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ABSTRACT 
In this paper, we propose an efficient in-DBMS solution for the 
problem of sub-trajectory clustering and outlier detection in 
large moving object datasets. The method relies on a two-phase 
process: a voting-and-segmentation phase that segments 
trajectories according to a local density criterion and trajectory 
similarity criteria, followed by a sampling-and-clustering phase 
that selects the most representative sub-trajectories to be used as 
seeds for the clustering process. Our proposal, called S2T-
Clustering (for Sampling-based Sub-Trajectory Clustering) is 
novel since it is the first, to our knowledge, that addresses the 
pure spatiotemporal sub-trajectory clustering and outlier 
detection problem in a real-world setting (by ‘pure’  we mean 
that the entire spatiotemporal information of trajectories is 
taken into consideration). Moreover, our proposal can be 
efficiently registered as a database query operator in the context 
of extensible DBMS (namely, PostgreSQL in our current 
implementation). The effectiveness and the efficiency of the 
proposed algorithm are experimentally validated over synthetic 
and real-world trajectory datasets, demonstrating that S2T-
Clustering outperforms an off-the-shelf in-DBMS solution 
using PostGIS by several orders of magnitude. 

CCS Concepts 
• Information systems ➝  Information systems applications ➝  
Data mining ➝  Clustering • Information systems ➝  Information 
systems applications ➝  Spatio-temporal systems 
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1. INTRODUCTION 
Knowledge discovery in mobility data [11][29][46][42] exposes 
patterns of moving objects exploitable in several fields. For 
instance, in both mature (transportation, climatology, zoology, 
etc.) and emerging domains (e.g. mobile social networks), 
scientists work with mobility-aware (mostly GPS-based) data, 
resulting in trajectories of moving objects stored in Moving 
Object Databases (MOD). Although during the recent years, 
there have been made significant achievements in the field 
[11][29][46][42], ongoing research calls for new methods aiming 
at deeper comprehension and analysis of mobility. For instance – 
and acting as motivation of this work – enhancing MOD 
engines, such as Secondo [1] and Hermes [31], with data mining 
operators is challenging [11][29] and is subject to the indexing 
extensibility interface of the corresponding ORDBMS on which 
they are implemented (see GiST [14][20], for example).   

In the literature of trajectory-based mobility data mining, one 
can identify several types of mining models used to describe 
various collective behavioral patterns. As such, there exist works 
that identify various types of clusters of moving objects 
[10][26][21][32] and variations [4][17][22][44]. Related line of 
research is the one that builds representatives out of a trajectory 
dataset, either by generating artificial data [21][32] or by 
sampling the dataset itself [33][28]. 

Focusing on trajectory clustering, the majority of related work 
proposes a variety of distance functions, utilized by well-known 
clustering algorithms to identify collective behavior among 
whole trajectories [26][32][30]. Α parallel line of research tries 
to discover local patterns in MOD, i.e. patterns that are alive 
only for a portion of moving objects’ lifespan: some of those 
techniques simplify the given trajectories, however focusing on 
the spatial and ignoring the temporal dimension, such as 
TRACLUS [21], which is considered as the current state-of-the-
art sub-trajectory clustering technique. 

Figure 1 illustrates a working example that motivates our 
research: a dataset consisting of four trajectories, T1, …, T4. (In 
this figure, the time dimension is ignored for visualization 
reasons.) Among the sub-trajectories that compose the dataset, 
our goal is to identify two clusters (in red and blue, respectively) 
and five outliers (in black). In particular, the first (red) cluster 
consists of the tails of trajectories T1, T2 and T3, the second 
(blue) cluster consists of the main bodies of trajectories of 
trajectories T1, T2, T3 and T4, while the rest portions of the 
trajectories (namely, the tail of T4 and all four heads) are 
recognized as outliers.  
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Figure 1. (a) a MOD of 4 trajectories; (b) the MOD split in 2 
clusters (in red and blue) and 5 outliers (in black). 

Such clustering sounds impossible to be achieved by 
TRACLUS. This is due to the inherent design of that algorithm 
that, as delineated by the authors, discovers linear patterns only 
and fails to identify complex (e.g. snake-like) patterns like the 
ones that appear in Figure 1. In other words, when applied to this 
dataset, TRACLUS would eventually discover five to six linear 
clusters (one new cluster each time the snake-like motion 
changes direction). On the contrary, we wish to be able to follow 
these direction changes without assuming underlying constraints 
on the complexity of the shape of sub-trajectories found nor 
posing geometrical and temporal constraints, in terms of 
algorithm parameters, as those required by related work, e.g. 
[4][17]. For those having experimented with those techniques, 
parameters like disc radius, minimum duration and cardinality of 
patterns, are hard to be set in advance. For instance, a small 
detour of an object belonging to one of the clusters, would 
probably result in either the lack of those patterns or the 
formation of smaller ones.  

Inspired by the above, in this paper we study an important 
problem in the mobility data management and exploration 
domain [29], that of sub-trajectory clustering and outlier 
detection. Informally, we aim at a methodology that builds 
clusters around (and detects outliers far away from) 
appropriately selected sub-trajectories that preserve the 
properties and the mobility patterns hidden in a MOD, as much 
as possible. Towards this goal, we introduce a novel clustering 
methodology exploiting on the voting, segmentation and 
sampling concepts proposed in [28]. More specifically, we 
devise an efficient voting process that allows us to describe the 
‘representativeness’ of a trajectory in a MOD as a smooth 
continuous descriptor [28]. Using these descriptors (their 
‘representativeness’), we result in the automatic segmentation of 
trajectories into ‘homogenous’ sub-trajectories. Next, a 
deterministic sampling procedure selects only those sub-
trajectories that optimally describe the entire MOD. Finally, we 
devise a method for sub-trajectory clustering driven by the 
aforementioned representative sample of sub-trajectories.  

The design of such a clustering methodology is subject to two 
indispensible requirements that challenged our research: we seek 
for (a) an efficient and scalable solution that (b) should be able 
to operate on a real-world DBMS rather than being an ad hoc 
implementation using a sophisticated access method. This is in 

order for the proposal to be practical and useful in real-world 
application scenarios, where concurrency and recovery issues are 
taken into consideration. Both requirements call for a MOD 
engine; therefore, our proposal is implemented as a query 
operator in Hermes [16], implemented on top of PostgreSQL. To 
our knowledge, it is the first time in the literature that GiST is 
used to index trajectory-based mobility data for the above 
purposes. Therefore, we argue that this is an important step 
towards bridging the gap between MOD management and 
mobility data mining, as state-of-art approaches [25][40][12] 
could make use of the efficiency and the advantage of our 
proposal to execute in-DBMS clustering via simple SQL.  

Our contribution is summarized below:  

• we formulate the problem of sub-trajectory clustering (and 
outlier detection) in a MOD as an optimization problem; 

• we propose an efficient solution, the so-called S2T-
Clustering algorithm, driven by a deterministic sampling 
methodology, with the number of clusters being 
automatically detected by the algorithm;  

• in order to speed up clustering tasks in MOD systems, we 
implement S2T-Clustering as a query operator over an 
expensible DBMS, namely PostgreSQL, based on access 
methods that exploit on the GiST indexing extensibility 
interface. (For validation purposes, we also implement S2T-
Clustering using PostGIS, an off-the-shelf in-DBMS 
alternative solution.)  

The rest of the paper is organized as follows: Section 2 presents 
related work and Section 3 formulates the problem of sub-
trajectory clustering (and outlier detection). Sections 4 and 5 
present our proposal and its in-DBMS realization, respectively. 
Experimental results that evaluate S2T-Clustering using synthetic 
and real trajectory datasets from urban and vessel traffic 
domains are provided in Section 6. Section 7 concludes the 
paper. 

2. RELATED WORK 
During the past decade, the field of MOD has emerged as a 
strong candidate for the efficient management of trajectory data 
exploiting on the robust architecture of extensible DBMS; 
Secondo [1] and Hermes [31] are typical examples of this 
paradigm. Nevertheless, extending a DBMS does not reduce the 
complexity of understanding their concurrency and recovery 
protocols, and as such, does not reduce the implementation effort 
of an external access method when compared to a built-in one, 
assuming that identical levels of concurrency, robustness and 
integration are desired [20]. Actually, complexity is the main 
reason that almost none of the numerous access methods for 
mobility data that have been proposed in the literature, 
[34][36][13] to name but a few representatives, have been 
integrated in a real Object-Relational DBMS. Even GiST [14] 
that has been proposed to serve access method extensibility has 
not been used so far in the context of mobility data. Mainly due 
to the above reasons, although a lot of research has been carried 
out in the field of MOD regarding efficient indexing and query 
processing, almost no related work exists in the field of mobility 
data mining in-DBMS [29].  

Focusing on plain (i.e. outside DBMS) implementations, the 
common building block of trajectory clustering approaches is the 
use of different similarity functions as the means to group 
trajectories into clusters. Such a similarity function is proposed 
in [8] for the efficient processing of most-similar trajectory 
(MST) queries. T-OPTICS [26] incorporates a similar distance 
function into the well-known OPTICS [3]. In [5], probabilistic 
techniques based on EM algorithm are proposed for clustering 
(short) trajectories using regression mixture models. In [32], the 
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authors propose CenTR-I-FCM, a variant of Fuzzy C-means 
(FCM) for MOD, while in [39] introduce the concept of 
uncertain group pattern. Both approaches propose specialized 
similarity functions having as goal to tackle the inherent 
uncertainty of trajectory data. In [8], the authors introduced the 
vector field k-means trajectory clustering technique whose 
central idea is to use vector fields to induce a notion of similarity 
between trajectories, letting the vector fields themselves define 
and represent each cluster. In [41], a multi-kernel-based 
estimation process leverages both multiple structural information 
within a trajectory and the local motion patterns across multiple 
trajectories in order to face challenges in case of large variations 
within a cluster and ambiguities across clusters. In [15], the 
Clustering and Aggregating Clues of Trajectories (CACT) 
pattern mining framework has been proposed for discovering 
trajectory routes that represent the frequent movement behaviors 
of a user. The approach exploits on a similarity measure for 
trajectories with silent durations (i.e., the time durations when no 
data points are available to describe the movements of users), 
which is used in a clue-aware clustering algorithm, where clues 
are some spatially and temporally close data points that capture 
certain common partial movement behaviors of the user. 

TRACLUS [21] is a partition-and-group framework for 
clustering 2D trajectories (i.e. it ignores the time dimension), 
enabling the grouping of similar sub-trajectories, according to a 
trajectory partitioning step that uses the minimum description 
length principle. In its core, it uses a variant of DBSCAN [7], 
operating on the partitioned directed line segments. This work 
was the first to tackle the problem of identifying sub-patterns in 
trajectory data; however, it presents certain limitations (as 
discussed earlier) under the prism of the specifications we posed. 
In [24] the authors introduce an incremental trajectory clustering 
that exploits on TRACLUS. 

Another line of research includes works that aim to discover 
several types of collective behavior among moving objects, 
forming a group of objects that moves together for a certain time 
period, such as moving clusters [18], flocks [4], convoys [17], 
swarms [23], traveling companion [36][37], gathering [44][45], 
and platoon [22] patterns. Although these approaches provide 
lucid definitions of the mined patterns, their main limitation is 
that they search for special collective behaviors, defined by 
respective parameters. 

Our approach also finds commonalities to well-known 
approaches of clustering algorithms of point (vector) data 
[43][35], which sample the dataset at a pre-processing step and 
then perform the core clustering process aiming at high 
efficiency. However, these vector-based algorithms are not 
applicable to MOD due to the complex structure and properties 
of mobility data. Moreover, there is an essential difference 
between those techniques and our approach: while those mainly 
rely on random sampling, in our approach the clustering is 
driven by a sample resulted by an optimization formula, thus 
leading to a deterministic solution of the sub-trajectory 
clustering problem. 

As already discussed, plain (sub-)trajectory clustering 
implementations leave concurrency and recovery outside the 
scene of requirements, as such setting limitations to their usage 
in real-world applications. In contrast, in this work we provide 
efficient in-DBMS solutions ready to be used by domain experts 
maintaining their volumes of data in state-of-the-art DBMS. 

3. PROBLEM FORMULATION 
Let D = {T1, T2,…, TN} be a dataset consisting of N trajectories 
of moving objects (we assume that the objects move in the xy- 
plane). Let pk,i = (xk,i, yk,i, tk,i) be the i-th sampled point, i ∈ {1, 2, 

…, Lk} of trajectory Tk, k ∈{1, 2, …, N}, where Lk denotes the 
length of Tk (i.e. the number of points it consists of), the pair 
(xk,i, yk,i) and tk,i denote the 2D location and the time coordinate 
of point pk,i, respectively. We consider linear interpolation 
between two successive sampled points, pk,i and pk,i+1, so that 
each trajectory turns out to be a sequence of 3D line segments, 
ek,i = (pk,i, pk,i+1), of cardinality Lk – 1, where each segment 
represents the continuous movement of the object during 
sampled points. Table 1 summarizes the definitions of the 
symbols used in this paper. 

Table 1. Table of Symbols 
Symbol Definition 

D A dataset, D = {T1, … , TN}, of N trajectories 
Tk k-th trajectory of D 
pk,i i-th point of trajectory Tk, pk,i = (xk,i, yk,i, tk,i) 
Lk Number of points forming trajectory Tk 
ek,i i-th (3D) line segment of Tk, ek,i = (pk,i, pk,i+1) 
LPk Number of sub-trajectories partitioning Tk 
Pk Set of the sub-trajectories partitioning Tk 
Pk,i i−th sub-trajectory of trajectory Tk 
P Set of sub-trajectories in dataset D, P = ∪Pk 
Vk Voting descriptor of trajectory Tk 
V Set of voting descriptors in dataset D, V = ∪Vk 

VPk,i Voting descriptor of sub-trajectory Pk,i 
Nlk,i Normalized lifespan descriptor of sub-trajectory Pk,i w.r.t. 

lifespan of Tk 
C Clustering of sub-trajectories in M clusters, C = {C1, …, 

CM}, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j 
S Sampling set of representatives, S = {R1,..., RM}, S ⊂ P, 

with sub-trajectory Rj representing cluster Cj 
M Cardinality of C (and S) 

SR(S) Representativeness function of S 
V(Pk,i, Rj) Voting descriptor of Pk,i ∈ P−S w.r.t. sub-trajectory Rj ∈ 

S 
Out Set of outlier sub-trajectories, Out = P−C 

Informally, the objective of sub-trajectory clustering is to 
partition trajectories into sub-trajectories and then form groups 
of similar ones, while at the same time, separating those that 
cannot fit in a group (called outliers). However, searching for 
entire trajectory similarity may be misleading since real-world 
trajectories may be long and consisting of heterogeneous 
portions of movement [6]. On the other hand, clustering at the 
sub-trajectory level sounds much more effective.  
Rephrasing the previous discussion, if we consider trajectory Tk 
as a sequence of successive sub-trajectories Pk,i of arbitrary 
length (Pk,i is the i-th sub-trajectory of trajectory Tk), the 
objective of sub-trajectory clustering (and outlier detection) is to 
partition sub-trajectories into groups of similar ones and isolate 
the ones (called outliers) that are very dissimilar from the others. 
To achieve this, assuming a cluster is represented by its 
representative (or centroid) sub-trajectory, we define clustering 
as an optimization problem where the optimization criterion is to 
maximize the following expression: 

𝑆𝑅𝐷 =    𝑉 𝑃!,! ,𝑅!
!!,!∈! !!!!∈!

 (1) 

The formula to be maximized, namely Sum of 
Representativeness of Dataset (SRD), uses set S = {R1, ..., RM} 
of the representative sub-trajectories and the corresponding 
clusters C(Rj) built around them, and is calculated upon 
𝑉 𝑃!,! ,𝑅! , i.e. the mean similarity (or average number of votes, 
according to our terminology) of sub-trajectory Pk,i with respect 
to Rj.  

Given the above formulation, the problem in hand is formalized 
as follows: 

634



Problem 1 (Sub-Trajectory clustering in a MOD): Assuming a 
dataset D = {T1, T2,…, TN} consisting of N trajectories, where 
each of them is considered as a sequence Pk of successive sub-
trajectories of arbitrary length, the problem of sub-trajectory 
clustering is defined as the task of partitioning the set P = ∪Pk 
of sub-trajectories into (i) a clustering C = {C1, …, CM} of M 
clusters, Ci ⊂ P, Ci ∩ Cj = ∅, i ≠ j (i.e. hard clustering), where 
each cluster is represented by its representative sub-trajectory Rj 
∈ P, j = 1, …, M, and (ii) a set Out of outliers, by maximizing 
Eq. (1). ∎  

It is important to note that maximizing Eq. (1) is not trivial at all 
since one has to define, among others, (i) the criterion according 
to which a trajectory is segmented into sub-trajectories, (ii) the 
technique for selecting the set of the most representative sub-
trajectories, (iii) whose cardinality M is unknown, to name but a 
few challenging sub-problems.  

4. THE S2T-CLUSTERING ALGORITHM 
In this section, we propose a solution for Problem 1 defined 
above, which is called S2T-Clustering (for Sampling-based Sub-
Trajectory Clustering). Our proposal (listed in Algorithm 1) 
consists of two phases: first, we apply the so-called 
Neighborhood-aware Trajectory Segmentation (aka NaTS) 
method that is able to detect homogenized sub-trajectories 
applying trajectory voting and segmentation; then, we apply the 
so-called Sampling, Clustering, and Outlier detection (aka 
SaCO) method that selects the most representative among the 
sub-trajectories detected in the previous phase in order for them 
to serve as the seeds of the clusters to be produced. 

Algorithm 1. S2T-Clustering 
Input: trajectory dataset D = {T1 , T2, … , TN }, voting influence 
σ, threshold ε 
Output: sampling set S, clustering C, set of outliers Out. 
 // Initialization phase 
1.  Reset set V of voting descriptors in D  
 // NaTS phase (Neighborhood-aware Trajectory 

Segmentation) 
2.  for each trajectory Tk ∈ D do  
3.   Update set V of voting descriptors in D w.r.t. Tk and σ 

4.   Partition Tk in set Pk of sub-trajectories w.r.t. Vk 
 // SaCO phase (Sampling, Clustering, and Outlier 

detection) 
5.  Find sampling set S consisting of the M most 

representative sub-trajectories 
6.  Using set S and threshold ε, partition P = ∪Pk in a set C of 

M clusters and a set Out of outliers 
7.  return (S, C, Out) 

It is important to note that the number M of representatives 
(hence, the number of clusters) is not user-defined; rather, it is 
the algorithm that estimates it (in Line 6). As for parameters σ 
and ε that appear in Algorithm 1 (Line 3 and Line 7, 
respectively), σ controls how fast the voting influence decreases 
with distance, whereas ε acts as a lower bound threshold of 
similarity between representative and non-representative sub-
trajectories, thus deciding whether a (non-representative) sub-
trajectory will be flagged as outlier or not. These parameters will 
be explained in detail in the subsections that follow. 

4.1 NaTS: Neighborhood-aware Trajectory 
Segmentation 
We extend the concept of density-biased sampling (DBS), which 
was originally proposed for point datasets [18], to be applied to 
trajectory segments. According to DBS, the local density for 
each point of a set is approximated by the number of points in a 
surrounding region, divided by the volume of the region. In our 
case, adopting a voting process of trajectories in MOD as 

defined in [28], we define the representativeness of a 3D 
trajectory segment ek,i of a given trajectory Tk to be the number 
of ‘votes’ this segment collects from other trajectories w.r.t. their 
mutual distance. The overall voting collected by a segment (a 
value ranging from 0 to N) has the physical meaning of the 
number of other trajectories that co-exist with the trajectory that 
segment belongs to, both spatially and temporally. Intuitively, 
the voting results can be post-processed in order for us to be able 
to identify homogeneous (w.r.t. representativeness) sub-
trajectories. 

Formally, let Vk be the voting trajectory descriptor along the line 
segments of Tk, consisting of a series of Lk–1 components. Each 
component Vk,i of this vector corresponds to the number of votes 
(“representativeness” value) that segment ek,i, i ∈ {1, …, Lk–1}, 
collected by the segments of the other trajectories. This 
representativeness value is based on a distance function d(ek,i, ej) 
between two line segments ek,i and ej, k ≠ j. This distance 
function is defined as the definite integral of the time-varying 
distance Dj(t) between the two segments during their common 
lifespan [tj,start, tj,end), following the approach proposed in [8]: 

𝑑 𝑒!,! , 𝑒! = 𝐷! 𝑡

!!,!"#

!!,!"#$"

𝑑𝑡 (2) 

As Dj follows a trinomial, this integral is efficiently 
approximated by the Trapezoid Rule: 

𝐷! 𝑡!,!"#$" + 𝐷! 𝑡!,!"# ∙ 𝑡!,!"#$" − 𝑡!,!"# 2 

and can be computed in O(1), as it has been already proved in 
[8].  

Given the above distance function, the representativeness value 
is provided by the following voting function. 

𝑉 𝑒!,! , 𝑒! = 𝑒!
!! !!,!,!!

!∙!!  (3) 

As already mentioned, parameter σ > 0 controls the “voting 
influence”, i.e. how fast 𝑉 𝑒!,! , 𝑒!  decreases with distance. It 
also holds that 𝑉 𝑒!,! , 𝑒!  is bounded in [0, 1]: it gets value 1 
when the distance of the two segments is zero (i.e. the segments 
are identical) while very high distance results in voting value 
close to zero. 

After the voting process takes place, the trajectory segmentation 
process gets into action. The goal of this step is to partition each 
trajectory into homogenous representativeness sub-trajectories, 
irrespectively of their shape complexity (recall the discussion 
about the snake-like trajectories in Figure 1). In order to perform 
neighbourhood-aware trajectory segmentation, we adopt the 
Trajectory Segmentation Algorithm (TSA), proposed in [28]. In 
other words, the result of the voting process is given as input to 
TSA, which provides as output the sub-trajectories along with 
their voting descriptors. More technically, let Pk,i, i ∈ {1, …, 
LPk}, be the i-th sub-trajectory of Tk, where LPk denotes the 
number of partitions of Tk. Then, VPk,i is the voting descriptor 
formed by the representativeness values of the segments that 
belong to Pk,i. In other words, VPk,i shows how many trajectories 
find themselves to be similar to Pk,i. The interested reader is 
referred to [28] for the technical details of TSA. 

Back to the example of Figure 1, the NaTS phase results in 
segmenting trajectory T1 into three sub-trajectories (coloured 
red, blue, and black, respectively, in Figure 1(b)); similar for the 
other trajectories of the dataset. Thus, the overall result of this 
phase consists of 12 sub-trajectories along with their voting 
descriptors. 
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4.2 SaCO: Sampling, Clustering, and 
Outlier detection 
As already mentioned, trajectory segmentation aims to provide 
homogeneous sub-trajectories according to their 
representativeness, i.e. with respect to their local similarity with 
other trajectories. On the other hand, the goal of sub-trajectory 
clustering is to partition the dataset into groups (clusters) of 
similar sub-trajectories. Therefore, in our proposal, we first 
select the appropriate sampling set S and then tackle the problem 
of clustering according to the following idea (quite popular, also 
in traditional data clustering): each sub-trajectory in the 
sampling set is considered to be a representative around which a 
cluster will be formed. So, our goal is that the sampling set 
should contain highly voted trajectories of the MOD which, at 
the same time, would cover the 3D space occupied by the entire 
dataset as much as possible in order for Eq. (1) to be maximized.  

In order to achieve this goal, we propose the sampling to be done 
by maximizing a formula (see Eq. (4)) that would take into 
account the votes VPk,i collected by each sub-trajectory. 
Formally, let S denote the sampling set, so that Sk,i is one, if sub-
trajectory Pk,i belongs to the sampling set, and zero otherwise. 
According to the previous discussion, the number of sub-
trajectories that are represented in the sampling set S, should be 
maximized. This is formalized in Eqs. (4)-(6).  

𝑆𝑅(𝑆) = 𝑆!,! ∙ 𝑆𝑅!"#$(𝑘, 𝑖)
!"!

!!!

!

!!!
 (4) 

where 

𝑆𝑅!"#$(𝑘, 𝑖) = 𝑉𝑃!,!,!! ∙ 𝑁𝑙!,!,!

|!!,!|

!!!

∙ (1 − 𝑉𝑃!,!,!! ) (5) 

𝑁𝑙!,!,! = 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑒!,!,! 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑇!  (6) 

More precisely, SRgain(k,i) expresses the gain in SR(S) if we add 
Pk,i in S, |Pk,i| denotes the number of line segments of Pk,i, 𝑉𝑃!,!,!!  
and 𝑉𝑃!,!,!!  denote the votes in P and the votes in S, respectively, 
of the j-th line segment of Pk,i and are calculated according to 
Eq. (3). As for Nlk,i, it denotes the normalized lifespan descriptor 
of sub-trajectory Pk,i w.r.t. lifespan of Tk, namely Nlk,i,j is the 
fraction of the duration of the j-th line segment of Pk,i with 
respect to whole lifespan of Tk.  

For this purpose, we follow the ideas included in the Sub-
trajectory Sampling Algorithm (SSA), proposed in [28]. 
However, SSA is not appropriate for an efficient in-DBMS 
solution, which is one of our main objectives. Thus, we keep the 
main characteristics of the algorithm and adapt it in order to 
meet our specifications (described in detail in Section 5.2). In 
principle, the input of sampling algorithm is the set P of all sub-
trajectories Pk, the set voting VPk,i and the normalized lifespan 
Nlk,i vectors of these sub-trajectories, all provided by the NaTS 
phase. The output of the sampling step is the sub-trajectory 
sampling set S consisting of M samples. Back to the example of 
Figure 1, this step results in selecting two sub-trajectories 
(samples), one out of the three red and one out of the four blue 
sub-trajectories.  

As already mentioned, the population M of the samples is not 
user-defined; in contrary, it is dynamically estimated by SSA 
algorithm. As such, it provides a deterministic solution, in 
contrast to other probabilistic [18][27] or user-supervised, 
explorative sampling techniques [2].  

What follows is the clustering step, which takes into account the 
sampling set S and the vector of votes (i.e. representativeness) 
V(Pk,i, Rj) between, on the one hand, the non-representative Pk,i 
∈ P−S and, on the other hand, the representative sub-trajectories 

Rj ∈ S. Technically, V(Pk,i, Rj) consists of |Pk,i| elements, where 
each element represents the voting that takes place between the 
segments of Pk,i and Rj. As illustrated in Eq. (1), we use the 
mean value 𝑉 𝑃!,! ,𝑅!  of the vector values V(Pk,i, Rj). Each of 
those values is computed by measuring the distance of the 
corresponding segment of Pk,i from its nearest to Rj and then by 
applying the voting function of Eq. (3). Thus, it holds that 
0 ≤ 𝑉 𝑃!,! ,𝑅! ≤ 1. 

Concluding the discussion about Algorithm 1, in order to find 
the clusters that maximize Eq. (1), the sub-trajectories that are 
assigned to cluster C(Rj) represented by sub-trajectory Rj ∈ S, 
are the ones that fulfil the following property: 

 𝐶 𝑅! = 𝑃!,! ∈ 𝑃 − 𝑆:  𝑉 𝑃!,! ,𝑅! ≥ 𝑉 𝑃!,! ,𝑅!   ∀𝑅! ∈

𝑆 ∧   𝑉 𝑃!,! ,𝑅! ≥ 𝜀   
(7) 

and 
𝐶 =  ∪ 𝐶 𝑅!    (8) 

On the other hand, the sub-trajectories that are considered 
outliers (thus forming the outliers set Out) are those failing to be 
assigned to a cluster, formally: 

𝑂𝑢𝑡 =   𝑃 − 𝐶   (9) 
As already discussed, parameter ε controls how far from a 
representative a non-representative should be positioned in order 
for the latter to be flagged as outlier. Back to the example of 
Figure 1, the clustering process presented above results in two 
clusters, formed around the red and the blue, respectively, 
representative sub-trajectory found in the sampling step. As a 
side effect, the black sub-trajectories are left out of the two 
clusters, thus they are flagged as outliers. 

5. S2T-CLUSTERING IN-DBMS 
In this section, we present our methodology for the efficient in-
DBMS development of S2T-Clustering algorithm proposed in 
Section 4. 

5.1 NaTS in-DBMS 
NaTS phase of S2T-Clustering algorithm (Lines 2–4 in 
Algorithm 1) consists of two steps: (a) voting among trajectory 
segments and (b) trajectory segmentation based on the resulted 
voting descriptors. An efficient in-DBMS solution should focus 
on the voting step (Lines 2–3), since TSA [28] that implements 
the segmentation step (Line 4) poses no special challenges; it is 
an efficient in-memory algorithm applied only on the voting 
descriptor of a single trajectory. 

Back to the voting step, to meet its requirement we need an 
algorithm that takes as input a dataset D = {T1, T2, …, TN} of 
trajectories, a trajectory Tk ∈ D and σ > 0 parameter, and 
provides as output a voting descriptor (vector) Vk consisting of 
Lk–1 components, each corresponding to segment ek,i, i ∈ {1, ..., 
Lk–1}, of trajectory Tk. For efficiency purposes, [28] 
implemented the demanding voting process by using an 
incremental nearest neighbour (INN) algorithm. However, given 
the specifications posed in the introduction of this paper, INN is 
not a choice due to the fact that the access methods supported by 
real ORDBMS (e.g. the GiST interface in PostgreSQL) do not 
support the incremental paradigm. This implies that, in our case, 
we are directed to queries natively supported by ORDBMS, such 
as typical range and NN queries. 

Let us now discuss the design and implementation options we 
have in-DBMS. Dataset D corresponds to a relation with tuples 
in the form <t_id, s_id, ek,i>, where t_id (s_id) is the trajectory 
(segment, respectively) identifier and ek,i corresponds to the 3D 
segment, upon which a 3D-R-tree index is built. Nevertheless, 
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this setting is straight-forwardly realized in the well-known 
PostGIS spatial extension of PostgreSQL using 3D GiST. (Note, 
however, that PostGIS handles time- dimension as simply as a 
(third) z- spatial dimension, next to x- and y- dimensions.) An 
important issue has also to do with the realization of Eq. (3) that 
provides the voting between two segments: theoretically, a 
segment may vote (though close to zero) even if it is found very 
far from the target segment. However, this is not realistic in 
DBMS implementations. As such, we introduce s_buffer, a 
spatial threshold for distance between two segments, above 
which there is no need to calculate this distance. In the case 
where the application user has limited knowledge about space-
time properties of the dataset, this parameter can be tuned to be 
the maximum value resulting in a very low (close to zero) voting 
as computed by Eq. (3). This is achieved as follows: by 
reversing Eq. (3), we obtain Eq. (10) that defines an upper bound 
for s_buffer. 

𝑑 ≤    −2𝜎! ∙ ln  (𝜀) (10) 

Thus, d values higher than the upper bound set in Eq. (10) are 
not expected to contribute to the quality of the clustering.  

Given the above setting, voting can be implemented using at 
least two alternatives, called Baseline-I and Baseline-II, 
respectively. Baseline-I solution performs 𝐿! − 1!  range 
queries in the 3D-R-tree, where each query window corresponds 
to the MBB of a segment, enlarged by s_buffer; hence, the total 
number of range queries equals to the total number of segments 
in D, a fact that turns this solution to be expensive in disk 
accesses. On the other hand, Baseline-II solution performs N 
range queries in the 3D-R-tree, where each query window 
corresponds to the MBB of a trajectory, again enlarged by 
s_buffer; hence, the total number of range queries equals to the 
number of trajectories in D. Obviously, the second solution is 
much cheaper in disk accesses regarding the index but, 
unfortunately, imposes a heavy refinement step because of the 
volume of the trajectory MBB. Anyway, both approaches need a 
refinement step to calculate voting descriptor Vk,i, which 
involves distance calculations. 

In the following paragraphs, we present an alternative (third) 
approach for addressing the voting step, which is the most 
demanding step in S2T-Clustering algorithm and, as such, it 
needs special care. In particular, we follow a filter-and-
refinement approach that utilizes a range-like query, called 
Trajectory Buffer Query (TBQ). TBQ takes as input a trajectory, 
enlarges it by s_buffer, and returns the segments that overlap 
with the sequence of the enlarged MBBs of the trajectory’s 
segments. The TBQ rationale is to efficiently retrieve those 
segments in D that are “around” a given trajectory, where 
“around” is defined by s_buffer. Figure 2 illustrates the 
Trajectory Buffer TBk of a trajectory Tk.  

 
Figure 2. The Trajectory Buffer TBk (i.e. the sequence 

of the blue MBBs) of a trajectory Tk. 
It is obvious that our proposal follows a trajectory-based 
approach (i.e. similar to the Baseline-II technique), but for each 
trajectory it minimizes the filtering step by diminishing the dead 
space of the query, and thus minimizes the expensive refinement 
step. In turn, this implies changing the default search strategy of 
the 3D-R-tree over GiST that will reduce the time needed to 
compare a node entry with the trajectory buffer that is passed as 
predicate to the index. This is achieved by the Consistent method 

of the GiST extensibility interface [14], which contains the 
comparison logic between an index node entry of GiST and the 
trajectory buffer. Algorithm 2 outlines TBQ whereas Algorithm 
3 presents the adapted Consistent method of the GiST interface.  

Algorithm 2. Trajectory Buffer Query (TBQ) 
Input: pg3D-R-tree root, trajectory Tk, parameter s_buffer 
Output: set of segments that overlap with TBk 
1.  TBk ← TrajectoryBuffer(Tk, s_buffer) 
2.  root.depth-first-search(Consistent, TBk) 

 
Algorithm 3. Consistent 
Input: Trajectory Buffer TBk, current index entry E 
Output: Boolean 
1.  if E is in a leaf node then 
2.   if MBB(E.segment) overlaps MBB(TBk) then 
3.     for each MBBi ∈ TBk do 
4.      if E.segment overlaps MBBi then 
5.       return true 
6.  else // E is in a non-leaf node 
7.   if E.box overlaps MBB(TBk) then 
8.     for each MBBi ∈ TBk do 
9.      if E.box overlaps MBBi then 
10.       return true 
11.  return false 

 
Recall that Consistent decides whether the depth-first search 
should visit a child of the current entry or not (if the entry 
belongs to a non-leaf node) or, in case the entry belongs to a leaf 
node, checks whether to return the segment pointed by the leaf 
entry. After this remark, the depth-first search driven by 
Consistent in Algorithm 3 is easy to be followed: Consistent 
returns true if the MBB of the entry overlaps with one of the 
MBBs forming the trajectory buffer TBk (Lines 5 and 10, for leaf 
and non-leaf nodes, respectively). Before this check takes place, 
a brute filtering is applied by checking whether the MBB of the 
entry overlaps the entire MBB of TBk (Lines 2 and 7, 
respectively). 

5.2 SaCO in-DBMS 
In this section, we discuss the in-DBMS development of SaCO, 
i.e. the second phase of S2T-Clustering. SaCO phase (Lines 5–6 
in Algorithm 1) also consists of two steps: (a) sampling of the 
most representative sub-trajectories (Line 5) and (b) clustering 
around samples and outlier detection (Line 6).  

Regarding the sampling step, we adopt the SSA algorithm [28] 
as a starting point and we improve it with two crucial 
modifications, focusing on the efficiency and the quality, 
respectively, of the samples selected. The first improvement is 
that the voting method that is inherent in the sampling process 
follows the much more efficient approach presented earlier 
rather than the one presented in [28]. The second modification is 
about the selection of an even better set of representatives; as 
proposed in [28], SSA selects representatives as long as (a) the 
top-k number of representatives is less than a user-defined 
threshold (i.e. parameter M that acts as an upper bound for the 
selected representatives) and (b) the optimization criterion is 
satisfied (see Eq. (4) and (5)). In fact, SSA selects the highly 
voted sub-trajectories, while at the same time it tries to penalize 
sub-trajectories that are very close to already selected 
representatives. Sometimes this automatic penalization fails, 
resulting to very similar representatives. In contrast, in our case, 
as the representatives are employed as cluster pivots, when a 
new representative is selected, it is further examined whether it 
is similar with one of the already selected representatives. In 
such a case, it is not selected and the algorithm evaluates the 
next candidate sub-trajectory. The similarity criterion is the same 
with the one adopted for the clustering, i.e. Eq. (7). 
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What follows is the final step, that of clustering and outlier 
detection. For this purpose, we follow an index-based, greedy 
approach that takes advantage of the TBQ query, which is 
applied on the results of the SSA algorithm, so as to form 
clusters around the sampled sub-trajectories. To this end, we 
propose the so-called Sub-trajectory Clustering Algorithm 
(SCA). SCA, listed in Algorithm 4, receives as input set P of 
sub-trajectories, set S of representatives, as it was produced by 
the (modified) SSA, and threshold parameter ε. The output of the 
method is the final result of S2T-Clustering, i.e. sets C and Out, 
with the clusters and outliers, respectively.  

Algorithm 4. SCA 
Input: set P of sub-trajectories, set S of representatives, parameter 
ε 
Output: set C of clusters, set Out of outliers 
1.  Out = P − S 
2.  for each Rj ∈ S do 
3.   Cj ← {Rj} 
4.  for each Rj ∈ S do 
5.   TBQj ← TBQ(Out, Rj, s_buffer) 
6.    for each ej,f ∈ Rj do 
7.     TBQj,f ← overlaps(TBQj, extend(ej,f, s_buffer)) 
8.    for each Pk,i in {TBQj,f}, f ∈ [1, |Rj|] do 
9.     v ←   𝑉 𝑃!,!  ,𝑅!  
10.     if v > ε and v > old_vk,i then 
11.      Cj ← Cj ∪ {Pk,i} 
12.      flag Pk,i as clustered in Out 
13.      old_vk,i ← v 
14.  for each Pk,i in Out do 
15.   if Pk,i is flagged as clustered then 
16.     Out ← Out − {Pk,i}; 
17.  return (C, Out) 
 
Initially, the sub-trajectories are organized in two sets 
(implemented as relations in DBMS), one containing the 
sampling set sorted by the order of their selection and the other 
containing the remaining data, while each cluster is initialized by 
a representative sub-trajectory from the sampling set. As such, 
each representative sub-trajectory constitutes the first member 
(seed) of the corresponding cluster (Lines 1-3). Then, we apply a 
two-step filtering procedure so as to increase the efficiency of 
the algorithm. At the first step, for each cluster seed Rj, we apply 
a TBQ query, which returns the segments that are “close” to the 
cluster seed (Line 5). Subsequently, for each segment ej,f 
belonging to the specific representative Rj, we apply a 
spatiotemporal range query with the same spatial component as 
that of the TBQ query (Line 7). This spatiotemporal range query 
is performed in order to identify the segments that are “close 
enough” to ej,f and, hence, qualify to proceed to the voting 
procedure w.r.t. Rj. Subsequently, for each non-clustered Pk,i, we 
calculate the average voting that Rj receives (Line 9). By taking 
into account parameter ε discussed earlier, we assign it to cluster 
Cj mastered by Rj (Line 11) and mark it as clustered (Line 12). 
Through this process, in the case where Pk,i belongs to the result 
of more than one TBQ searches, it is assigned to the 
representative that has achieved the highest voting. 

6. EXPERIMENTAL STUDY 
In this section, we present the results of our experimental study. 
All experiments were conducted on an Intel Xeon X5675 
Processor 3.06GHz with 48GB memory, running on Debian 
Release 7.0 (wheezy) 64-bit. The proposed algorithms were 
implemented on top of a PostgreSQL 9.4 server with the default 
configuration for its memory parameters. We should clarify that 
in our implementation, which exploits on the extensibility 
interface given by PostgreSQL, we have defined and 
implemented from scratch datatypes and operands conforming to 
the whole discussion so far, resulting in the so-called 

Hermes@PostgreSQL [16], which is completely independent 
from PostGIS. This implies that the 3D-R-tree has also been 
implemented from scratch (on top of GiST); we call it pg3D-R-
tree (see the input of TBQ in Algorithm 2).  

A notable difference of our pg3D-R-tree from the PostGIS 
implementation of the 3D-R-tree is that, in our case, the entries 
of the leaf nodes are 3D segments rather than 3D boxes. This is 
an implicit assumption in the Consistent algorithm (see e.g. Line 
2 in Algorithm 3), which allows us to avoid additional I/O 
operations. The outline of our experimental study is as follows: 
First, we study the robustness of S2T-Clustering by using a 
synthetic dataset (where we know the ground truth) in order to 
(a) evaluate the sensitivity of our proposal w.r.t. various 
parameters and (b) validate whether our approach succeeds to 
discover the underlying clusters (and outliers). Then, a set of 
experiments is performed in order to evaluate the efficiency and 
scalability of S2T-Clustering. These experiments are performed 
using three different approaches: the two baseline solutions and 
our solution based on TBQ, as they were presented in Section 5. 

6.1 Datasets 
The three datasets we used in our experimental study, one 
synthetic (SMOD) and two real datasets (IMIS, GeoLife), are 
presented in the following paragraphs.  

SMOD - Synthetic MOD (SMOD)1 consists of 400 trajectories 
and is used for the ground truth verification (see the discussion 
about ground truth below). The creation scenario of the synthetic 
dataset is the following: the objects move upon a simple graph 
that consists of the following destination nodes (points) with 
coordinates: A(0,0), B(1,0), C(4,0) and D(2,1). Half of the 
objects move with normal speed (2 units per second) and another 
half move with high speed (5 units per second). Figure 3 
illustrates the 2D map of the SMOD consisting of three one-
directional (A → B, B → D, D → C) and one bi-directional road 
(B ⇆ C). All objects move under the following scenario, for a 
lifetime of 100 seconds: 

• (normal movement – 99% of the trajectories) All objects start 
from point A towards point B; the high-speed objects start at t 
= 0 sec and the normal-speed objects start at t = 20 sec. When 
an object arrives at B, it ends its trajectory with a probability 
of 15%; otherwise, it continues with the same speed to the next 
point. If there exist more than one option for the next point, it 
decides randomly about the next destination. 

• (abnormal movement – 1% of the trajectories) A few outlier 
objects follow a random movement in space (other than these 
roads) with a speed that is updated randomly.  

 
Figure 3. The 2-D map of SMOD. 

The ground truth of the clusters that are hidden in SMOD can be 
inferred by the description of the dataset itself. In particular, 
eight clusters of sub-trajectories (as well as a set of outliers) are 
identified. Table 2 lists the eight clusters along with their spatial 
(2nd column) and temporal projection (3rd column). 

                                                             
1 Publicly available at chorochronos.datastories.org repository under the 

name ‘smod’. 
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Table 2. The ground truth hidden in SMOD 
Cluster  Path Time periods (clusters) 
#1, #2 A→B [0, 0.2], [0.2, 0.7] 
#3, #4 B→C [0.2, 0.8], [0.7, 1.2] 
#5, #6 B→D [0.2, 0.52], [0.7, 1.2]  

#7 C→B [0.8, 1] 
#8 D→C [0.52, 1] 

As for real datasets, GeoLife [47] consists of the trajectories of 
178 users in a period of more than four years; this dataset 
represents a wide range of movements, including not only urban 
transportation (e.g. from home to work and back) but also 
different kinds of activities, such as sports activities, shopping, 
etc. Finally, IMIS2  is a real AIS dataset consisting of the 
trajectories of 637 ships moving in the Greek seas for one week. 
Table 3 presents the statistics of the three datasets. 

6.2 Quality of Clustering Analysis 
In this section, we perform a sensitivity analysis in order to 
explore the effect on the quality of clustering when setting 
different values on certain parameters. The quality of the 
clustering is calculated through two different measures: 
QMeasure [21] and SRD (see Eq. (1)). We should mention that 
the lower the QMeasure the higher the quality; on the other 
hand, the higher the SRD the higher the quality. Regarding 
parameter settings, as our approach shares similar concepts with 
the sampling methodology of [28], we followed the best 
practices presented in that work. More specifically, parameter σ 
was set to 0.1% of the dataset diameter while ε was set to 10-3. 
Regarding s_buffer, it was automatically set according to Eq. 
(10) as default value and we experimented with values around 
the default. 

Table 3. Dataset Statistics 
Statistic SMOD GeoLife IMIS 

# Trajectories 400 18,668 5110 

# Segments 35,273 24,159,325 443,657 

Dataset Duration 
(hh:mm:ss) 0:02:00 1932 days 22:59:48 6 days 19:59:53 

Avg. Sampling Rate 
(hh:mm:ss) 0:00:01 0:00:08 0:18:02 

Avg. Segment Length 
(m) 8 72 1545 

Avg. Segment Speed 
(m/s) 7.83 5.01 7.03 

Avg. Trajectory Speed 
(m/s) 2.86 3.91 4.52 

Avg. # Points per 
Trajectory 89 1295 88 

Avg. Trajectory 
Duration (hh:mm:ss) 0:01:28 2:43:15 11:33:45 

Avg. Trajectory Length 
(m) 691 93,046 134,148 

 

                                                             
2 Publicly available at chorochronos.datastories.org under the name 

‘imis1week’. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. The effect on (a) QMeasure, (b) SRD, (c) the 
discovered number of clusters, when varying s_buffer 

parameter around its default value. 

The first set of experiments is about the sensitivity of S2T-
Clustering w.r.t. s_buffer. Figure 4 illustrates the results over the 
IMIS dataset. In particular, we used the default value (labelled 
100% in the x-axis of the charts) as well as 6 values around it 
(labelled 40%, 60%, 80%, 120%, 140%, 160%). As one can 
easily observe, the quality of the clustering, measured either by 
QMeasure or SRD, remains more or less stable and follows the 
trend of the number of clusters identified. Moreover, in both 
QMeasure and SRD, the best quality appears when s_buffer is 
set to its default value (d).  

We repeated the same experiment over GeoLife and resulted in 
similar conclusions. Considering the above analysis, the value 
for s_buffer used in the remainder of our experimental study is 
the default value provided by Eq. (10). 

In a second set of experiments, we applied our proposal to the 
SMOD dataset, which is ideal for the purposes of testing the 
quality of our algorithm. In order to measure the stability of our 
method to noise effects, we have added Gaussian white noise of 
different Signal to Noise Ratio (SNR) levels, measured in db, to 
the spatial coordinates of SMOD. All the subsequent 
experiments have been repeated with SNR = 30db and SNR = 
50db and the results were the same. Therefore, we present only 
the case with the SNR =30db. 
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(a) 

 
(b) 

 
(c) 

Figure 5. Visualization of the clusters’ representatives 
provided by: S2T-Clustering in (a) 2D and (b) 3D, (c) 

TRACLUS, when applied to a subset of SMOD 
consisting of 2 patterns. 

First, we applied both S2T-Clustering and TRACLUS [21] over 
a subset of SMOD that consists only of the trajectories that move 
throughout the whole lifespan of the dataset, thus limiting the 
ground truth to two clusters. In Figure 5(a) and Figure 5(c) we 
visualize only the representatives of each cluster, while in Figure 
5(b) we provide a 3D illustration of the data used in the case of 
Figure 5(a). Note that S2T-Clustering discovers the two clusters, 
while TRACLUS discovers several linear patterns; see Figure 
5(a) vs. Figure 5(c). 

Subsequently, we applied both S2T-Clustering and TRACLUS to 
the entire SMOD, for which we have knowledge of the ground 
truth. In Figure 6(a) and Figure 6(c), we present the results of the 
S2T-Clustering and TRACLUS, respectively. Moreover, in order 
to better comprehend the temporal dynamics of the dataset we 
provide a 3D illustration in Figure 6(b). According to this 
experiment, S2T-Clustering effectively discovers all eight 
clusters (as well as the noisy sub-trajectories, depicted in black 
color in Figure 6(b)), thus S2T-Clustering is not affected by the 
trajectories’ shape, yielding an effective and robust approach for 
the discovery of linear and non-linear patterns. On the contrary, 
TRACLUS fails to identify the hidden ground truth in this 
SMOD due to the fact that it ignores the time dimension. 
Interestingly, TRACLUS discovers almost the same sets of 
representatives when applied to either a subset of or the entire 
SMOD; see Figure 5(c) vs. Figure 6(c). 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Visualization of the clusters’ representatives 
provided by: (a) S2T-Clustering in (a) 2D and (b) 3D, 

(c) TRACLUS, when applied to the entire SMOD 
consisting of 8 patterns. 

In order to evaluate the accuracy of our proposal in a quantified 
way, we further employed F-Measure in SMOD. In detail, we 
built 8 datasets, with the first consisting of the sub-trajectories of 
the first cluster only, the second consisting of the sub-trajectories 
of the first and the second cluster only, and so on, until the 
eighth dataset, which consisted of the sub-trajectories of all eight 
clusters; all eight datasets appeared in two variations: including 
or not the set of outliers. For each dataset, we applied S2T-
Clustering and calculated F-Measure; Figure 7 illustrates this 
quality criterion by increasing the number of clusters. It is 
evident that S2T-Clustering turns out to be very robust, achieving 
always precision and recall values over 92.3%, while the outliers 
are always detected correctly. 

 

Figure 7. Quality of S2T-Clustering w.r.t. number of clusters. 

 

0.20$

0.40$

0.60$

0.80$

1.00$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$

F-
M
ea
su
re
$

#$of$Clusters$

F-Measure$

SMOD$with$outliers$ SMOD$without$outliers$

640



6.3 Efficiency and Scalability 
In order to study the efficiency and scalability of our proposal 
we followed two competing approaches: Hermes@PostgreSQL 
[16], implemented according to the discussion in Section 5, vs. 
PostGIS extension of PostgreSQL that simulated the two 
baseline solutions presented in Section 5.1.  

We have noticed that the implementation of the 3D-R-tree in 
PostGIS suffers from rounding errors because it uses 32-bit 
IEEE floating-point numbers to store the coordinates [35]. In our 
experiments we observed that the MBB of a trajectory or a 
segment was always enlarged due to this rounding, thus making 
the overlap query in PostGIS return more segments than our 
implementation. Since this made the comparison between the 
two systems unfair, we simulated PostGIS inside Hermes, in 
other words, also the baseline solutions were simulated inside 
Hermes (thus, making all solutions run under the same 
framework). 

In the charts that follow, we denote the implementation of 
Baseline-I and Baseline-II solutions implemented both in 
Hermes and in PostGIS as {Hermes | PostGIS}-Baseline-{I | II}, 
i.e. four different implementations.  

In particular, Figure 8 illustrates the execution time of the voting 
step for the IMIS dataset when varying the dataset size (i.e. the 
number of trajectories). Obviously, the two implementations 
present similar performance, with the PostGIS implementation 
performing slightly better mainly due to the fact that the size of 
index node entries in PostGIS (which uses 32-bit numbers for 
storing the temporal dimension) is slightly less than that of 
Hermes (which uses 64-bit numbers).  

(a) 

(b) 

Figure 8. Comparing the performance of baseline solutions: 
(a) Baseline-I; (b) Baseline-II. 

We repeated the same experiment with the GeoLife dataset and 
the results lead to similar conclusions, thus they are excluded 
due to space limitations.  

Based on the above results, in the remainder of the experimental 
study, the scalability study is conducted using the Hermes 
implementation of the algorithms. As illustrated in Figure 9(b), 
all three approaches (Baseline-I, Baseline-II and TBQ, presented 
in Section 5.1) perform similarly on the IMIS dataset as far as it 
concerns the segmentation, sampling and clustering steps of the 
algorithm (please note that y-axis is at log scale). The crucial 
difference is at the expensive voting step, where TBQ 
significantly outperforms the two baseline solutions by almost 
two orders of magnitude; this is illustrated in Figure 9(a) 
whereas in Figure 9(c) we present the accumulated processing 
time. 

Due to the fact that the overall performance is dominated by the 
performance of the voting step, we further studied this step over 
the GeoLife dataset. As it can be observed in Figure 9(d), the 
behavior of the voting step of S2T-Clustering over GeoLife is 
slightly different from that over IMIS. TBQ still outperforms 
both Baseline-I and Baseline-II solutions by several orders of 
magnitude, but in the case of GeoLife, Baseline-II outperforms 
Baseline-I. This can be explained by the fact that GeoLife 
consists of trajectories with significantly larger number of 
segments than IMIS (recall the statistics in Table 3). This fact 
leads Baseline-I to perform considerably more lookups in the 
index. 

7. CONCLUSIONS 
In this paper, we discussed the problem of sub-trajectory 
clustering and outlier detection in trajectory databases, aiming to 
take both space and time information into consideration. In 
particular, we proposed S2T-Clustering that is novel not only 
because it solves the problem more effectively than the state-of-
the-art (namely, TRACLUS), but also for an additional, quite 
important reason: our proposal is designed in-DBMS, i.e., it 
performs as a query operator in a real MOD engine over an 
extensible DBMS (namely, PostgreSQL in our current 
implementation). Having such functionality in their hands, data 
scientists are able to perform cluster analysis via simple SQL in 
real DBMS, where concurrency and recovery issues are taken 
into consideration. Moreover, our algorithm is boosted by an 
efficient index-based Trajectory Buffer Query (TBQ) that speeds 
up the overall process, resulting in a scalable solution, 
outperforming the state-of-the-art in-DBMS solutions supported 
by PostGIS by several orders of magnitude.  

As a next step, inspired by the research agenda of the big data 
era, we plan to investigate real-time and incremental solutions, 
exploiting on modern in-memory DBMS architectures. 
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(a) 

(b) 

(c) 

(d) 
Figure 9. Step-by-step execution time of S2T-Clustering: (a) 

voting over IMIS; (b) segmentation/sampling/clustering over 
IMIS; (c) overall over IMIS; (d) voting over GeoLife. 
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