line 3 considers each expert cr as
a potential root node for the subtree (cr may end up being a skill
holder or a connector). To build a tree around cr , for each required
skill si, we select the nearest skill holder, denoted bestExpert,
that contains si (lines 9-13; assume DIST(v1,v2) finds the short-
est path, i.e., the smallest sum of edge weights, between two nodes
v1, v2). The method add in line 13 connects the bestExpert to
the current team, meaning that any additional nodes along the path
from the root to bestExpert are also added. The tree with the low-
est sum of edge weights is the best team (lines 14-17). To find the
shortest path between any two nodes in constant time, we use dis-
tance labeling, or 2-hop cover [1]. As a result, the complexity of
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Algorithm 1 Finding Best Team of Experts
Input: graph G with N nodes; project P = {s1, s2, . . . , st}; the set of experts
that contains each skill si, C(si), for i = 1, . . . , t.
Output: best team of experts
1: leastTeamCost←∞
2: bestTeam← ∅
3: for r ← 1 to N do
4: root← cr
5: teamCost← 0
6: team← ∅
7: set the root of team to root
8: for i← 1 to t do
9: minCosti ← minv∈C(si)

DIST (root, v)

10: bestExpert← argminv∈C(si)
DIST (root, v)

11: if bestExpert 6= ∅ then
12: teamCost← teamCost + minCosti
13: team.add(bestExpert)
14: if size(team) = t then
15: if teamCost < leastTeamCost then
16: leastTeamCost← teamCost
17: bestTeam← team
18: return bestTeam
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Figure 3: SA-CA-CC scores of different ranking methods(γ = 0.6)

Algorithm 1 isO(N×t×|Cmax|), where |Cmax| is the maximum
size of the expert sets C(si) for 1 ≤ i ≤ t. The N comes from
the for-loop in line 3, the t comes from the for-loop in line 8 and
the |Cmax| is due to computing the shortest path to each expert in
C(si) in lines 9 and 10. For finding top-k teams, we initialize a list
L of size k for the output. The list L is updated after each iteration
of the loop and the new team is added to L if its cost is smaller than
the last team in L. The runtime complexity remains the same as the
entire operation only needs an extra pass over L in each iteration.

To solve the other problems, we transform the expert network G
by moving authority (node weights) onto the edge weights and then
running Algorithm 1 on the transformed graph.

Optimizing CA-CC: For Problem 3, we transform G into G′

as follows. Let the edge weight between nodes ci and cj in G be
w(ci, cj). In G′, we transform each edge weight to w′(ci, cj) =
γ(a′(ci)+a

′(cj))+2× (1−γ)w(ci, cj). The DIST function now
finds shortest paths by adding up the transformed edge weights w′.
However, we only want to take connector authority into account,
not skill-holder authority. Therefore, in lines 9 and 10, we replace
DIST (root, v) byDIST (root, v)−γa′(v); note that v is always
a skill holder. If root contains skill si, then DIST is set to zero
and skill si is assigned to root. With this modification, we claim
that running Algorithm 1 onG′ optimizes CA-CC. Note that setting
γ = 1 solves Problem 2, i.e., optimizes CA.

Optimizing SA-CA-CC: Recall that SA-CA-CC is a linear
combination of communication cost, skill holder authority and con-
nector authority. We re-use G′ from above to capture commu-

020406080100
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Figure 4: Precision of top-5 teams for different methods

(a) (b)

(d)(c)
Figure 5: Sensitivity of normalized results to λ

nication cost and connector authority. Additionally, we need to
take λ into account and add the contribution of skill holder author-
ity. To do this, we replace DIST (root, v) in lines 9 and 10 with
(1 − λ)(DIST (root, v) − γa′(v)) + λa′(v). Note that we have
to subtract the authority of skill holders with parameter γ and then
add it with parameter λ. As before, if root contains skill si, then
DIST is set to zero and skill si is assigned to root. We claim that
running Algorithm 1 with this modification, along with using G′

instead of G, solves Problem 5.

4. EXPERIMENTAL RESULTS
In this section, we use Algorithm 1 and its various modifications

explained above to implement ranking strategies for team discovery
which optimize CC, CA-CC and SA-CA-CC. CC corresponds to
prior state-of-the-art, and our main goal is to show that CA-CC and
SA-CA-CC are more effective. We also implemented Random,
which randomly builds 10,000 teams and selects the one with the
lowest SA-CA-CC, andExactwhich performs exhaustive search to
find an (SA-CA-CC)-optimal solution. Note, however, that Exact
is intractable for large networks or large projects (containing many
required skills). The algorithms are implemented in Java and the
experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz
computer with 4 GB of RAM.

Similar to previous work, we use the DBLP XML dataset1 to
build an expert graph [2, 3]. For potential skill holders, we take
junior researchers with fewer than 10 papers and we label them
with terms that occur in at least two of their paper titles. This gives
us the areas of expertise. Similar to [2, 3], we set edge weights
between two experts ci and cj to 1−|

bci∩ bcj
bci∪ bcj

| (Jaccard Similarity)

where bci is the set of papers of author ci. We use h-index as the
node weight to denote authority. The resulting graph has 40K nodes
(experts) and 125K edges. The number of skills in a project is set
to 4, 6, 8 or 10. For each number of skills, we generate 50 sets of
skills, corresponding to 50 projects, and we report average results
over these 50 projects.

Exp-1 Effectiveness. We begin by comparing our SA-CA-CC
ranking strategy with Exact; for completeness, we also test CC,
1http://dblp.uni-trier.de/xml/
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Figure 6: Best team of CC, CA-CC and SA-CA-CC with "skills": analytics(Anl), matrix (Mat), communities(Com), object oriented(OR)

CA-CC and Random, and compute their SA-CA-CC scores. Fig-
ure 3 plots the SA-CA-CC scores of different ranking strategies for
different numbers of skills and different values of λ. For brevity,
we fix γ at 0.6 but different values led to similar conclusions. We
conclude that SA-CA-CC produces results that are close to those
of Exact (but note that Exact was only able to handle 4 and 6
skills and did not terminate in reasonable time for 8 and 10 skills).
Not surprisingly, SA-CA-CC has lower SA-CA-CC score than CC
and CA-CC. We also note CC, CA-CC and SA-CA-CC have sim-
ilar runtime since they use the same fundamental algorithm and
indexing methods. The runtime depends on the number of required
skills and is around a few hundred milliseconds (i.e., less than one
second) on average.

Exp-2 User Study. We conduct a user study to evaluate the top-
k precision of different ranking strategies. First, we create four
projects with different numbers of required skills. Then, for each
project, we run CC, CA-CC and SA-CA-CC and take the top-5 best
teams returned by each. We give these results to six Computer
Science graduate students, along with the average number of pub-
lications and the h-index of each expert included in the teams. We
asked the students to judge the quality of the top-5 teams using a
score between zero and one. Figure 4 shows the top-5 precision
of each method. In this experiment, we set both λ and γ to 0.6.
Both of our methods, CA-CC and SA-CA-CC, obtain better preci-
sion than CC for all tested projects.

Exp-3 Quality of Teams. We check if the top-5 teams returned
by CC and SA-CA-CC were successful in real life. To do so, we
examined the rankings of the publication venues of these teams ac-
cording to the Microsoft Academic conference ranking. Since we
used the DBLP dataset up to 2015 for team discovery, we only con-
sider papers published in 2016. We set γ and λ to 0.6 and generate
5 different projects with four different skills. From the teams that
co-authored papers in 2016, we found that 78% of the time the
teams found by SA-CA-CC published in more highly-rated venues
than those found by CC.

Exp-4 Sensitivity. Figure 5 shows the sensitivity of the results
to λ (the tradeoff parameter between skill holder authority and CA-
CC), specifically the sensitivity of the average h-index of skill hold-
ers (part a), the average h-index of connector nodes (part b), the
average team size (part c) and the average number of publications
(part d). Our methodology for evaluating sensitivity is as follows.
First, we examine the effect of λ on the top 5 teams returned by
SA-CA-CC. Given the project [analytics, matrix, communities, ob-
ject oriented], SA-CA-CC finds top-5 teams using different values
of λ. Second, we evaluate the effect of λ on a best team returned
by SA-CA-CC for m different projects. For this, we randomly gen-
erate five projects with four skills each. Then, for each value of λ,
SA-CA-CC finds the best team for each project. As shown in Figure
5, the measures change slowly as λ increases. We also observe that

changing the value of λ by less than 0.05 does not affect the results
and the quality of the team remains the same.

Exp-5 Qualitative Evaluation. Figure 6 illustrates the teams
returned by CC, CA-CC and SA-CA-CC for the project [analytics,
matrix, communities, object oriented]. Observe that CC returns a
team with lower authority (average h-index) and average number
of publications than CA-CC and SA-CA-CC. Moreover, Figure 6
shows that the skill holders of the team returned by CA-CC and
SA-CA-CC are connected through authors with a higher h-index,
and thus have a higher referral authority. We argue that the teams
returned by our algorithms are more effective than the one returned
by CC since it reveals a deeper connection among the experts that
may not have been discovered by existing team formation methods.
Note that connectors may not be directly involved in performing a
task, but may provide guidelines and support to skill holders.

5. CONCLUSIONS
In this paper, we studied the problem of team discovery from

networks of experts. We formulated new ranking objectives that
take communication costs among experts as well as expert authority
into account. We proved that satisfying these new objectives is
NP-hard and proposed heuristic algorithms. We demonstrated the
effectiveness of our techniques on the DBLP dataset. Another way
to jointly optimize the communication cost and expert authority
objectives is to find a set of Pareto-optimal teams. In the future, we
plan to develop algorithms to find such teams and rank them based
on relevant measures of interestingness.
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