
RDF Keyword-based Query Technology  
Meets a Real-World Dataset 

Grettel M. García1,2, Yenier T. Izquierdo1,2, Elisa S. Menendez1,2,  
Frederic Dartayre1, Marco A. Casanova1,2 

1Instituto TecGraf – Pontifícia Universidade Católica do Rio de Janeiro 
2Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro 
Rua Marquês de São Vicente, 225 – Rio de Janeiro, RJ – Brazil     CEP 22451-900 

+55-21-3527-1500
ggarcia@inf.puc-rio.br, yizquierdo@inf.puc-rio.br, emenendez@inf.puc-rio.br, 

fdartayre@tecgraf.puc-rio.br, casanova@inf.puc-rio.br

ABSTRACT 
This paper presents the results of an industrial project, conducted 
by the TecGraf Institute and Petrobras (the Brazilian Petroleum 
Company), to develop a tool to facilitate access to a large database, 
with hydrocarbon exploration data, by combining RDF technology 
with keyword search. The tool features an algorithm to translate a 
keyword query into a SPARQL query such that each result of the 
SPARQL query is an answer for the keyword query. The algorithm 
explores the RDF schema of the RDF dataset to generate the 
SPARQL query and to avoid user intervention during the 
translation process. The tool offers an interface which allows the 
user to specify keywords, as well as filters and unit measures, and 
presents the results with the help of a table and a graph. Finally, the 
paper describes experiments which show that the tool achieves very 
good performance for the real-world industrial dataset and meets 
users’ expectations. The tool was further validated against full 
versions of the IMDb and Mondial datasets. 

CCS Concepts 
Information systems → Information retrieval → Information 
retrieval query processing → Query reformulation 

Keywords 
Keyword search; SPARQL; RDF. 

1. INTRODUCTION 
Keyword search is typically associated with information retrieval 
systems, especially those designed for the Web. The user just 
specifies a few terms, called keywords, and it is up to the system to 
retrieve the documents, such as Web pages, that best match the list 
of keywords. These systems also usually offer an advanced search 
interface, which the user may take advantage to specify Boolean 
expressions involving the keywords, or limit the search to a subset 
of the documents, such as an Internet domain. Information retrieval 
systems typically implement algorithms to rank the results of a 
keyword search so that, hopefully, the user will find the most 
interesting documents at the top of the list. The success of such 
systems may therefore be credited to: (1) a very simple user 

interface; (2) an efficient document retrieval mechanism; and (3) a 
ranking algorithm which meets user expectations.  

By contrast, database management systems offer sophisticated 
query languages to access structured data. It is up to the database 
applications to create user interfaces that hide the complexity of the 
query language. User interfaces are often designed as a stack of 
pages with numerous “boxes” that the user must fill with his search 
parameters. This traditional design may end up with uncomfortable 
user interfaces, which are amply justified, though, when the user 
has to specify exact data, such as a flight number and a flight date. 

Hitting the middle ground, we find database applications that offer 
keyword search interfaces over conventional databases or, in short, 
keyword search database applications. These applications should 
reach a performance similar to information retrieval applications, 
despite the fact that the underlying data is stored in a conventional 
database. Furthermore, they should free the user from filling 
“boxes” with exact data by compiling keyword searches to the 
query language supported and by ranking the results in a 
meaningful way from the user point of view. 

Keyword search applications over relational databases have been 
studied for quite some time. More recently, examples of such 
applications designed for RDF datasets have emerged. The 
adoption of RDF as the underlying data model has some interesting 
advantages. The most obvious is the flexibility RDF offers by 
modeling data as RDF triples of the form (s,p,o), which asserts that 
resource s has property p with value o. Of special interest for 
keyword search is the fact that RDF imposes no strict distinction 
between data and metadata, that is, a keyword may match the name 
or description of a class or of a property in the same way as it 
matches a data value. RDF management systems also sometimes 
offer an inference layer so that one may expand the stored RDF data 
with derived data in ways that surpass (relational) views. Thus, a 
keyword may match derived data as much as stored data. Lastly, an 
RDF dataset may be treated as a graph, which allows the use of 
graph concepts and algorithms to explore the data. 

The paper summarizes the results of an industrial project, 
conducted by the TecGraf Institute and Petrobras (the Brazilian 
Petroleum Company), to facilitate access to a large relational 
database, with hydrocarbon exploration data, by combining RDF 
technology with keyword search. The prototype application is 
being deployed to the production environment to be tested on a 
large scaled by the target users.   

The contributions of this paper are as follows. First, the paper 
defines the concept of an answer for a keyword-based query over 
an RDF dataset. Second, the paper introduces an algorithm to 
translate keyword-based queries to SPARQL queries that takes 
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advantage of the schema of the RDF dataset to avoid user 
intervention and achieve good performance, even for large RDF 
datasets. Third, it describes an interface that allows the user to 
specify keywords with the help of an auto-completion feature, as 
well as filters and unit measures, such as “wells with depth between 
1,000m and 2,000m”. The interface presents an answer to the user 
in a way that reduces the cognitive overhead required to navigate 
through an RDF graph. Lastly, the paper describes experiments that 
show that the tool achieves very good performance for the real-
world industrial dataset and meets users’ expectations. The tool was 
further validated against full versions of the IMDb and Mondial 
datasets.  

The remainder of this paper is organized as follows. Section 2 
summarizes related work. Section 3 provides a brief background on 
RDF and defines the basic concepts of keyword-based queries. 
Section 4 covers the translation algorithm and the user interface. 
Section 5 describes experiments to assess the performance and 
usability of the tool. Finally, Section 6 contains the conclusions. 

2. Related Work 
Keyword-based query processing. Tools that implement keyword-
based queries over relational databases and RDF datasets have been 
investigated for some time. We may distinguish between tools that 
are schema-based, in the sense that they use information about the 
conceptual schema to compile a keyword-based query into an SQL 
or SPARQL query, from those that are graph-based, in the sense 
that operate directly on the data. We may also identify pattern-
based tools, which hit the middle ground, in the sense that they 
mine patterns from the RDF dataset to be used in lieu of the 
conceptual schema. It is also useful to distinguish between fully 
automatic tools from tools that resort to user intervention during 
the processing of the keyword-based queries. 
BANKS [1] and BLINKS [11] are examples of early relational 
graph-based tools. Relational schema-based tools explore the 
foreign keys declared in the relational schema to compile a 
keyword-based query into an SQL query with a minimal set of join 
clauses, based on the notion of candidate networks (CNs). This 
approach was first proposed in DISCOVER [12] and DBXplorer 
[2] and adopted in a quite a few tools, including recent ones [15].  
SPARK [28] offers an example of an early pattern-based RDF 
graph-based tool. Tran et al. [21] combine the idea of generating 
summary graphs for the original RDF graph, using the class 
hierarchy, to generate and rank candidate SPARQL queries. Zhang 
et al. [26] investigated a solution to this problem, backed up by 
experiments over a subset of the original IMDb, a selection of 
articles from Wikipedia, and the Mondial dataset. More recently, 
Yang et al. [24] proposed to mine tree patterns that will then 
connect together the keywords specified by the user; the tree 
patterns are ordered by relevance using their size, the pagerank of 
the nodes and the quality of keyword match. Zheng et al. [27] 
proposed a systematic method to mine semantically equivalent 
structure patterns to summarize the knowledge graph and, thereby, 
circumvent the lack of an RDF schema. Finally, De Virgilio [7] 
proposed an RDF keyword-based query processing strategy based 
on tensor calculus, later extended to a distributed environment [8]. 
QUICK (QUery Intent Constructor for Keywords) [25] is an RDF 
schema-based tool designed to translate keyword-based queries to 
SPARQL queries with the help of the users, who choose a set of 
intermediate queries, that the tool ranks and executes. 
The tool described in this paper is schema-based and fully 
automatic. We borrowed from the early relational graph-based 
tools the idea of minimizing the number of equijoins by generating 

a Steiner tree of a graph induced by the RDF schema. However, we 
introduce the (new) concept of a nucleus, consisting of a class, a 
list of properties, and a list of property values, which is in some 
sense analogous to a tuple and helps translate keyword-based 
queries to SPARQL queries. The Steiner tree will then connect the 
classes of the nucleus that cover the keywords. 
QUICK is the tool closest to ours in so far as both tools explore the 
RDF schema to synthesize SPARQL queries. However, differently 
from QUICK, we opted for a fully automatic translation. This was 
possible essentially because our tool was designed to operate over 
an RDF dataset which has a rich schema and whose data exhibits 
low ambiguity.  
Triplification of the relational database. Triplification, the process 
of mapping a relational database to an RDF dataset, is based on 
well-established technologies, backed up by a standardized 
mapping language, R2RML [6]. However, relational databases are 
usually normalized and, therefore, should not be directly mapped 
to RDF. To deal with this issue, we followed the strategy proposed 
in [22], which suggests to first create relational views that define 
an unnormalized relational schema and then write the R2RML 
mappings on top of these views.  
In fact, the judicious design of the RDF schema helps the 
translation process from keyword-based queries to SPARQL 
queries. This requires additional comments. First, the assumption 
that the RDF dataset has a known schema should not be viewed as 
a demerit. Indeed, a large fraction of the LOD datasets do have a 
known schema (vocabulary or ontology) [17]. Furthermore, in a 
corporate environment, such as ours, RDF datasets are frequently 
triplifications of relational databases. Second, even when one 
cannot change the (relational or RDF) schema, one may add a 
conceptual layer, defined with the help of views, that hide 
normalizations, in the relational case, or poorly designed RDF 
schemas, which in both cases would lead to ambiguities when 
processing keyword-based queries. 
Benchmarks. Coffman and Weaver [4] describe a benchmark 
which uses a simplified, relational version of IMDb, a subset of 
Wikipedia, and a subset of the Mondial dataset. The keyword 
queries are mostly very simple.  
Guo et al. [9] introduced LUBM, a benchmark for OWL knowledge 
base systems, which consists of an ontology for the university 
domain, synthetic OWL data scalable to an arbitrary size, and 14 
SPARQL queries. More recently, an ontology-based data access 
benchmark, the NPD Benchmark [13][20], was constructed using 
real data from the Norwegian Petroleum Directorate (NPD) 
FactPages. The benchmark generates, from the NPD data, datasets 
of increasing size; the SPARQL queries were formulated by 
domain experts from an informal set of questions provided by 
regular users of the FactPages. Finally, Qiao and Özsoyoğlu [18] 
published the RBench, an application-specific RDF benchmarking 
tool that takes an RDF dataset from any application as a template, 
and generates a set of synthetic datasets and different types of 
queries systematically. 
Although our tool was designed for a specific RDF dataset, we 
decided to test it against other datasets. However, a direct 
comparison with other keyword search tools turned out to be 
problematic, for two basic reasons. First, contrasting with 
Coffman’s benchmark setting, our tool takes advantage of more 
complex RDF schemas and of keyword-based queries with a fairly 
large number of keywords – the query profile of our typical users – 
to avoid user intervention during the synthesis of the SPARQL 
query. Second, our tool presently does not incorporate reasoning 
features, i.e., we deal with a standard dataset and not with a 
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knowledge base. In the end, we opted to further test our tool against 
the full versions of IMDb and Mondial, which feature conceptual 
schemas with a complexity closer to the schema of the target 
industrial dataset. We used the same list of keyword queries as in 
Coffman’s benchmark, albeit they are much simpler than those 
expected from our typical users, as already pointed out. 

3. BASIC DEFINITIONS 
3.1 RDF Essentials 
In this section, we summarize some basic concepts pertaining to the 
Resource Description Framework (RDF) [5]. The reader familiar 
with RDF may skip this section. 
An Internationalized Resource Identifier (IRI) is a global identifier 
that denotes a resource. We will use the terms IRI and resource 
interchangeably. A literal is a basic value, such a string, a number, 
or a date. A blank node acts as a local identifier; a blank node can 
always be replaced by a new, globally unique IRI (a Skolem IRI). 
An RDF term is either an IRI, a blank node or a literal. The sets of 
IRIs, blank nodes and literals are disjoint. In the rest of this paper, 
IRI denotes the set of all IRIs and L the set of all literals. 
RDF models data as triples of the form (s,p,o), where s is the 
subject, p is the predicate and o is the object of the triple. An RDF 
triple (s,p,o) says that some relationship, indicated by p, holds 
between the subject s and object o. The subject of a triple is an IRI 
or a blank node, the predicate is an IRI, and the object is an IRI, a 
blank node or a literal.  
A set T of RDF triples, or an RDF dataset, is equivalent to a labeled 
graph GT such that the set of nodes of GT is the set of RDF terms 
that occur as subject or object of the triples in T and there is an edge 
(s,o) in GT labeled with p iff the triple (s,p,o) occurs in T. Therefore, 
we will use the concepts of RDF dataset and RDF dataset graph 
interchangeably. Note that an IRI may occur both as a node and as 
an edge label in the same graph.  
RDF offers enormous flexibility but, apart from the rdf:type 
property, which has a predefined semantics, it provides no means 
for defining application-specific classes and properties. Instead, 
such classes and properties, and hierarchies thereof, are described 
using extensions to RDF provided by the RDF Schema 1.1 (RDF 
Schema or RDF-S) [3]. In RDF-S, a class is any resource having 
an rdf:type property whose value is the qualified name rdfs:Class of 
the RDF Schema vocabulary. Likewise, a property is any resource 
having an rdf:type property whose value is the qualified name 
rdfs:Property. The rdfs:domain property is used to indicate that a given 
property applies to a designated class, and the rdfs:range property is 
used to indicate that the values of a particular property are instances 
of a designated class or, alternatively, are instances (i.e., literals) of 
an XML Schema datatype. RDF-S also offers the rdfs:subClassOf 
and the rdfs:subPropertyOf  properties that allow the specification of 
sub-class and sub-property axioms. Finally, RDF-S features a 
property, rdfs:comment, used to associate a comment with a 
resource, and a property, rdfs:label, used to assign a name to a 
resource. 
An RDF schema is a set S of RDF triples that use the RDF-S 
vocabulary to declare classes, properties, property domains and 
ranges, and sub-class and sub-property axioms. Viewed as a set of 
RDF triples, S is also equivalent to a labelled graph GS.  
A simple RDF schema is a RDF schema that contains only class 
declarations, object and datatype property declarations and sub-
class axioms (and no sub-property axioms). We then introduce a 
labelled graph, DS, called an RDF schema diagram, defined as 
follows: (1) the nodes of DS are the classes declared in S; and (2)

there is an edge from class c to class d labelled with subClassOf iff 
c is declared as a subclass of d in S, and there is an edge from class 
c to class d labelled with p iff p is declared in S as an object property 
with domain c and range d. 
Very briefly, we say that an RDF dataset T follows an RDF schema 
S iff we have: (1) S  T; (2) all classes and properties used in T, 
except those in S itself, are declared in S; and (3) the triples in T, 
again except those in S, satisfy all restrictions imposed by the 
declarations in S [3]. Note that, by this definition, the RDF schema 
is contained in the RDF dataset, which is convenient for our 
purposes (see Section 3.2). 
Finally, SPARQL is a query language specifically designed to 
access RDF datasets [10]. SPARQL offers two types of queries. A 
SELECT query returns tabular data, whereas a CONSTRUCT query 
returns a set of RDF triples. The body of a SPARQL query is a list 
of triple patterns, defined like RDF triples, except that the subject, 
predicate or object can be a variable. The evaluation of a SPARQL 
query Q against an RDF dataset T binds values to the variables 
using a solution mapping  in such a way that the WHERE clause of 
Q generates a subgraph of T. An answer of Q is an instantiation of 
the variables in the target clause of Q generated by . 

3.2 Keyword-Based Queries 
Let T be an RDF dataset and GT be the corresponding RDF graph. 
We assume that T follows an RDF schema S, with S  T.  
A keyword-based query K is simply a set of literals, or keywords.  
Recall that L is the set of all literals. Let match: LL  [0,1] be a 
similarity function between literals such that match(s,t)=j indicates 
how similar s and t are: j=1 says that s and t are identical, and j=0 
indicates that s and t are completely dissimilar. We also introduce 
a similarity threshold (0,1]. We leave match and  unspecified 
at this point. 
The set MM[K,S] of metadata matches between K and the metadata 
descriptions of the classes and properties in S is defined as: 

MM[K,T] = { (k,(r,p,v))KT / (r,p,v)S  match(k,v) } 
The set VM[K,T] of property value matches between K and 
property values of T is defined as (recall that S  T): 

VM[K,T] = { (k,(r,p,v))KT / (r,p,v)S  match(k,v) } 
The set of matches between K and T is then defined as:  

M[K,T] = MM[K,T]  VM[K,T] 
An answer for K over T is a subset A of T such that: 
(1) There is a subset of K, denoted K/A, such that, for each kK/A: 

a. There are (s,rdf:type,cn), (cn,rdfs:subClassOf,cn-1),..., 
(c1,rdfs:subClassOf,c0) and (c0,p0,v0) in A such that 
(k,(c0,p0,v0))MM[K,T]; or 

b. There are (s,qn,vn), (qn,rdfs:subPropertyOf,qn-1),..., 
(q1,rdfs:subPropertyOf,q0) and (q0,p0,v0) in A such that 
(k,(q0,p0,v0))MM[K,T]; or 

c. There is (r,p,v)A such that (k,(r,p,v))VM[K,T]. 
(2) There is no other answer B for K over T such that K/A  K/B. 
We say that K/A is the set of keywords matched by A. 
Condition (1a) says that a keyword k has a class metadata match for 
a class c0 and the answer A must contain an instance of c0 or one of 
its sub-classes cn, in which case A must include all triples indicating 
that cn is a sub-class of c0. Likewise, Condition (1b) says that a 
keyword k has a property metadata match for a property q0 and the 
answer A must contain an instance of q0 or one of its sub-properties 
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qn, in which case A must include all triples indicating that qn is a 
sub-property of q0. Condition (1c) simply says that k matches the 
literal of a triple (r,p,v) in A. Also, Condition (1) does not require 
that all keywords in K be matched in an answer. Indeed, we say that 
A is total iff K/A = K, and partial otherwise. Condition (2) requires 
that an answer must match as many keywords in K as possible.  
The definition of an answer is quite liberal. In particular, it allows 
an answer A to be a set of disconnected triples, as in Figure 1c. To 
circumvent this problem, we define a partial order between answers 
as follows. Given a directed graph G, let |G| denote the number of 
nodes and edges of G and #c(G) denote the number of connected 
components of G, when the direction of the edges of G is 
disregarded. We define a partial order “<” for graphs such that, 
given two graphs G and G’,  

G < G’ iff  (#c(G) + |G|) < (#c(G’) + |G’|) or 
(#c(G) + |G|) = (#c(G’) + |G’|) and #c(G) < #c(G’) 

We use the partial order “<” between graphs to compare answers. 
We say that an answer A is smaller than an answer B iff GA < GB, 
where GA and GB are the RDF graphs of A and B (which may 
include metadata, since the RDF schema is part of the dataset). An 
answer A for K over T is minimal iff there is no other answer B for 
K over T such that GA < GB. 
In this paper, we focus on heuristics to find, possibly, minimal 
answers for keyword-based queries. We are especially interested in 
heuristics that, given a keyword-based query K, generate a 
CONSTRUCT SPARQL query Q over T which is a correct query 
interpretation for K, in the sense that each set of triples returned by 
Q is an answer for K over T and, preferably, a minimal answer.  
Example 1: Consider an RDF dataset T, whose RDF graph GT is 
shown in Figure 1a, where the darker boxes with boldface italic 
labels partly denote the RDF schema. Consider the   
keyword-based query K = {Mature, Sergipe}. Then, we have 
the following set of matches of K for T: 

M[K,T] ={ (Mature, (r1, :stage, “Mature”)),  
  (Mature, (r2, :stage, “Mature”)), 
  (Sergipe, (r1, :inState, “Sergipe”)), 

 (Sergipe, (r3, :name, “Sergipe Field”)) }  
There are several possible answers for K over T, two of which are 
represented in Figures 1b and 1c (in the form of their RDF graphs; 
note that the dashed node labelled “Alagoas” is not part of answer 
A2; it is depicted just to alert that A2 includes resource r2). Note that 
answers A1 and A2 match both keywords in K. However, since 
|GA1|=5, |GA2|=6, #c(GA1)=1, and #c(GA2)=2, we have GA1 < GA2, 
and hence A1 should be preferred to A2. 
However, the keyword-based query K is ambiguous, since it does 
not indicate whether the keyword Sergipe refers to a state or to an 
oil field. To disambiguate, we might consider the keyword-based 
query K’ = { Mature, “located in”,  “Sergipe Field”}. 
Indeed, we would obtain answer A3, shown in Figure 1d. The 
dashed rectangle highlights components of the RDF schema which 
are part of the answer. Indeed, note that there is a property metadata 
match between the keyword “located in” and the label value 
“located in” of property :locIn (note again that the dashed node 
labelled “Alagoas” is not part of the answer). Furthermore, as 
required by the definition of an answer, note that (r2, :locIn, r3) is an 
instance of property :locIn. Naturally, a second answer to K’, 
similarly defined but involving resource r1, would also be 
acceptable, since r1 represents a mature well and is located in the 
Sergipe Field.    

4. TRANSLATION OF KEYWORD 
QUERIES TO SPARQL QUERIES 
4.1 Overview of the Translation Algorithm 
The translation algorithm accepts a keyword-based query K and an 
RDF dataset T, and outputs a SPARQL query Q, which is a correct 
interpretation for K, in the sense that any result of Q is an answer 
for K over T. It assumes that T follows a simple RDF schema S.  
In what follows, let GT denote the RDF graph corresponding to T 
and DS denote the RDF schema diagram of S. 
Given a set of metadata matches MM[K,T] and a set of property 
value matches VM[K,T], we define two functions that group all 
keywords that match the same class or property: 

mm[K,T] : IRI  2K such that  
mm[K,T](r)={kK / (pIRI)(vL)((k,(r,p,v))MM[K,T])} 
vm[K,T] : IRI  2K such that  
vm[K,T](q)={kK / (sIRI)(vL)((k,(s,q,v))VM[K,T])} 

 
Figure 1a. The RDF graph G of Example 1. 

 
Figure 1b. An answer A1 for the keyword-based query  

K = {Mature, Sergipe}. 

 

Figure 1c. A second answer A2 for the keyword-based query  
K = {Mature, Sergipe}.  

 
Figure 1d. An answer A3 for the keyword-based query 
K’ = {Location, Dakota, Actor, Washington}. 
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We then define a nucleus as a triple N=(C,PL,PVL), where  
(1) C=(K0,c), with K0 = mm[K,T](c), such that c is a class of S 
(2) PL={(K1,p1),…,(Km,pm)}, with Ki = mm[K,T](pi),  

such that c is the domain of a property pi of S, for i[1,m] 
(3) PVL={(Km+1,q1),…,(Km+n,qn)}, with Kj = vm[K,T](qj),  

such that c is the domain of a property qj of S, for j[1,n] 
Note that, since there might be several keywords that match the 
same element of N, we consider sets of keywords, rather than a 
single keyword. Furthermore, since a keyword may match more 
than one element of N, we do not require that Ki and Kj be disjoint, 
for 0  i  j  m+n. We say that N covers the set of keywords  
KN = K0  K1 … Km  Km+1 … Km+n.  
Given a set of nucleuses N={N1,…,Nm}, we also say that N covers 
KN1 … KNm. Furthermore, we denote by NC the set of classes of 
the nucleuses in N (which are nodes of DS). 
The translation algorithm implements two heuristics, called the 
scoring and the minimization heuristics. Intuitively, the scoring 
heuristic tries to capture the user intensions expressed in the list of 
keywords of a keyword-based query. Briefly, the scoring heuristic: 
(1) considers how good a match is, say “city” matches “Cities” 
better than “Sin City”; (2) assigns a higher score to metadata 
matches, on the grounds that, if the user specifies a keyword, say 
“city”, that matches both a class label, say, “Cities”, and the 
property value of an instance, say the film title “Sin City”, then the 
user is probably more interested in the class labelled “Cities” than 
the specific film “Sin City”; (3) assigns a higher score to nucleuses 
that cover a larger number of keywords. The heuristic is formalized 
by defining a score function for the nucleuses, as follows.  
Given a nucleus N=(C,PL,PVL), the score of N, denoted score(N), 
is the summation of all matches that N expresses, weighted by the 
type of the matches:  

𝑠𝑐𝑜𝑟𝑒(𝑁) = (𝛼𝑠𝐶 + 𝛽𝑠𝑃 + (1− 𝛼 − 𝛽)𝑠𝑉) 
with 

𝑠𝐶 = 𝑚𝑒𝑡𝑎_𝑠𝑖𝑚((𝐾0, 𝑐)) 

𝑠𝑃 =∑ 𝑚𝑒𝑡𝑎_𝑠𝑖𝑚((𝐾𝑖 , 𝑝𝑖))
(𝐾𝑖,𝑝𝑖)∈𝑃𝐿

 

𝑠𝑉 =∑ 𝑣𝑎𝑙𝑢𝑒_𝑠𝑖𝑚((𝐾𝑗 , 𝑞𝑗))
(𝐾𝑗 ,𝑞𝑗)∈𝑃𝑉𝐿

 

where  
•  and , with 0 <  +   1, are parameters that weight between 

sC, sP and sV, and which are experimentally set 
• sC is the combined score of the metadata matches for class c 
• sP is the combined score of the metadata matches for the 

properties in PL 
• sV is the combined score of the property value matches in PVL 
• meta_sim((K,c)) is the sum of metadata match scores of class c  
• meta_sim((K,pi)) is the sum of metadata match scores of 

property pi in PV 
• value_sim((K,qj)) is the sum of property value match scores of 

property qj in PVL 

Section 4.2 illustrates how to estimate meta_sim and value_sim and 
compute the score of a nucleus. 
The minimization heuristic tries to generate minimal answers, in 
two stages. Ideally, we should try to find the smallest set of 
nucleuses that covers the largest set of keywords and that has the 
largest combined score. However, this is an NP-complete problem 
(by a reduction to the bin packing problem). The first stage of the 
minimization heuristic then implements a greedy algorithm that 

prioritizes the nucleuses with the largest scores and generates a set 
N of nucleuses such that:  
(1) N covers a large subset of K. 
(2) All nodes in NC are in the same connected component of DS.  
where, we recall, NC denotes the set of classes of the nucleuses in 
N (which are again nodes of the RDF schema diagram DS).  
If we synthesized a SPARQL query Q based only on the nucleuses 
in N, then an answer of Q – which would induce an answer for the 
keyword-based query K – would have as many connected 
components as there are classes in NC. Since answers are measured 
in terms of the number of nodes and connected components, this 
situation would be unsatisfactory. The second stage of the 
minimization heuristic then forces an answer to have a single 
connected component by connecting the classes in CN, using a 
small number of edges of DS. This is equivalent to generating a 
Steiner tree ST of DS whose nodes are the classes in NC. Then, the 
algorithm uses the edges of ST to generate equijoin clauses of the 
SPARQL query Q in such a way that any answer of Q indeed has a 
single connected component.   
Note that ST exists since all nodes in NC belong to the same 
connected component of DS, by (2). Furthermore, note that we use 
the RDF schema diagram DS, and not the RDF dataset graph GT. In 
fact, this is the only step of the algorithm that depends on the 
assumption that T has a schema S.  
Figure 2 shows a high level description of the translation algorithm, 
while Section 4.2 illustrates the synthesis of a SPARQL query. 

Step 1 removes stop words from K and matches the remaining 
elements in K with literals in T, creating a set of metadata matches 
MM[K,T] and a set of property value matches VM[K,T], as defined 
in Section 3.2. Step 1 uses auxiliary tables to speed up computing 
matches (see also Section 4.2). For each class declared in S, the 
ClassTable table stores the IRI, label, description and other property 
values declared in S for the class. The PropertyTable stores the 
property metadata, as for the classes. The JoinTable stores domains 
and ranges declared in S. A forth table, ValueTable, stores all distinct 
property value pairs that occur in T. 
Step 2 uses MM[K,T] and VM[K,T] to compute a set M of 
nucleuses as follows. It first processes class metadata matches, 
generating primary nucleuses; all class metadata matches with the 
same class will be mapped to a single nucleus. Then, it processes 
property metadata matches, creating the property lists of the 
primary nucleuses, or generating secondary nucleuses, for 
properties whose domains are not in any primary nucleus; finally, 
it processes property value matches, creating the property value 
lists of the existing nucleuses, or generating new secondary 
nucleuses, again for those properties whose domains are not in any 
previously constructed nucleus. 

Step 3 computes the score of each nucleus in M, as defined above.  
Step 4 corresponds to the first stage of the minimization heuristic 
and creates a set N of nucleuses as follows. It first adds to N the 
nucleus N0 in M with the largest score, removing it from M. Let H0 
be the connected component of the RDF schema diagram DS that 
contains the class of N0. It also removes from M all nucleuses 
whose classes are not in H0. This guarantees that Step 5 will be able 
to run correctly. Let KN0 be the set of keywords covered by N0. The 
keywords in KN0 need no longer be considered and are disregarded 
from the nucleuses remaining in M, which therefore have their 
scores recomputed. Step 4 continues by adding to N the nucleus in 
M with the largest (recomputed) score that covers a keyword not 
covered by any of the nucleuses previously selected. Since such 
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nucleuses are selected from M, they necessarily have a class that is 
in H0. It stops when all keywords in K are covered by the nucleuses 
in N, or when no nucleus in M covers an uncovered keyword.  

Step 5 implements the second stage of the minimization heuristic. 
It computes an (approximated) minimal Steiner tree ST of the RDF 
schema diagram DS that covers NC, the set of nodes that correspond 
to the classes of the nucleuses in N.  
Although not shown in Figure 2, Step 5 proceeds as follows. It first 
computes a new labelled directed graph GN whose nodes are those 
in NC and there is an edge (m,n) in GN labelled with k iff the shortest 
path in the RDF schema diagram DS connecting nodes m and n has 
length k. Then, Step 5 computes a minimal directed spanning tree 
TN for GN. If no such directed spanning tree exists, then Step 5 tries 
to compute a minimal spanning tree TN for GN, but ignoring the 
edge direction. TN will then induce the desired Steiner tree ST of 
DS covering the nodes in NC by simply replacing each edge of TN 
by the corresponding path in DS.
Step 6 synthesizes a CONSTRUCT query Q such that: 

(1) Q returns a subset of T. 
(2) The WHERE clause of Q contains filters that correspond to the 

elements of the property value pairs of the nucleuses in N.  
(3) The WHERE clause of Q contains equijoin clauses that 

correspond to the edges in ST.  
Section 4.2 illustrates the synthesis of SPARQL queries. 
To conclude, we state a lemma that captures the correctness of the 
algorithm: 
Lemma 2: Let T be an RDF dataset, S be the RDF schema of T and 

K be a keyword-based query. Let Q be the SPARQL query the 
translation algorithm outputs for K, T and S. Then, any result of 
Q is an answer for K over T with a single connected component.  

Proof Sketch 
Step 1 of translation algorithm computes all possible matches 
between keywords in K and the RDF dataset T. Step 2 constructs 
the nucleuses by combining the matches found in Step 1. Steps 3 
and 4 create a set of nucleuses N such that N covers as many 
keywords as possible. Let CN be the set of the classes of the 

Translation Algorithm: 
Input:  A keyword query K 
 An RDF dataset T, with a simple RDF schema S 
Output:  A SPARQL query Q over T 
1. Keyword matching: 

1.1. Eliminate stop words from K. 
1.2. Match each keyword with the classes, properties and property values in GT, returning the set of metadata matches 

MM[K,T] and the set of property value matches VM[K,T], as defined in Section 3.2.2. 
2. Nucleus generation: 

2.1. M = empty.  
2.2. For each class c such that there is a class metadata match for c in MM[K,T], do: 

2.2.1. If a nucleus with class c does not exist in M,                                             /* a metadata match for d exists   */  
add to M a primary nucleus N = ((Kc,c),,), with Kc = mm[K,T](c).         /* which implies Kc                   */ 

2.3. For each property p such that there is a property metadata match for p in MM[K,T], do: 
2.3.1. Let d be the domain of p. If a nucleus N with class d does not exist in M, /* no primary nucleus exists for d */ 

add to M a secondary nucleus N = ((Kd,d),,), with Kd = .                   /* which implies Kd =                 */ 
2.3.2. Let N be the nucleus with class d. Add (Kp,p), with Kp = mm[K,T](p), to the property list of N.  

2.4. For each property q such that there is a property value match for q in VM[K,T], do: 
2.4.1. Let d be the domain of q. If a nucleus N with class d does not exist in M, /* no nucleus exists for d              */ 

add to M a secondary nucleus N= ((Kd,d),,), with Kd = .                    /* which implies Kd =                 */ 
2.4.2. Let N be the nucleus with class d. Add (Kq,q), with Kq = vm[K,T](q), to the property value list of N. 

3. Nucleus score computation: 
3.1. Compute the score of each nucleus in M. 

4. Nucleus selection: 
4.1. Initialize a set N with the nucleus N0 in M with the largest score and remove N0 from M. 
4.2. Let DS be the RDF schema diagram of S and H0 be the connected component of S that contains the class of N0.  

Remove from M all nucleuses whose classes are not in H0. 
4.3. Update the sets of keywords and scores of the remaining nucleuses in M by dropping the keywords covered by N0. 
4.4. While  there are keywords not covered by the nucleuses in N and  

      there is a nucleus in M that covers such keywords do: 
4.4.1. Add to N the nucleus Ns in M with the largest score such that Ns covers such keywords. 
4.4.2. Remove Ns from M. 
4.4.3. Update the sets of keywords and scores of the remaining nucleuses in M by dropping the keywords covered 

by Ns. 
5. Steiner tree generation: 

5.1. Let DS again be the RDF schema diagram of S.  
Compute a Steiner tree ST of DS that contains the set of classes of the nucleuses in N.  

6. Synthesis of the SPARQL query Q: 
6.1. Construct the WHERE and the TARGET clauses of Q from the nodes and edges of ST and the nucleuses in N. 
6.2. Return Q. 

Figure 2. Outline of the Translation Algorithm. 
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nucleuses in N. Note that CN can be viewed as a set of nodes of the 
RDF schema diagram DS. Step 5 connects, as much as possible, the 
nodes in CN by paths in DS, generating a Steiner tree ST of DS that 
covers all nodes in CN. Finally, let Q be the CONSTRUCT query 
synthesized in Step 6 and A be a result of Q. Then, A is a subset of 
T and, by the construction of N and the filters in the WHERE clause 
of Q, A matches as many keywords in K as possible. Hence, A is 
answer for K over T. Furthermore, since ST is a Steiner tree of DS 
that covers all nodes in CN, by the construction of the equijoin 
clauses in the WHERE clause of Q, the result A of Q will have a single 
connected component. � 

4.2 An Example the Translation Process  
This section illustrates how the algorithm synthesizes a SPARQL 
query for the following keyword-based query K: 

Well Submarine Sergipe Vertical Sample 

Step 1 searches the auxiliary tables ClassTable, PropertyTable and 
ValueTable to find matches with the keywords in K. For example, 
the following SQL query processes Sergipe against the ValueTable 
auxiliary table, whose columns are Property, Domain and Value 
(“fuzzy” is an Oracle function): 
1.  SELECT DISTINCT Property  
2.  FROM ValueTable  
3.  WHERE CONTAINS (Value, 'fuzzy({sergipe}, 70, 1)', 1) > 0 

For the industrial dataset, Step 1 returns the following matches: 
• A class metadata match  

M1 = (Sample, (Sample, rdfs:label, “Sample”)) 
• A class metadata match  

M2 = (Well, (DomesticWell, rdfs:label, “Domestic Well”)) 
• A property value match  

M3 = (Vertical, (s, DomesticWell#Direction, v)) 
since Vertical matches some value v of property 
DomesticWell#Direction (with domain DomesticWell). 

• Two property value matches  
M4 = (Sergipe, (s’, DomesticWell#Location, v’)) 
M5 = (Submarine, (s”, DomesticWell#Location, v”)) 
since Submarine and Sergipe match some values v’ and v” 
of property DomesticWell#Location (with domain DomesticWell). 

Step 2 then generates two nucleuses: 
• A first nucleus with just class Sample, using match M1: 

N1 = (({Sample}, Sample), , )   
• A second nucleus with class DomesticWell, using match M2, and 

a property value list using matches M3, M4 and M5: 
N2 = (({Well}, DomesticWell), ,  
       {({Vertical}, DomesticWell#Direction), 
          ({Sergipe, Submarine}, DomesticWell#Location)}) 

Step 3 computes the scores of nucleuses N1 and N2 as follows. The 
score of nucleus N1 is simple the score of the match of the keyword 
Sample with the value of the class label, which is the string 
“Sample”. The score of nucleus N2 is given by: 

𝑠𝑐𝑜𝑟𝑒(𝑁2) = (𝛼𝑠𝐶 + 𝛽𝑠𝑃 + (1− 𝛼 − 𝛽)𝑠𝑉) 
where 
• sC = meta_sim(({Well}, DomesticWell)), which is the score of 

the match of the keyword Well with the value of the class label, 
which is the string “Domestic Well” 

• sP = 0, since the property list of the nucleus is empty 
• sV = value_sim(({Vertical}, DomesticWell#Direction)) + 

      value_sim(({Submarine, Sergipe},  

                             DomesticWell#Location)) 
For example, the value of  

value_sim(({Submarine, Sergipe}, DomesticWell#Location)) 
is estimated by the following SQL query over the ValueTable 
auxiliary table, whose columns again are Property, Domain and Value 
(the prefix “ex:” is fictitious to preserve confidentiality of the data 
and “fuzzy” and “accum” are Oracle functions): 
1.  SELECT  
2.      SCORE(1)/LENGTH(REGEXP_REPLACE(Value,'[^a-zA-Z0-9 -]',''))    
3.      as score  
4.  FROM ValueTable  
5.  WHERE  
6.       Domain = 'ex:DomesticWell' AND 
7.       Property = ‘ex:DomesticWell#Location’ AND 
8.       CONTAINS (Value,  
9.             'fuzzy({submarine}, 70, 1) accum fuzzy({sergipe}, 70, 1)', 1) > 0  
10. ORDER BY score DESC  
11. OFFSET 0 ROWS FETCH NEXT 1 ROWS ONLY 

Step 4 then selects the two nucleuses and Step 5 constructs a simple 
Steiner tree with just two nodes, corresponding to classes Sample 
and DomesticWell, connected by one edge, labelled with the object 
property Sample#DomesticWellCode.  
Step 6 generates the SPARQL query Q below (which again uses the 
fictitious prefix “ex:”): 
1.  SELECT  ?C0 ?C1 ?P0 ?P1 
2.   (<http://xmlns.oracle.com/rdf/textScore>(1) AS ?score1)  
3.   (<http://xmlns.oracle.com/rdf/textScore>(2) AS ?score2) .  
4.  WHERE 
5.    { ?I_C1 <ex:Sample#DomesticWellCode> ?I_C0 .  
6.      ?I_C0 <ex:DomesticWell#Direction> ?P0 . 
7.      ?I_C0 <ex:/DomesticWell#Location> ?P1 
8.      FILTER (http://xmlns.oracle.com/rdf/textContains(?P0, 
9.                                                                      "fuzzy({vertical}, 70, 1)", 1) 
10.      || http://xmlns.oracle.com/rdf/textContains(?P1, 
11.              "fuzzy({submarine}, 70, 1) accum fuzzy({sergipe}, 70, 1)", 2)) 
12.    ?I_C0 rdfs:label ?C0 . 
13.    ?I_C1 rdfs:label ?C1 
14.  } 
15. ORDER BY DESC(?score1 + ?score2) 
16. LIMIT   750 

The TARGET clause in Line 1 returns a table with variable bindings 
(the SELECT form of the query results). Although we adopted the 
CONSTRUCT form of a query, which returns a set of triples, to 
explain the notion of a keyword-based query answer, users 
preferred to see the results as a table, as discussed in Section 4.3. 
Step 6 constructs the WHERE clause of the SPARQL query as 
follows. The (only) edge of the Steiner tree, labelled with the object 
property Sample#DomesticWellCode, generates the triple pattern in 
Line 5. Note that, since the domain of Sample#DomesticWellCode is 
the class Sample and the range is the class DomesticWell, variables 
?I_C1 and ?I_C0 will respectively bind to instances of these classes. 
Hence, it is not necessary to include triple patterns that force ?I_C1 
to be of type Sample and ?I_C0 to be of type DomesticWell. 
The property value list of nucleus N2 generates the triple patterns in 
Lines 6 to 11. The triple pattern in Line 6 instantiates variable ?P0 
with the value of property DomesticWell#Direction for instance ?I_C0. 
Likewise, the triple pattern in line 7 instantiates variable ?P1 with 
the value of property DomesticWell#Location for instance ?I_C0.  
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The FILTER declaration in lines 8 and 9 matches the keyword 
Vertical with the value in ?P0, using the Oracle fuzzy matching 
function with the appropriate parameters (70 and 1). The matching 
score is returned in the Oracle predefined variable ?score1 (which 
is indicated by the “1” that appears as the last parameter in line 9).  
The FILTER declaration in Lines 10 and 11 matches one of the 
keywords Submarine or Sergipe, or both, with the value in ?P1, 
using the Oracle fuzzy matching function, with the appropriate 
parameters (70 and 1), and the accum parameter, to sum the 
matching scores, if indeed both keywords match the value in ?P1. 
The matching score is returned in the Oracle predefined variable 
?score2 (which is indicated by the “2” that appears as the last 
parameter in line 11).  
Lines 12 and 13 translate the URIs in ?I_C0 and ?I_C1 to labels, 
which are hopefully user-friendly, and bind them to ?C0 and ?C1. 
Finally, lines 15 and 16 order the query results in descending order 
of the combined scores and limit the result to 750 lines. 

4.3 User Interface 
The user interface offers an auto-completion feature to help users 
formulate a keyword-based query, as in Figure 3a. The interface 
suggests new keywords based on the previous keywords, the RDF 
schema vocabulary, and the labels that are resource identifiers 
(such as the “Sergipe”, the name of a state). 
Since an answer A for a keyword-based query K over an RDF 
dataset T is formally a subset of T, it would be consistent to present 
A as a set of triples. However, this option proved to be inconvenient 
for the users, which are more familiar with tabular data, as in 
relational systems. We then implemented a user interface that 
presents the results of K by combining a table with the Steiner tree 
underlying the SPARQL query, as in Figure 3b. The user may also 
select additional properties to be included in the table, as in Fig. 3c.  
Finally, the interface allows the user to specify a keyword-based 
query which includes filters, such as: 

Sample with Top between 2000m and 3000m 

A simple filter involves only comparison operators, expressed in 
symbolic form, such as “<”, or using reserved words, such as 
“between”, whereas a complex filter is a Boolean combination of 
simple filters, expressed using Boolean operators. A filter typically 
involves constants, perhaps with a unit of measure, such as 
“2000m”; the tool converts all constants to the unit of measure 
adopt for the property being filtered. The syntax of the filters is 
specified by a grammar defined in ANTLR4 (ANother Tool for 
Language Recognition) [16]. 

5. EXPERIMENTS 
5.1 Experiment setup 
All experiments were conducted using a RESTful Web application 
develop in Java. The app ran on a desktop machine with OS 
Windows 7 Ultimate, a quad-core processor Intel(R) Core(TM)  
i5-2450M CPU @ 2.50GHz, 4 GB of RAM. To store and manage 
the RDF data, we used the Oracle Spatial and Graph for Semantic 
Technologies of Oracle 12c [14], running on a quad-core machine 
with processor Intel(R) Core(TM) i5 CPU 660 @ 3.33GHz, 7GB 
of RAM, and 4096 KB of Cache size. The database was configured 
with a PGA size of 324 MB and an SGA size of 612 MB with 148 
MB of cache size and 296 MB of buffer cache. 
The label and description columns of the auxiliary tables (see 
Section 4.1) were indexed using the CREATE INDEX statement of 
Oracle Text [19] to facilitate full text search over the stored values. 

In the case of RDF data, the Semantic Network feature of Oracle 
allows B-Tree indexing for RDF models and entailments [23].  

5.2 Experiments with the Industrial Dataset 
The data was originally stored in a conventional relational database, 
with well-documented tables and columns, which proved to be very 
helpful to identify metadata matches. The relational schema was 
normalized, as usual, which implies that a single table may 
represent several concepts and properties. 
The triplification process used R2RML, the W3C standard RDB to 
RDF Mapping Language [6]. However, we soon realized that we 
had to capture additional metadata, such as which table columns 
were keys, which contained external names for the objects (such as 
state names and acronyms), etc. These additional metadata were 
important to guide keyword matches and to define how the object 
IDs were exposed to the users. Therefore, we proceeded as follows. 
First, on the relational side, we defined a set of views that 
denormalize the tables. Then, we created an XML document that 
defines all classes and properties of the RDF schema, as well as 
additional details, and that maps the RDF classes and properties 
one-to-one to the relational views. We developed a module that, 
using the XML document, generates the R2RML statements to map 
the relational data to triples and to load the auxiliary tables 
mentioned in Section 4.1.  
Figure 4 shows a partial RDF schema diagram. The diagram depicts 
all classes (in rectangles), object properties (in single arrows, 
starting on the domain and ending on the range), with their names 
omitted to avoid cluttering the diagram, and subClassOf axioms (in 

 
Figure 3a. Example of auto-completion. 

 
Figure 3b. Example of a query graph. 

 
Figure 3c. Selection of additional properties. 
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dashed arrows, starting on the sub-class and ending on the super-
class).  

The dataset is about hydrocarbon exploration (that is, oil and gas 
exploration). The instances of the central class, Sample, describe 
geological samples obtained during well drilling or directly from 
outcrops (rock formations visible on the surface). The instances of 
the classes DrillCuttings, SidewallCore, Core, CorePlug and 
OutcropSample correspond to sample sub-classes. The instances of 
the classes at the bottom of the diagram represent laboratory 
products, their macroscopic and microscopic analysis and where 
the products are stored.  
The dataset has a large number of datatype properties (558). In 
particular, the values of the datatype properties of the instances of 
the classes Macroscopy and Microscopy are mostly literals, with a rich 
description of the laboratory products, which are highly amenable 
to keyword search. In fact, this motivated the project since users of 
the original relational database were mostly geologists, which were 
not happy with the relational database interface. 
It took, on the average, 3 hours to triplify the relational database, 
generating an RDF dataset with about 130M triples (see Table 1), 
which implies that it is feasible to fully rematerialize the RDF 
dataset when needed, although we could have implemented an 
incremental rematerialization strategy.  
We ran a suite of keyword-based queries to assess the performance 
of the tool, the correctness of the translation of the keyword-based 
queries and the adequacy of the result ranking. Table 2 (at the end 
of the paper) shows the runtime to process the keyword-based 

queries up until the first 75 answers were sent to the user, which 

corresponds to the first Web page (the time reported is the average 
of 10 executions for each sample query). The results show that all 
queries were successfully executed in less than 0.5 sec, which is 
quite reasonable, considering the size of the dataset.  
Finally, as a very preliminary user assessment, before early 
deployment, we asked 2 questions to 3 geologists to evaluate the 
same set of keyword-based queries. The results were very 
encouraging:  
Question 1 (Correctness of the translation): “The results returned 
are a correct answer for the keyword-based query?” 
Results: 8 x “Very Good”, 9 x “Good” and 1 x “Regular.  
Question 2 (Adequacy of the ranking of the results): “The expected 
results appear in the first Web page returned?” 
Results: 6 x “Very Good”, 11 x “Good” and 1 x “Regular. 
Both “Regular” ratings were given by one of the users to the 
keyword-based query “field exploration macroscopy 
microscopy lithologic collection”, which is fairly generic 
and returns a large number of answers.   
We also opened the tool to a small user community, all of whom 
were quite surprised with the ease of use of the tool and the quality 
of the answers, and manifested their interest in expanding the tool 
to other Petrobras databases, which attests the success of the 
project. 

5.3 Experiments with Mondial and IMDb  
We tested the tool against triplified versions of the Mondial dataset 
(https://www.dbis.informatik.uni-goettingen.de/Mondial/) and IMDb 
(https://sites.google.com/site/ontopiswc13/home/imdb-mo). Contrasting 
with the versions adopted in Coffman’s benchmark [4], these 
versions feature conceptual schemas with a complexity closer to the 
schema of the target industrial dataset (see Table 1). We used the 
same list of keyword queries as in Coffman’s benchmark, albeit 
they are much simpler than those expected from the typical users 
of the industrial dataset. We ran all queries against each of these 
datasets and compared the results returned with the expected results 
(the full results are available at www.inf.puc-rio.br/~casanova/ under 
the Recent Tools section).  
A summary of the results for the Mondial RDF dataset follows:  
Queries 1-5 – countries: All queries correctly answered. 
Queries 6-10 – cities: Queries correctly answered, except Query 6, 

which returned 2 results, since there are 2 cities named 
“Alexandria”. 

Query 11-15 – geographical: Queries correctly answered, except 
Query 12, which returned 2 results, since “Niger” is both a 
country and a river. 

Queries 16-20 – organization: Some queries were not correctly 
answered since the expected values were not listed in class 
Organization (in the version of Mondial used). 

Queries 21-25 – border between countries: Keywords match the 
labels of two instances of class Country; but the keywords are 
not sufficient to infer that the question is about the borders 
between countries and, thus, were not correctly answered. 

Queries 26-35 – geopolitical or demographic information: Queries 
correctly answered, except Query 32. 

Queries 36-45 – member organizations two countries belong to: 
The expected answer is the list of organizations that the 
countries belong to; however, the translation algorithm did not 
identify the IS_MEMBER class when generating the nucleuses.  

Queries 46-50 – Miscellaneous: Some queries were successfully 
answered, while others were not, since the keywords do not 
always reflect the intended question. 

 
Figure 4. RDF schema of the industrial dataset. 

Table 1. Statistics – Industrial dataset, IMDb and Mondial. 
Triple Type #Triples 

Industrial IMDb Mondial 
Class declarations  18 21 40 
Object property declarations 26 24 62 
Datatype property declarations 558 24 130 
subClassOf axioms 5 - - 
Indexed properties 413 34 71 
Distinct indexed prop instances  7.103.544 14.259.846 11.094 
Class instances 8.981.679 72.973.275 43.869 
Object property instances 11.072.953 184.818.637 63.652 
Total triples 130.058.210 395.394.424 235.387 
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A total of 32 queries, 64% of the 50 queries in Coffman’s 
benchmark for Mondial, were correctly answered. As pointed out 
above, an analysis of the failed queries (see Table 3 for examples) 
reveals that: some may not be classified as failures (failed queries 
in the first 20 queries); some can be blamed to the lack of keyword 
semantics (failed queries in groups 21-25 and 46-50); and some to 
the lack of accuracy of the keywords (as Query 50 in Table 3). 
These results actually indicate that the list of queries and query 
results in Coffman’s benchmark should be reassessed. 
Table 4 (also at the end of the paper) reports the results for the 
IMDb dataset. A total of 36 queries, 72% of the 50 queries in 
Coffman benchmark for IMDb, were correctly answered. Again, an 
analysis of the failed queries is instructive. For example, when 
running Query 41, we found a 1951 film with “Audrey Hepburn” 
in the title, rather than all 1951 films that the actress Audrey 
Hepburn starred. However, we would rather classify this result as a 
serendipitous discovery, rather than a failure. 

6. CONCLUSIONS 
We presented the results of an industrial project to facilitate access 
to a large relational database by combining RDF technology with 
keyword search. The algorithm to translate keyword-based queries 
to SPARQL queries takes advantage of the schema of the RDF 
dataset to avoid user intervention and achieve good performance, 
even for large RDF datasets. The user interface allows the user to 
specify keywords, as well as filters and unit measures. The interface 
presents the result of a keyword query with the help of tables, which 
is a familiar form of expressing query results, rather than as an RDF 
graph. Finally, the experiments covered both a real-world industrial 
dataset, as well as two familiar benchmarks. The tool proved to be 
quite robust to keyword-based queries over datasets with complex 
conceptual schemas, and not just toy schemas, which encourages 
its wider adoption at Petrobras, the industrial partner that supported 
the project reported in this paper.  
As for future work, we plan to incorporate a domain ontology, 
being developed as a separated project, to expand keywords and 
therefore improve the usefulness of the tool. We also plan to allow 
filters with spatial operators. Lastly, we are working on a version 
of the application for a dataset federation. 
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Table 2. Runtime to process sample keyword-based queries. 
Keywords Structure of the SPARQL 

query 
Description of the nucleuses Elapsed time (in milliseconds) 

Query 
Synthesis 

Query 
Execution 

Total* 

well sergipe 
 

 A single nucleus with class DomesticWell 
 sergipe matches values of properties Basin, 

Localization, Federation, among others,  
of DomesticWell  

15,4 446,3 462,0 

well salema 

 

 Two nucleuses with classes DomesticWell and Field, 
where the first one matches well 

 salema matches values of property Name of Field 

25,0 246,4 271,6 

microscopy well 
sergipe 

 

 Two nucleuses with classes DomesticWell and 
Microscopy, which match the first two keywords 

 sergipe matches values of properties Localization, 
Basin, Federation, among others, of DomesticWell 

 The path from Microscopy to DomesticWell goes through 
the class Sample 

23,2 327,3 350,8 

container well  
field salema 

 

 The first three keywords respectively match classes 
Container, DomesticWell and Field 

 salema matches values of property Name of Field 
 The non-directed path to join Container with 

DomesticWell and Field goes through Sample and 
LithologicCollection 

24,3 315 339,5 

field 
exploration 
macroscopy 
microscopy 
lithologic 
collection 

 

 exploration matches values of properties 
OperativeUnit and AdministrativeUnit of class Field 

 According to the order they appear, the other 
keywords match classes Field, Macroscopy, Microscopy, 
and LithologicColletion 

 The paths leaving from Macroscopy, Microscopy, and 
LithologicColletion to Field go through the classes Sample 
and DomesticWell 

43,8 180,1 224,1 

well  
coast distance < 

1km  
microscopy  

bio-accumulated  
cadastral date  

between  
October 16, 2013  

and  
October 18, 2013 

 

 Two nucleuses with classes DomesticWell and 
Microscopy 

 coast distance is a property of class 
DomesticWell filtered by the condition “< 1km” 

 bio-accumulated matches property Name of 
Microscopy 

 cadastral date is a property of class Microscopy, 
whose data type is date and is subjected to a filter 

 The path from Microscopy to DomesticWell goes through 
the class Sample 

95,4 108,4 204,1 

(*) Up to sending the first 75 answers. 
 

Table 3. Selected queries from the Mondial Benchmark. 
#Query Keywords Expected Answer Application Answer Observation 

Query 16 arab 
cooperation 
council 

Arab Cooperation 
Council 

75 instances of class Organization “Arab Cooperation Council” is not listed in class 
Organization (in the version of Mondial used) 

Query 32 Uzbekistan 
eastern 
orthodox 

Uzbekistan - “eastern orthodox” does not exist for property 
Name of class Religion (in the version of Mondial 
used) 

Query 50:  
Which Egyptian 
provinces does the 
Nile River flow 
through? 

egypt nile Asyut 
Beni Suef 
El Giza 

El Minya 
El Qahira (munic.) 

Egypt Nile 

 

If the keyword city were added, we would 
correctly obtain: 

Egypt Al Minya Nile 
Egypt Al Qahirah Nile 
Egypt Al Jizah Nile 
Egypt Bani Suwayf Nile 
Egypt Asyut Nile 
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Table 4. Analysis of the IMDb Benchmark. 
Queries 1-10: consist of the name of movie stars, such as “denzel washington”. Relevant results contain a single tuple from the person relation 
that is the tuple of the specified individual.  
Accuracy: 10 of 10. The result contained more than one tuple, if the movie star’s name matched one of the keywords, but the top result was the 
expected actor. 
Queries 11-20: consist of the name of movies, such as “gone with the wind”. Relevant results contain a single tuple from the title relation that is 
the tuple of the specified film. 
Accuracy: 9 of 10. Again, the result contained more than one tuple, if the movie name matched one of the keywords, but the top result was the 
expected movie.  
Error in Query 13 – “casablanca”. “casablanca” is the name of a movie and of an actor; the score for both values was the same, but the algorithm 
returned the name of the actor, since the Actor class had a higher score than the Movies class. The movie name was the second generated query. 
Queries 21-30: consist of the keyword “'title'” plus the name of film characters, such as “title atticus finch”. Relevant results contain 3 tuples (1 
from the char_name relation, 1 from the cast_info relation, and 1 from the title relation) that link the character to the film(s) in which s/he appears. 
(The keyword “title” is intentionally added to differentiate this group of topics from topics 1-20) 
Accuracy: 7 of 10. Again, the result contained more than one tuple. 
Error in Queries 22, 23. The name of the character is part of the name of some title. The nucleus with class Title contained all keywords and had 
the best score. The answers of the algorithm were the titles with the character names. 
Error in Query 28. In this case, the class AKA_TITLE has “darth vader” in one of its values. This nucleus was the best scored because the label of 
the class had the keyword “title” and “darth vader” as a value. Class Title only matched the keyword “title” and class char_name only matched “darth 
vader”. 
Queries 31-35: consist of the keyword “'title'” plus a film quote, such as “title frankly my dear i don't give a damn”. Relevant results contain 2 
tuples (1 from the movie_info relation and 1 from the title relation) that link the movie quote to the film in which it appears. (The keyword “title” 
is intentionally added so that relevant results answer the question "In which film does this quote appear?".) Note that a quote may appear in multiple 
films. 
Accuracy: 4 of 5. The result was not a single tuple, as in previous blocks. 
Error in Query 32: The quotes were not in the dataset used for the tests. 
Query 36 “mark hamill luke skywalker”. Relevant results must denote the films in which the actor Mark Hamill plays the character Luke Skywalker.  
Accuracy: 1 of 1 
Query 37 “tom hanks 2004”: Relevant results contain 3 tuples (name <- cast_info -> title) that must denote all films in which the actor Tom Hanks 
appeared in the year 2004. 
Accuracy: 1 of 1 
Queries 38-40: Relevant results must denote the character that an actor plays in a film, such as “henry fonda yours mine ours char_name” 
Accuracy: 1 of 3 
Error in Queries 38 and 39: There are values in char_name that match “Henry Fonda” and “Russell Crowe”. The algorithm assumed that the query 
was about these character names and tested with the movie name. 
Query 41 “audrey hepburn 1951”: Relevant results contain 3 tuples (name <- cast_info -> title) that must denote all films in which the actor Audry 
Hepburn appeared in the year 1951. 
Accuracy: 0 of 1 
Error: The nucleus with Title covered all three keywords since there is a film whose name matches “Audrey Hepburn” and whose production year 
matches 1951. 
Query 42 “name jacques clouseau”: A relevant result must identify an actor who plays Jacques Clouseau in a movie. 
Accuracy: 0 of 2 
Error: The algorithm found only the nucleus with class char_name, the character name matched with property name, and the keyword “name” 
matched with the label of the nucleus. 
Query 44 “rocky stallone”: Relevant results must denote a film in which Sylvester Stallone plays the character Rocky. Note that because of 
limitations of existing systems, relevant results are *not* required to include the appropriate tuple from the title relation (which would prevent any 
system from identifying a single relevant result). 
Accuracy: 0 of 1 
Error: the keywords are very ambiguous. The algorithm found both keywords in a PERSON_INFO#INFO value. 
Query 45 “name terminator”: A relevant result must identify an actor who plays "The Terminator" 
Accuracy: 0 of 1 
Error: same as for Queries 42-43. 
Queries 46-49: Relevant results identify relationships (through the title relation) between an actor and another class, such as “harrison ford george 
lucas”. 
Accuracy: 3 of 4 
Error in Query 48: “wachowski” only had matches in the AKA_NAME class. 
Query 50 “indiana jones last crusade lost ark”: Relevant results identify cast members in common between the films "Raiders of the Lost Ark" 
and "Indiana Jones and the Last Crusade." 
Accuracy: 0 of 1 
Error: The algorithm did not return the actors that both movies had in common, but returned the movies themselves. 
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