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ABSTRACT
A spatial join computes all pairs of spatial objects in two
data sets satisfying a distance constraint. An increasing de-
mand in applications ranging from human brain analysis to
transportation data analysis motivates studies on designing
new in-memory spatial join algorithms. Among recent pro-
posals, the following six algorithms can efficiently perform
in-memory spatial joins: Size Separation Spatial Join (S3),
Spatial Grid Hash join (SGrid), TOUCH, Partition Based
Spatial-Merge Join (PBSM), Plane-Sweep Join (PS), and
Nested-Loop Join (NL).

This paper addresses the need for studies of aspects that
may influence the performance of spatial join algorithms.
In particular, given two datasets, A and B, the following
aspects may affect performance: the datasets being real or
synthetic data, the distributions with respect to density and
location of the datasets, and the order of performing the
spatial join (A 1 B or B 1 A). To study the effects on
performance of these aspects, we implement the six spatial
join algorithms in a single framework and conduct extensive
experiments.

The findings show that the data being real or synthetic,
the data distribution, and the join order can influence sub-
stantially the performance of the algorithms. We present de-
tailed findings that offer insight into different facets of each
algorithm and that enable comparison across algorithms and
datasets. Furthermore, we provide advice on choosing among
the spatial join algorithms based on the empirical evalua-
tion.

1. OBJECTIVES
Joins are important in many applications [3, 12, 13]. Spa-

tial joins find spatially close object pairs in two data sets.
Spatial joins are employed in many applications, and their
use in-memory is becoming increasingly important [9, 13,
14] for two reasons. First, main memory has grown so large
that many datasets fit main memory so that spatial joins can
be performed entirely in-memory. Second, in-memory join
is an unavoidable component of any join since, regardless
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of whether disk-based or in-memory joins are used, at least
some of the join occurs in-memory. Several spatial join algo-
rithms exist. Among them, the following 6 algorithms can
efficiently perform in-memory spatial joins: 1) Size Separa-
tion Spatial Join (S3) [2], an algorithm based on a hierarchy
of equi-width grids of increasing granularity; 2) Spatial Grid
Hash join (SGrid) [4], a sampling algorithm that speeds up
building an R-Tree on one dataset; 3) TOUCH [9], a hi-
erarchical data-oriented space partitioning in-memory algo-
rithm; 4) Partition Based Spatial-Merge Join (PBSM) [10], a
multiple assignment algorithm that assigns each spatial ob-
ject to all partitions it overlaps with; 5) Plane-Sweep Join
(PS) [11], an algorithm that sorts the datasets in one dimen-
sion and scans the datasets synchronously; and 6) Nested-
Loop Join (NL) [5] that iterates over both spatial datasets
in a nested loop and compares all pairs of objects.

Despite many studies on spatial joins, an investigation is
missing that studies the importance of the joining data it-
self. Given two datasets, our empirical study shows that
when joining real and synthetic datasets, the data distribu-
tion and the order in which the datasets are joined (join
order) can impact the performance of the algorithms con-
sidered very substantially. Our objectives are thus two-fold.
First, we implement all the above algorithms in a unified
and efficient in-memory spatial join framework in C++ for
ease of comparison and consistent reporting of results. In
our framework, we apply implementation optimization and
modularity wherever possible. Second, we aim to study how
real versus synthetic data, data distribution, and join or-
der influence spatial join performance, and how the findings
suggest dirctions for designing robust, high-performance in-
memory spatial join algorithms [1, 6, 7, 8, 15].

2. ALGORITHMS & IMPLEMENTATION
In the following, we briefly discuss the 6 spatial join algo-

rithms we implemented in-memory. The Nested Loop (NL)
join [5] compares all pairs of objects from both datasets
exhaustively. The Plane-Sweep (PS) approach sorts the
datasets based on an arbitrary dimension and scans both
datasets synchronously. To perform PS, we employ a fast
parallel sort to efficiently sort all the objects on one dimen-
sion. However, the performance of PS suffers from objects
that are not near each other in the other dimensions. Despite
its deficiencies, the plane-sweep approach is still broadly
used for in-memory joins of the partitions resulting from
disk-based spatial joins.

Disk-based approaches first partition both datasets and
then join the resulting partitions in-memory via two different
approaches, multiple assignment and multiple matching.
Multiple Assignment: this strategy assigns each spatial
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Figure 1: Synthetic datasets

object to all partitions it overlaps with. PBSM [10] is an
efficient multiple assignment approach that partitions the
entire space of both datasets (A & B) into cells using a
uniform grid. Then it joins the cells synchronously. SGrid
on the other hand, constructs a grid only for the first dataset
(A) and probes the intersecting cells in the constructed grid
for each object of the other dataset (B).
Multiple Matching: this strategy that assigns each spa-
tial object only to one of the partitions it overlaps with.
S3 [2] is a multiple matching approach that maintains a hi-
erarchy of L equi-width grids of increasing granularity. In
D dimensions, the grid on a particular level l has (2l)D grid
cells and assigns each object of both datasets to a grid cell
in the lowest level where it only overlaps one cell. Then
S3 joins a cell with its counterpart as well as with cells on
higher levels for all the cells.

The TOUCH algorithm consists of three steps: Tree con-
struction, assignment, and batch join. TOUCH first builds
an R-Tree from the objects of datasetA, i.e., TA. Then it as-
signs the objects of datasetB to the internal nodes of TA. Fi-
nally, the algorithm performs the required pairwise compar-
isons according to the assignment of the objects of datasetB
to TA in the batch join step.

3. SETUP AND PRESENTATION
Configuration: The experiments are executed on a Linux
Ubuntu 15.04 server equipped with 4 Intel Xeon E5-2650 v3
2.30GHz CPUs and 128GB RAM.
Data description: Our empirical study is done on two cat-
egories of datasets, namely real (i.e., do not follow any par-
ticular distribution) and synthetic. Each synthetic dataset
is generated with varying distributions of 128,000 cuboids.

The distributions are Uniform (Figure 1(a)) (denoted as
U), Gaussian (Figure 1(b)) (denoted as G), and Clustered
(Figure 1(c)) (denoted as C) in a universe with a range
of [-1000,1000] units per dimension. Figure 1 shows a 2D
projection of the distributions. Uniform randomly assigns
object centers in the bounded universe. Gaussian has a
mean in the center of universe (0,0,0) and a dispersion of
1000 units. Clustered contains 10 clusters. Objects are ran-
domly assigned to one of the cluster centers in the space,
and each cluster has a Gaussian distribution (σ = 200)
around the center of the cluster. Each dataset consists only
of cuboid objects. After centers of cuboids are distributed,
as explained above, each object size is randomly increased
uniformly and independently, i.e., the correlation between
dimensions is zero. We created 128 thousand objects with
average mean length of 10 units.

In addition, to generate the synthetic datasets, we take 10
random samples of 128,000 cylinders (termed R) from Brain
datasets (Axons and Dendrites) [9], which do not follow any
particular distribution.

To examine the impact of the join order and distribution,
we generate (or sample) 20 datasets for each distribution
(category). Then we divide the datasets for each distri-

bution into two groups A and B, each with 10 datasets of
128,000 objects. Finally, for each possible combination and
order of the datasets, we run all six algorithms and mea-
sure the total time. The total time consists of loading time,
processing time, and the time for maintaining a result. All
the reported total times are averaged over 5 runs under the
above-described configuration. In the figures, we distinguish
join order (dataset A or B) and the dataset distribution (R,
U , C, or G) in the legends. For instance RA 1 UB means
the left hand side dataset is a Real dataset and the right
hand side is a Uniform dataset.
Result presentation: We run all 6 algorithms, namely S3,
SGrid, TOUCH, PBSM, PS, and NL and report the results
in the next section. Since NL was substantially slower than
the other algorithms, with a total time of more than 5 hours,
with omit NL from the charts. For sake of clarity, we present
the results of running the remaining 5 algorithms in the
following forms: Since SGrid consistantly performs slower
than TOUCH and PBSM and faster than S3 and PS, we
present the results for SGrid in Table 1 and the results for
the other four algorithms in Figures 1 to 7; In these figures,
since TOUCH and PBSM are always faster than S3 and PS,
we create two groups (TOUCH and PBSM in one group, S3
and PS on the other group) and use different vertical axes
for each group.

4. RESULTS
Our results are summarized as follows:

• The performance of NL and PS is insensitive to the
join order.

• When one of the datasets follows a particular distribu-
tion or when joining two datasets of the same category,
the performance of SGrid is not affected by swapping
the datasets. Furthermore, when joining two datasets
of different categories, the performance of SGrid varies
very substantially when swapping the join order.

• The performance of S3, TOUCH, and PBSM changes
when swapping the join order and changing the dataset
category of the arguments. As a result, there is not sin-
gle winner among these algorithms. However, TOUCH
does outperform the algorithms in most cases, although
in few scenarios, TOUCH can be outperformed by
PBSM for some join orders and data distributions. For
instance, when joining R and U, the join order of join
is critical to the performance of TOUCH. In one order,
i.e., UB 1 RA, TOUCH outperforms PBSM while we
swap the order, i.e., to RA 1 UB , PBSM outperforms
TOUCH.

We proceed to provide detailed observations of each impact
separately and finally cover all the impacts together.

4.1 Join order (order)
We first observe the impact of swapping the order of the

datasets participating in a join, i.e., the join order. To ob-
serve this impact, we join different samples of the same cat-
egory of dataset, i.e. real or synthetic, while swapping the
join order. The join order has the least impact on PS, while
S3 is affected the most. While affected by the join order,
TOUCH outperforms all the other algorithms when joining
datasets of the same category and distribution.

In Table 1, rows with same dataset, i.e., A=B, tell that
SGrid is unaffected by the join order when keeping the dataset
category and distribution unchanged. The results of this set
of experiments while we join datasets of the same category
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Dataset Total time (s)
A B A 1 B B 1 A

Real Real 142.517 141.37
Uniform 16.799 48.449
Gaussian 1.906 2.740
Clustered 9.662 25.526

Uniform Uniform 171.782 171.911
Gaussian 3.579 3.746
Clustered 41.541 41.196

Gaussian Gaussian 3.245 3.243
Clustered 3.450 3.606

Clustered Clustered 53.706 53.684

Table 1: SGrid performance for varying datasets.

and distribution show that the join order does not affect
the relative performance of SGrid. The study thus offers ev-
idence that the join order does not matter when the category
and distribution of the datasets are fixed.

4.2 Joining real with synthetic datasets (cate-
gory)

Having observed the impact of changing the join order
of datasets of the same category and distribution, we pro-
ceed to observe how join order is influenced when we join
a real dataset with varying synthetic datasets. Thus, we
want to observe how the performance of the join algorithms
is affected when one dataset is not following a particular
distribution while the other dataset has a particular distri-
bution. Figures 2, 3, and 4 and Table 1 contain results of
joining Real (R) dataset with Uniform (U), Clustered (C)
and Gaussian (G) datasets, respectively. The performance
of all algorithms show a dependence the join order when
swapping the category of datasets. The algorithms are af-
fected to the extent that their relative performance changes
so that there is no clear winner.

TOUCH and PBSM, in Figures 2 and 4, exhibit an inter-
esting change in their relative performance, so that TOUCH
can outperform PBSM only when TOUCH constructs its hi-
erarchical data structure based on the uniform dataset for
U 1 R and based on the Real dataset for R 1 G. In
all other cases, PBSM outperforms TOUCH. This behav-
ior of TOUCH shows how this algorithm exploits the dis-
tribution of the objects. Indeed, TOUCH can outpeform
the other algorithms when its constructed tree based on
the two datasets is balanced, meaning that similar num-
bers of objects from both datasets occur in its tree nodes.
For instance, when joining Guassian and real datasets, the
real dataset can accommodate a balanced distribution of ob-
jects of both datasets in the tree constructed by TOUCH.
And when joining real and clustered datasets, none of the
datasets can yield a balanced tree because the datasets are
not mutually aligned in terms of the density of their objects’
distribution.

SGrid (Table 1 rows 2, 3, and 4) shows a substantial
change, about 3×, in performance when swapping the join
order. This indicates that all the algorithms, except the
quadratic comparison (NL), are influenced by join order
when dataset categories are different. Therefore, it is es-
sential to carefully select the join order when datasets are
not following a particular pattern of object distribution, e.g.,
when joining real datasets.

4.3 Joining synthetic datasets (distribution)
Finally, we put focus on joining synthetic datasets of dif-

ferent distributions. In other words, we join datasets that

TOUCH PBSM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

l t
im

e 
(s

)

RA UB UB RA

(a) R 1 U

S3 PS
0

200

400

600

800

1000

(b) U 1 R

Figure 2: Real (R) 1 Uniform (U) and vice versa.
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Figure 3: Real (R) 1 Clustered (C) and vice versa.

follow a particular distribution, namely U, G, and C, while
the pattern is different for each. Figures 5, 6, and 7 are
results of joining Uniform (U) and Clustered (C) datasets,
Uniform (U) and Gaussian (G) datasets, and Clustered (C)
and Gaussian (G) datasets, respectively. And rows 6, 7, and
9 in Table 1 show the performance of SGrid for this set of ex-
periments. All algorithms show less impact on the join order
when each dataset follows a distribution, in contrast to real
datasets with no particular distribution pattern. TOUCH
outperforms all the algorithms and it shows a larger change
of its performance for different join orders when none of the
datasets have a uniform distribution.

NL is always steadily slower than all the other 5 algo-
rithms, no matter what join order or data distribution we
use. For any two of our datasets, NL always requires close
to 5 hours to perform the join.

4.4 Overall comparison
The results in Table 1 suggest that when each of the

joining datasets follows a particular distribution, the perfor-
mance of SGrid is not affected when swapping the datasets,
i.e., constructing the grid based on the first dataset or the
second makes little difference. However, when joining a real
dataset with a synthetic dataset, the join order affects the
performance of SGrid. This behavior can be explained by
the number of cells that an object intersects with as well
as the number of objects in the intersecting cells, e.g., the
density of the cell.

All presented results suggest that the most challenging
distribution for all algorithms is that of the Real (R) dataset.
The reason is possibly the irregular density/distribution of
the objects all over the universe. However, TOUCH and
PBSM generally outperform all the other joins due to their
ability to handling varying densities.

Among all the algorithms considered, S3 is the most sen-
sitive to the join order, especially when none of the datasets
are neither uniform nor real. When both datasets are either
uniform or real, the density of objects is consistent with the
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Figure 4: Real (R) 1 Gaussian (G) and vice versa.
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Figure 5: Uniform (U) 1 Clustered (C) and vice versa.

region, meaning that similar regions of both datasets have
similar object densities. The sensitivity of S3 arises from
its dependency on its hierarchical model. Its hierarchy is
constructed for the two datasets independently. Therefore,
when the order of join changes, the algorithm is affected
substantially. In contrast to S3, NL and PS are algorithms
that are the least sensitive to the join order. The reasons are
that NL uses quadratic comparison to enumerate the search
space and that PS sweeps the space one dimension at a time.

From a practical point of view, TOUCH, SGrid, and PBSM
are generally faster than the other algorithms when joining
large datasets. SGrid is preferred when the datasets are
both real or synthetic with the same distribution. Next,
when the datasets are not both real or synthetic with the
same distribution, like real and clustered, PBSM is preferred
because TOUCH is sensitive to the join order. TOUCH is
the fastest when the datasets follow the same distribution.
The findings of this paper can help when designing practical
algorithms for multi-joins (e.g., (A 1 B) 1 C) and multiple
spatial joins (e.g., joining A, B, and C simultaneously). In
such algorithms, the order and distribution play even more
crucial roles than what we observed in these experiments.

This study suggests that without prior knowledge of the
datasets, there is no single winner among the spatial join
algorithms. Further, obtaining such knowledge is not al-
ways feasible or possible, due to the associated cost or the
real-time nature of the datasets, e.g. streaming, intermedi-
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Figure 6: Uniform(U) 1 Gaussian(G) and vice versa.
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Figure 7: Gaussian(G) 1 Clustered(C) and vice versa.

ate, or growing datasets. Therefore, designing a spatial join
algorithm that gradually adapts to the distribution of the
argument datasets during the processing and that is capa-
ble of changing the order of the joining datasets internally
are important for designing robust and scalable spatial join
algorithms.
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