
DeepSea: Progressive Workload-Aware Partitioning of
Materialized Views in Scalable Data Analytics

Jiang Du
University of Toronto

jdu@cs.toronto.edu

Boris Glavic
Illinois Institute of Technology

bglavic@iit.edu

Wei Tan
IBM T. J. Watson Research Center

wtan@us.ibm.com

Renée J. Miller
University of Toronto
miller@cs.toronto.edu

ABSTRACT

Selective materialization of intermediate query results as views is

an effective method for improving query performance. In this pa-

per, we extend this technique to adaptively partition views based on

the access patterns of a workload. That is, we collect information

about the selection conditions of queries at runtime and utilize this

information to determine fragment boundaries for the initial par-

titioning when materializing a view. Furthermore, we refine view

partitions over time based on the selection conditions of incom-

ing queries. We present a novel cost-benefit model for partitioned

views, as well as a candidate view and fragment selection approach

- both of which exploit the nature of partitioned views by taking

the correlation among view fragments into account. Furthermore,

we present DeepSea, an implementation of these techniques built

on top of Hive. Our experimental evaluation demonstrates the ef-

fectiveness of partitioned views, improving performance by up to

an order of magnitude compared to state-of-the-art approaches.

1. INTRODUCTION
The use of materialized views is a common technique to improve

the performance of query workloads [21]. The questions of what

to materialize, when to materialize, and when to use a view have

been well studied. The same is true for other automated physi-

cal design techniques such as index and partition selection. Proper

physical design for base tables, e.g., horizontal partitioning, often

significantly improves the performance of queries [23]. In mod-

ern SQL systems built on-top of distributed dataflow engines (e.g.,

Hadoop [1]), issues of physical design, including partitioning of

large files, are paramount to the performance of the system. Fur-

thermore, intermediate results are often materialized for fault tol-

erance purposes and these results can be utilized as materialized

views to answer future queries [12]. While each of these techniques

has been studied intensively, we are the first to study the combina-

tion of materialized view selection and horizontal partitioning.

The major advantage of creating a partitioned view from an inter-

mediate query result is that future queries with selection conditions

over the partition attribute can be answered efficiently by access-

ing a subset of the view’s fragments. However, partitioning a view

c©2017, Copyright is with the authors. Published in Proc. 20th International Con-

ference on Extending Database Technology (EDBT), March 21-24, 2017 - Venice,

Italy: ISBN 978-3-89318-073-8, on OpenProceedings.org. Distribution of this paper

is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0

increases the cost of view creation. Furthermore, new challenges

arise because we have to decide when to partition a view, how to

select fragment boundaries (within a partitioning), when to reparti-

tion, and what fragments to evict to save space. We address these

challenges in this work.

Online View Selection. A view selection algorithm that is based on

a query workload is called adaptive. Adaptive (or workload-aware)

materialization and partitioning of views may be done at design-

time or at runtime. That is, either a complete workload is given

and the view selection algorithm determines which views to mate-

rialize and how to partition them offline, or the algorithm works in

an online fashion making decisions based on the history of queries

that have been processed so far. While online materialized view

selection has been studied [24], we are the first to consider the on-

line adaptation of partitioning choices for views. Our partitioning

strategy is motivated by two important characteristics of real-life

data analytic workloads: 1) data access is often not distributed uni-

formly over the domain of a selection attribute and 2) access pat-

terns evolve as the interests of users change over time.

Non-Uniform Distribution of Access. Figure 1 shows the ac-

cess distribution for a real analytic workload over the Sloan Dig-

ital Sky Survey dataset (SDSS) [2]. The figure shows the selection

ranges on attribute ra of table PhotoPrimary for queries submitted

to SDSS between March 8, 2010 and March 8, 2011. Note that

there are ranges that are rarely queried and others that are very fre-

quently queried. Clearly, adaptive partitioning can improve query

performance. We use the range conditions of queries to adjust frag-

ment (partition) boundaries with the effect that hot spots are cov-

ered by relatively small fragments and less frequently accessed data

are covered by fewer and larger fragments. This has the advantage

of focusing the effort of partitioning on the parts of the data which

will give us the most benefit. Queries accessing hot spots can be an-

swered using small fragments without touching unwanted ranges of

the view. Furthermore, using this approach we avoid paying the

cost of partitioning data that is accessed infrequently.

Evolving Access Patterns. In addition to being non-uniform, real

workloads are not static, but rather access patterns may shift over

time. Figure 2 shows how the selection ranges of SDSS queries

over attribute ra of table PhotoPrimary evolve over the sequence of

the first 10,000 queries containing such a selection, starting from

March 8, 2010. The vertical line near query 1,000 means that one

or more queries have selected the whole domain of attribute ra.

The figure shows that the first 3,000 queries focus mainly on the

range between 200 and 300 degrees. Later in the workload, a large

number of queries focus on values around 100 degrees.

To accommodate evolving access patterns, we make decisions on

how to partition a view online as queries arrive. We create a mate-

Series ISSN: 2367-2005 198 10.5441/002/edbt.2017.19

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.19

0

10000

20000

‐20 10 40 70 100 130 160 190 220 250 280 310 340 370 400

H
it
s

Figure 1: Histogram of selection ranges on SDSS

0

100

200

300

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

S
e
le
c%
o
n
 r
a
n
g
e

(d
e
g
re
e
)

Query sequence (10000 queries)

Figure 2: Evolution of selection ranges on SDSS

rialized view with an initial partitioning once we have determined

that there is enough evidence that the creation of the view will ben-

efit the current workload. We progressively refine fragment bound-

aries based on the selection conditions of incoming queries. Our

progressive partitioning, coupled with a cost-based view and frag-

ment eviction policy, allows us to adapt to evolving workloads. A

view’s competitiveness according to this cost model is based on its

observed benefits (an estimate of the runtime that would have been

saved if the view were to be materialized), its creation cost (the

runtime overhead of materializing and partitioning the view), and

its storage size. Importantly, we apply a decay function to timeout

view benefits over time. This ensures that after a shift in the work-

load, views that are no longer useful for the current access pattern

will eventually be replaced with views that fit the new pattern.

Partitioned Materialized View Pool Size. Typically, the storage

space allocated for materialized views is not unlimited. We ana-

lyzed a BigBench workload [13] and found that if we materialize

all intermediate join results as views, the total storage required is

four times the size of the BigBench base tables. Of course, for

evolving workloads, the number of materialized views and frag-

ments would continue to increase and not all views will continue to

provide a benefit to queries. Jain et al. [20] show the importance of

a good view selection strategy for real-life applications: the savings

that can be achieved with a small materialized view pool are similar

to the savings that can be achieved with a large pool size as long

as a good view selection strategy is applied. An important bene-

fit of partitioned views is the finer granularity of control on view

and partition selection: we can individually evict the fragments of

a partitioned view that are unlikely to be used in the future.

Correlated Fragments. Given a finite amount of space for storing

views, we present a novel strategy for selecting what fragments of

a view to keep. Typically, decisions on whether to keep or evict

a view are made independently for each view [15]. However, the

benefits that different fragments of a partitioned view provide to

a workload are not independent of each other. Returning to Fig-

ure 1, observe that ranges which are accessed often (ranges with

many hits) tend to have neighbors with many hits (which are also

accessed often). We find similar patterns for other attributes of dif-

ferent SDSS tables: parts of the domain of an attribute that are close

to hot spots have a higher chance of being hit in the future than parts

that are further away from hot spots. We present a new probabilis-

tic model based on this correlation to determine when a fragment

of view should be evicted. Our model treats a hit to a fragment as

a sample from a probability distribution. We determine the normal

distribution that has the maximum likelihood to have produced the

sample and use this distribution for fragment selection.

Overlapping Fragments. Figure 2 also hints at a common pattern

for selection ranges. A partition containing a few large fragments

(for cold spots) and several small fragments (located at hot spots)

may work well for some time, but as the workload evolves, there is

a need to split a large fragment as additional queries begin to access

it. This split incurs high write cost for repartitioning because if a

fragment is split, its whole content needs to be read and written

to disk. We present a solution that permits overlapping fragments.

Rather than reading and writing the large fragment, we create a

small fragment that overlaps the large fragment.

Contributions. Our main contributions are as follows.

• Progressive, adaptive partitioning of materialized views. We pro-

pose the first algorithm for progressively partitioning materialized

views that adapts online to changes in a query workload.

• Exploitation of fragment correlations. Based on our study of

real-life workloads, we present a novel cost-benefit model for view

fragments and candidate selection that takes the correlation among

fragments of a partition into account.

• Overlapping fragments. We allow overlapping fragments and

show that they can reduce the cost of view creation especially over

evolving workloads.

• DeepSea. We present DeepSea, an implementation of our tech-

niques in Hive [27].

• Evaluation. We demonstrate DeepSea’s effectiveness using a

query workload modelled after a real workload from SDSS [2] and

workloads from BigBench [13].

The remainder of the paper is organized as follows. We discuss

related work in Section 2, introduce preliminaries in Section 3, and

formally state the problem addressed in this work in Section 4. We

give an overview of our approach in Section 5. We then present

how to select view candidates in Section 6, how to select what to

materialize and how to partition in Section 7, and how to answer

queries using partitioned materialized views in Section 8. After-

ward, we discuss the implementation of DeepSea in Section 9 and

present our experimental evaluation in Section 10.

2. RELATED WORK
There are several lines of work related to our approach: answer-

ing queries using views; reusing intermediate query results; (on-

line) self-tuning techniques for physical database design; database

cracking; and semantic caching.

Answering Queries Using Views. Answering queries using mate-

rialized views has been studied intensively [3, 21]. Given a set of

views and a query, computing the least expensive plan for the query

using the views is computationally hard, because query contain-

ment checks are required to determine whether a query can be com-

puted from a view. Query containment for bag semantics (SQL) is

undecidable, even for restricted query classes (union of conjunc-

tive queries). As a consequence, practical approaches for logical

matching (i.e., determining whether a view can be used to answer

a query independent of the query syntax) usually apply sufficient

conditions for matching that are decidable or even in PTIME [14,

29]. Goldstein and Larson [14] present a lightweight algorithm that

is integrated with a transformation-based optimizer and uses a cost

model to determine the best rewriting. We have extended this ap-

proach to support matching fragments of partitioned views.

Reusing Intermediate Results. Although materialization has been

studied extensively for relational databases [3, 16, 21], distributed

199

systems such as Hadoop have different characteristics that need to

be explored and exploited. ReStore [12] materializes intermedi-

ate results of MapReduce jobs for reuse in future queries. Perez

and Jermaine [24] exploit salient features of SQL-on-Hadoop sys-

tems including immutable data, abundant storage to accommodate

materialized views, and excessive materialization of intermediate

results that enables generating materialized views as a by-product

of answering queries. The approach optimizes queries to produce

intermediate results that, if materialized as views, would improve

performance for past queries. If past queries are indicative of future

queries then this would result in a speed up for future queries. We

also gather knowledge about a workload to guide materialization,

but in addition investigate partitioning for materialized views. The

Nectar system [15] caches and reuses results of DryadLINQ/Dryad

computations. ReStore and Nectar only perform physical match-

ing, i.e., a view matches a sub-query if they are computed using the

same expression. As explained previously, we decide to use logical

matching which greatly improves the potential for reuse. Reuse of

intermediate query results has also been studied for main memory

DBMS such as MonetDB [19, 22]. This approach uses physical

matching of operators except for selections where subsumption of

range restrictions is considered, e.g., the result of a selection on

A < 5 is a superset of the result of a selection on A < 3, and

thus a query with selection A < 3 can be rewritten by using a

materialized view whose selection is A < 5. Similar to ReStore

and in contrast to automated materialized view and index selection

approaches for relational databases, our approach significantly re-

duces view creation cost by considering intermediate query results

as candidates for materialized view creation. In addition, whenever

possible we use intermediate results that are materialized anyways

by the MapReduce engine (e.g., at the end of a reduce phase).

Automated Physical Design. Automated tuning [10] is a rich field

including: partitioning [23, 25], index selection [6, 26], and mate-

rialized view selection [4, 5, 8]. Adaptive index selection creates

and drops indexes on-the-fly [6, 26]. Given a constraint on stor-

age space, the idea is to monitor incoming queries and profile the

performance gain for each index and then create the most promis-

ing ones. Adaptive materialized view selection [4, 5, 8] shares the

same philosophy. Both index and materialized view selection use

the DBMS optimizer’s cost model to evaluate the benefits of an in-

dex or view without actually creating it. Bruno and Chaudhuri [9]

have explored online index selection that is 3-competitive. How-

ever, this bound only holds for single index candidates. In contrast

to these approaches we do not assume a sophisticated optimizer.

Our solution also repartitions data on-the-fly, as a by-product of

query answering. The H2O system [7] supports multiple storage

layouts, i.e., columnar, row and group of columns. At run-time, the

system decides which layout to use for which part of the data, and

continuously evolves the storage layout and data access strategy.

In constrast to H2O, we focus on horizontal partitioning of data

in a distributed environment, and address the size requirement of

materialized view pool.

Database cracking. Database cracking [18], i.e., adaptive and pro-

gressive indexing, incrementally builds an index structure over a

table based on access patterns of queries. There is a rich body of

work on enhancements of cracking such as the study of robust-

ness and adaptiveness to dynamic workloads [17]. A similarity be-

tween cracking and our approach is that they both incrementally

refine physical designs based on selection conditions in queries. In

contrast to cracking, DeepSea focuses on horizontal partitioning of

materialized views and makes cost-based decisions on whether to

refine a partition.

Semantic caching. Semantic caching [11] studies how to reuse

subsets of input tables that are stored in a client-side cache. Each

entry in the cache is described as a logical constraint (selection con-

dition) providing a semantic description of the content of a cache

entry. When a query is submitted to the client and can be answered

(partially) using the cache, only a "remainder query" will be sent

to the server to fetch the results that do not exist in the client’s

cache. Similar to DeepSea, intermediate results are reused and are

reorganized based on access patterns. However, semantic caching

only considers caching of the results of selections over base tables

(we consider caching of a view that is partitioned on a selection

attribute) and does not allow cached regions to overlap.

3. PRELIMINARIES
We now review the concept of horizontal partitioning. We use R,

S, . . . to denote relations, A, B, . . . to denote attributes, and D(A)
to denote the domain of attribute A. We call an attribute A ordered

if there exists a total order ≤A over D(A). Only ordered attributes

are considered as keys for horizontal partitioning.

Horizontal Partitioning. Horizontal partitioning splits the tuples

of a relation into a set of disjoint fragments - each fragment holds

the data for a range of values of the partition key (the attribute on

which we partition). The union of these fragments equals the orig-

inal relation.

DEFINITION 1 (HORIZONTAL PARTITIONING). Let R be a re-

lation and A an ordered attribute from R’s schema. Consider a

set I = {I1, . . . , In} of intervals where Ii ⊆ D(A). The frag-

mentation PI(R.A) of R on A according to I is the set of frag-

ments Fi ⊆ R defined as Fi = {t | t ∈ R ∧ t.A ∈ Ii}. If
⋃

I∈I I = D(A) and ∀i, j : Ii ∩ Ij = ∅ then PI(R.A) is called a

horizontal partition.

1 2 3 4 5 6

t1 t2 t3 t4 t5 t6

I1 I2 I3

I4

I5 I6

EXAMPLE 1. Assume a relation R has 6 tuples {t1, t2, t3, t4,
t5, t6} where the value of attribute A for tuple ti is i. The do-

main D(A) of A is {1, . . . , 6}. Consider a set I of three inter-

vals I1 = [1, 2], I2 = [3, 4], and I3 = [5, 6] as shown above.

A partitioning based on these intervals would result in fragments

F1 = {t1, t2}, F2 = {t3, t4}, and F3 = {t5, t6}. The frag-

mentation PI(R.A) is a horizontal partition of R according to

A. Consider a second set of intervals I′ containing I4 = [1, 4],
I5 = [3, 4], and I6 = [5, 6]. The fragmentation according to

I′ results in fragments F4 = {t1, t2, t3, t4}, F5 = {t3, t4}, and

F6 = {t5, t6}. This fragmentation PI′(R.A) is not a horizontal

partition of R, because of the overlap between I4 and I5. Finally,

I′′ = {I4, I6} is again a horizontal partition of R.

Overlapping Partitioning. It is sometimes beneficial to relax the

disjointness requirement by allowing fragments to overlap. We call

such a fragmentation an overlapping partitioning.

DEFINITION 2 (OVERLAPPING PARTITIONING). Let R be a

relation and A one of its attributes. We call a fragmentation PI(R.A)
an overlapping partitioning iff

⋃

I∈I I = D(A).

EXAMPLE 2. Figure 3 illustrates why it may be beneficial to

allow fragments to overlap. Assume that a query Q1 acccesses a

range [a, b] and that based on this access pattern we have decided

200

[]

Q1

Q2

Horizontal Partitioning

Overlapping Partitioning

a b

a' b'

a a' b b'l u

l u

l u

a a'

b b'

l u

[]

Figure 3: Overlapping fragments in progressive partitioning

to create a partition with three fragments [l, a), [a, b], and (b, u]. A

subsequent query Q2 accesses data in the range [a′, b′]. Note that b
and b′ are close to each other. Adaptive horizontal partitioning may

create four new fragments based on Q2 by splitting the previously

created fragments into [a, a′), [a′, b], (b, b′] and (b′, u]. If we al-

low fragments to overlap, then we can avoid creating the fragment

(b′, u] because no query has accessed data from this fragment yet.

Instead, we create a fragment (b, b′] and keep the fragment (b, u]
that was created based on Q1. This avoids writing a large fragment

that may not be accessed by future queries at the cost of additional

storage for (b, b′].

4. PROBLEM STATEMENT
We now state the problem addressed in this work: how to main-

tain a set of partitioned views (the materialized view pool) in an

online fashion in order to maximize query performance.

Configuration. A configuration C models the current content of

the materialized view pool. It consists of the set of views V that are

currently in the pool and a mapping P that associates each view

V and one of its attributes A with a set of intervals describing the

current partitioning of the view on this particular attribute. Note

that we permit multiple partitions of a view to be stored in the pool

as long as these partitions are on different attributes. We define

P(V,A) = ∅ if view V has not been partitioned on attribute A yet.

DEFINITION 3. A configuration C is a pair (V,P) where V is

the set of views materialized in the pool and P is a mapping that

associates with each view V ∈ V and an attribute A in the schema

of V a set of intervals I over the domain D(A) of A. We use S(C)
to denote the total storage size of the views in configuration C.

Problem Definition. In this work, we assume a query-only work-

load, i.e., no updates. We address the following problem: given

a workload Q = Q1, . . . , Qn of queries to be executed that is

unveiled one query at a time and a pool size limit Smax (maxi-

mal storage to be used for views), choose a sequence of config-

urations C = C1, . . . , Cn in order to minimize the total execu-

tion time of the workload plus the time spent on view creation

COST(Q, C) =
∑n

i=1 COST(Qi, Ci) +
∑n−1

i=1 COST(Ci, Ci+1).
Here COST(Q,C) denotes the cost of executing query Q given the

set of views C and COST(Ci, Ci+1) denotes the cost of creating

configuration Ci+1 from configuration Ci. We require C1 = ∅, i.e.,

no views have been created before the workload execution. We are

interested in a restricted version of this problem where new views

and refinements of partitions have to be based on the currently ex-

ecuted query Qi, i.e., only views and fragments corresponding to

intermediate results of this query (Vcand(Qi) and Pcand, defined

in Section 6) are considered as candidates to be added to Ci+1.

Given these preliminaries we can state the online partitioned view

selection problem as follows.

DEFINITION 4 (ONLINE PARTITIONED VIEW SELECTION).

Given a pool size limit Smax and workload Q = Q1, . . . , Qn that

is unveiled one query at a time, incrementally determine the se-

quence of configurations C = C1, . . . , Cn that minimizes

COST(Q, C) =
n
∑

i=1

COST(Qi, Ci) +

n−1
∑

i=1

COST(Ci, Ci+1)

subject to

1. C1 = ∅
2. Ci+1−Ci ⊆ Vcand(Qi)∪Pcand for all i ∈ {1, . . . , n−1}
3. S(Ci) ≤ Smax for all i ∈ {1, . . . , n}

The online partitioned view selection problem is difficult for sev-

eral reasons. First, this is an online problem: for each incoming

query Qi, we must decide which partitioned views or fragments to

create and which to evict from the pool without knowing the re-

maining sequence of queries from the workload. There is abundant

literature for online algorithms that provide worst-case guarantees.

An online algorithm is said to be k-competitive if its result is at most

of a factor k worse than the solution computed by an optimal of-

fline algorithm (an algorithm which has access to the whole input).

However, the competitiveness factor of such algorithms for search

space sizes encountered in our problem are too high to be of any

practical relevance. Even if we were to consider the offline version

of the problem, we cannot hope for an optimal solution because of

the undecidability of query answering with views.

Given these constraints we strive for a principled yet scalable

solution that applies a carefully selected set of heuristics for each

of the sub-problems of determining view and partition candidates,

view and partition selection (determine the next configuration), and

view and partition matching (determining whether a partitioned

view can be used to answer a query). The main idea underlying our

approach is that a solution should take hints provided by queries in

the workload into account when deciding which intermediate query

results to materialize and how to partition them.

5. SOLUTION OVERVIEW
Algorithm 1 gives a high-level view of the approach we use to

process a query. The input to the algorithm is a query Q, view

configuration C, and view statistics STAT. In the first step we de-

termine which views and fragments (in the pool or not) can be used

to answer the query (Section 8). The result of this step is a set

Rewr(Q) of possible rewritings of the input query which use the

views. We then update the statistics kept for partitioned views to

record that some views/fragments can be used to answer the query.

Afterwards, among the rewritings that only use queries which are

currently in the pool (C) we determine the rewriting Qbest with

the lowest expected cost. Now that we have chosen a “plan” for

the query (Section 6), we determine which of the intermediate re-

sults of the query are viable candidates to be stored as materialized

views (Vcand) and how to partition them (Pcand). Note that even

if a view V ∈ Vcand already exists and is partitioned, we may still

produce fragment candidates for it (e.g., splitting an existing frag-

ment to create a refined partition). Given such sets of candidates we

add them to the set of partitioned views for which we want to keep

statistics (using an initial rough estimate of their costs and benefits).

The next step, described in more detail in Section 7, is to determine

which of these candidates should be materialized during the exe-

cution of Qbest and, if necessary, which views to evict from the

current configuration C to make space for these new views (recall

that we limit the pool size by Smax). Once we have selected the

views Vsel and fragments Psel to create, we instrument the query

Qbest to materialize intermediate results (and partition them if need

201

Algorithm 1 ProcessQuery (Q,C, STAT)

Input : Query Q, View Configuration C, View Statistics STAT

Output : Updated configuration C and statistics STAT

1: Rewr(Q) = COMPUTEREWRITINGS(Q,C, STAT)
2: UPDATESTATS(Rewr(Q), STAT)
3: Qbest = SELECTREWRITING(Rewr(Q))
4: (Vcand,Pcand) = COMPUTEVIEWCAND(Qbest, C, STAT)
5: ADDCANDIDATES(Vcand,Pcand, STAT)
6: (Vsel,Psel) = VIEWSELECTION(Vcand,Pcand, C)
7: Qinstr

best = INSTRUMENTQUERY(Qbest,Vsel,Psel)

8: EXECUTEQUERY(Qinstr
best)

9: UPDATESTATS(Vcand,Pcand, STAT)

be). We then execute the instrumented query Qinstr
best and return its

result to the user. Finally, we update the statistics for all candidates

based on the information gained by executing Qbest, e.g., we now

have precise measurements for the size of candidate views.

6. VIEW AND PARTITION CANDIDATES
We now discuss how our approach determines which views and

fragments to create for a given query Q and configuration C. Our

creation process operates in two steps: first we determine for which

views and fragments we have gathered enough evidence to materi-

alize them and then based on this subset of candidates we determine

the next configuration based on the “value” of a view or a fragment

using the statistics that we keep.

View and Fragment Statistics. For each view or fragment can-

didate, no matter whether materialized in the pool or not, we store

statistics such as its size S, the estimated cost of creating it (COST),

the set of timestamps when this view could have been used to an-

swer a query (T), and a list of potential savings associated with

each such timestamp (B). B and T together with a decay function

that times out benefit as mentioned in Section 1, are used to com-

pute the benefit of a view. For fragments we only record T and S
since the benefit can be inferred based on its size and the saving of

the view this fragment belongs to. Similarly, COST of a fragment

is determined based on COST for its view.

DEFINITION 5. The view statistics STAT is a triple (VSTAT,PSTAT,
Σ) where VSTAT is a set of views, PSTAT is a mapping as in C that

associates each view and attribute in its schema with a set of frag-

ment intervals, and Σ maps each view in VSTAT and fragment in

PSTAT to a tuple (S, COST, T, B) respective (S, T).

6.1 View Candidates
We first notice that certain relational operators are less likely to

provide results that can be reused or the reuse of such an operator’s

result would not result in significant performance improvement.

We consider the intermediate results of the following operators as

candidates: join, aggregation, and projection. Joins are good can-

didates, because join computation is expensive and join results are

likely to be reused. We consider aggregation operators, because

the result size of an aggregation is typically small while its input

size is large. Thus, we can save large computational cost by paying

a small storage and creation cost. Likewise, projections can also

reduce the size of their input considerably. We do not consider se-

lections as view candidates, because materializing the input of the

selection and partitioning it on the attribute used in the selection is

usually more effective than using selections along.

DEFINITION 6 (VIEW CANDIDATES). For a query Q and view

configuration C, the set Vcand(Q) of view candidates for Q con-

tains all subqueries Q′ of Q that fulfill the following conditions:

• Q′ is of the form γ(Q1), Q1 ⊲⊳ Q2, or π(Q1)
• Q′ does not exist in V

6.2 Partition Candidates
Similar to our view candidate generation approach, we want to

use the characteristics of the current workload to guide the par-

tition candidate generation. Note that we may maintain multiple

partitions of the same view on different attributes. Given a cur-

rent configuration of partitioned views C and statistics STAT kept

for this configuration as well as for candidates, we consider new

fragment candidates based on the selection conditions applied by

a query. For every conjunction in the condition of a selection, i.e.,

a selection σl≤A≤u(Q
′), which is a subquery of the current query

Q, we consider new partition candidates for the view correspond-

ing to Q′, say V , based on the selection condition over attribute

A. For the following discussions, without loss of generality, we

assume l ≥ A where A is the lowerbound of the domain of A, and

u ≤ Ā where Ā is the upperbound of the domain of A. It is trivial

to replace l with A and similar for u when the above conditions

do not hold. We have to distinguish several cases: 1) if we have

not materialized Q′ as a view V yet. In this case, we use l and u
to split the potential fragments in PSTAT(V,A) which contain these

points. If we have not yet gathered any intervals for this partition

of V yet (PSTAT(V,A) = ∅), then we initialize the partition with a

single fragment: {D(V,A)} and then use l and u to split this frag-

ment; 2) if a view V corresponding to Q′ and a partition P(V,A)
on attribute A already exists, then we again use the end points of

the interval defined by the selection condition to consider splits of

existing fragments that contain an end point as candidates. For each

interval I ′ = [l′, u′] of P(V,A) and the interval I = [l, u], we cre-

ate new candidates if either l ∈ I ′ or u ∈ I ′ using l respective u
(or both) as split point(s).

DEFINITION 7 (PARTITION CANDIDATES). Let Q be a query,

C a view configuration, and STAT a view statistics. Consider a

subquery σl≤A≤u(Q
′) of Q where Q′ corresponds to a view V in

VSTAT and the intervals associated with partitioning V on attribute

A (either P(V,A) if the view is in the pool or PSTAT(V,A) other-

wise). We use I to denote [l, u]. For every interval I ′ = [l′, u′]
from P(V,A) respective PSTAT(V,A) we define the set of parti-

tion candidates Pcand(V,A,Q′) according to V , Q, and Q′ as the

union of the sets of candidates for every such I ′:

1. There is no overlap between these two intervals, i.e., I ′∩I =
∅. In this case, no candidates are generated.

2. The query selection interval contains the partition interval,

i.e., I ′ ⊆ I . In this case, no candidates are generated.

3. The query selection interval overlaps the fragment interval

from the left, i.e., l < l′ < u < u′. In this case, intervals

[l′, u] and (u, u′] are considered as candidates.

4. The query selection interval overlaps the fragment interval

from the right, i.e., l′ < l < u′ < u. In this case, intervals

[l′, l) and [l, u′] are considered as candidates.

5. The query selection interval is contained in the fragment in-

terval, i.e., I ⊂ I ′. In this case, we consider three intervals

as candidates: [l′, l), [l, u], and (u, u′].

EXAMPLE 3. Consider a view V (A,B) that is partitioned on

attribute A using intervals I1 = [0, 10], I2 = (10, 20] and I3 =
(20, 30]. For an incoming query Q = σ5≤A≤25(V) we would con-

sider the following candidates. Interval I = [5, 25] overlaps with

I1 on the right (case 4). Thus, we create candidates [0, 5) and

[5 − 10]. No candidates are generated for I2 (case 2). Finally, I
overlaps with I3 from the left (case 3) and we generate additional

candidates (20, 25] and (25, 30].

202

0 10 20 30

I1 I2 I3

IQ

Original Fragmentation

Query Interval

Fragment Candidates

7. VIEWS AND PARTITION SELECTION
Our view and fragment selection method consists of two steps:

1) exclude candidates for which we have not gathered enough ev-

idence of their effectiveness in improving the performance of the

workload and 2) decide which candidates to materialize and which

ones to evict to keep the pool size below the limit (Smax). The

second step ranks views and fragments based on their value (Φ)

as defined below. For each new fragment, we either create it by

splitting existing fragments or create it as an overlapping fragment.

7.1 Cost and Benefit Model
We use a heuristic cost-benefit model to keep track of the “ben-

efits” of view and fragment candidates. The benefits of a candi-

date are computed based on the potential savings in query execu-

tion time if this candidate would have been used to answer queries

from the workload, the cost of creating it, its storage size, and other

useful statistics for views and fragments. For candidates that have

not been generated yet, we estimate their storage size and creation

cost. We use this information to select which candidates to mate-

rialize and to decide which candidates to evict to make space for

more competitive candidates.

View Statistics. For each view (candidate) V we keep the follow-

ing statistics in VSTAT: the storage size S(V) occupied by the view,

a set of timestamps T (V) when the view was used to answer a

query, and the creation cost of the view COST(V) (which is ini-

tially estimated when we first see this view as a candidate). The

creation cost is replaced with the actual cost once the first query

containing the view as a subquery has been executed. The same

applies to S(V).
We compute the accumulated benefit B(V, tnow) for a view at

time tnow as follows. B(V, tnow) is the cost we (could) have saved

by using the view. The benefit is defined as

B(V, tnow) =
∑

Q used V at t

(COST(Q)−COST(Q/V))·DEC(tnow, t)

where COST(Q) is the cost of query Q without using the view,

COST(Q/V) is the cost of running the query when using view

V , and DEC(tnow, t) is a monotonically decreasing function (in

tnow − t) mapping the current time (tnow) and time when query

Q was executed (t) to a value in [0, 1]. DEC(tnow, t) is used to

weight past cost savings by their age. This enables our approach to

adapt to a changing workload. In our implementation we use the

decay function as defined below which times out any benefit after

a threshold tmax and otherwise counts it proportionally based on
t

tnow
.

DEC(tnow, t) =

{

0 if (tnow − t) > tmax

t
tnow

otherwise

View Value. Similar to Nectar [15], for each view V in the pool

and candidate in VSTAT we compute its “value” at time tnow as a

cost-benefit ratio Φ(V, tnow). We use Φ during view selection to

determine which views should be in the next configuration (views

with a higher value are preferred over views of lower value). Using

COST(V), the accumulated benefit B(V, tnow), and size S(V), we

define Φ(V, tnow) as:

Φ(V, tnow) =
COST(V) · B(V, tnow)

S(V)

The intuition behind the definition of Φ(V, tnow) is that when

a view is expensive to generate or the accumulated benefit of the

view is large, its value is high and it is preferred over views with

lower value. On the other hand, if the size of the materialized view

is large, it is less competitive than other views of smaller size and

similar benefits.

Fragment Statistics. Similar to view statistics we also keep sep-

arate statistics for every fragment in P(V,A) (a partition of view

V on attribute A that is in the pool) as well as PSTAT(V,A) (a po-

tential fragment candidate which is currently not materialized, but

we have considered as a candidate before). For each such interval

I (corresponding to a fragment F) we maintain the following in-

formation: the storage size of the fragment S(I), its creation cost

COST(I), and a set of timestamps T (I) when the fragment was hit

(it was or could have been used to answer a query). These times-

tamps are used to compute the fragment value in a similar fashion

as the view value explained above. We define the cost of creating

the fragment to be the same as the cost of creating the partitioned

view this fragment belongs to. This is because in order to recom-

pute the fragment if it is not in the pool, we have to recompute the

view’s query and partition it.

Fragment Value. The value of a fragment is also modeled as a

cost-benefit ratio in the same fashion as for views with the excep-

tion that benefits are computed as a ratio of the view creation cost

and the relative size of the fragment compared to the total size of

the view. The accumulated benefit for a fragment I is computed as

B(I, tnow) =
∑

Q used I at t

(
S(I)

S(V)
· COST(V) · DEC(tnow, t))

and

Φ(I, tnow) =
COST(V) · B(I, tnow)

S(I)

Probabilistic Fragment Benefit Model. The definition of the value

of a fragment above ignores the fact that fragments in a partition

of a view do not exist independent of each other, i.e., two frag-

ments may be “neighbors” (e.g., [0, 10] and [11, 30]) or may be

quite dissimilar (e.g., [0, 10] and [1000, 1010]). If we treat the hits

on fragments we have observed so far in the workload as sam-

ples of a probability distribution, then when using these samples

to determine the underlying distribution it would be natural to con-

sider “distance” between fragments in the mechanism that deter-

mines the distribution. For instance, if we observe a large num-

ber of hits on a fragment [0, 5] and no hits on fragments [6, 10]
as well as [11, 15], then it is still reasonable to assume that frag-

ment [6, 10] which is close to a “hot spot” has a higher likelihood

to be used in the future than fragment [11, 15]. Based on this ob-

servation, we present a mechanism for adjusting the number of hits

per fragment. Define the number of hits H(I) for a fragment I as

H(I) =
∑

Q used I at t DEC(tnow, t)).We now define the adjusted

number of hits HA(I) to compute a more realistic fragment value.

Consider a partition PI(V.A) for a view V . Note that we do not

require that all intervals in I are currently in the pool. We keep

statistics for each I ∈ I no matter whether materialized or not.

Let Htotal denote the total hits over all fragments of I adjusted by

our decay function, i.e., Htotal =
∑

I∈I H(I). Htotal is the total

number of queries that used at least one fragment from PI(V.A)
weighted by DEC(tnow, t).

203

Based on the analysis of the real-life workloads presented in Sec-

tion 1, it is reasonable to assume that a normal distribution under-

lies accesses to values of an attribute’s domain. Thus, given the

observed hits for fragments we want to choose the mean µ and vari-

ance σ2 of a normal distribution such that the resulting distribution

best fits the observed hits. Here we apply well-known techniques

from statistics for computing the maximum likelihood estimators

(MLE) for the mean µ̂ and variance σ̂2 of normal distributions [28]

to do the curve fitting.

We split the domain of attribute A into equi-size intervals p1,
. . . , pn which we call parts to distinguish them from fragments.

We choose a quantification such that no part pi is partially con-

tained in an interval I ∈ I. For instance, for a domain [0, 20] if

I = {[0, 10], [11, 15], [16, 20]} we may choose parts of size 5:

{[0, 5], [6, 10], [11, 15], [16, 20]}. Based on the hits recorded for

fragments I ∈ I we then determine the hits for each part pi. For

each fragment, we split the number of hits to this fragment evenly

to the parts that are contained in the fragment. Let I′ ⊆ I be the

intervals containing pi and #I the number of parts contained in

interval I . We define H(pi) =
∑

I∈I′

H(I)
#I

, i.e., summing up the

number of hits for each interval containing the part weighted based

on the number of parts the interval contains. The likelihood func-

tion L for a standard distribution N(µ, σ) and set of observations

{p1, . . . , pn} determines how likely it is that this particular distri-

bution produced the given set of observations. It is defined as:

L(µ, σ2; p1, p2, ..., pn) = (2πσ2)−n/2exp(−
1

2σ2

n
∑

i=1

(pi − µ)2)

By solving the log-likelihood function of the above function we

have the maximum likelihood estimator mean and variance:

µ̂n =
1

n

n
∑

i=1

pi σ̂2
n =

1

n− 1

n
∑

i=1

(pi − µ̂n)
2

The distribution N(µ̂, σ̂) is the normal distribution which is most

likely given the observations (it maximizes the likelihood function

L). Note that we use the adjusted sample variance for the estima-

tor σ̂2
n because usually we do not expect a very large number of

fragments for a view. This is a standard approach in statistics [28].

Note that since the MLE method is inexpensive we repeatedly

adapt the estimation during the selection process for each incom-

ing query. Based on the smoothed distribution of value accesses

N(µ̂, σ̂) we get from the maximum likelihood method and Htotal,

the total number of hits over all partitions, we compute the adjusted

hits for a fragment I = [l, u] as:

HA(I) = Htotal · (P (x ≤ u)− P (x ≤ l))

Here P (x ≤ c) is an estimate (which ignores interval overlap) of

how likely an access to a point in the interval [−∞, c] is computed

over the normal distribution we have estimated using MLE. Note

that this technique works for any probability distribution such as

a Zipfian distribution or a mixture of distributions as long as it is

feasible to compute the MLE of such a distribution given the obser-

vations. Here we choose the normal distribution, because it closely

resembles the access patterns we have found in the real world work-

loads we have studied.

7.2 Filtering View and Partition Candidates
Our goal is to only save an intermediate result as a materialized

view if this view is likely to be reused in the future and if the benefit

of reuse B(V, tnow) will offset the cost COST(V) of materializing

this view. Thus, the subset of candidates we consider for material-

ization is:

Vsel = {V | V ∈ Vcand ∧ COST(V) ≤ B(V, tnow)}

We apply a similar filtering step for fragment candidates. This

step is only applied for fragment candidates of existing partitions,

i.e., when we decide whether to refine an existing partition based

on selection, but not for candidates fragments for partitions which

are not in the pool yet. Here we use the total benefits for a fragment

computed based on its adjusted hits (using the estimated probabil-

ity distribution of hits). Consider a candidate fragment Icand for

partition P(V,A) that is a candidate for the current query. The

cost of creating Icand depends on which fragments are currently in

P(V,A). To materialize Icand we have to read all fragments I such

that I∩Icand 6= ∅, extract data that belongs to Icand and then store

Icand. While we do not know upfront the actual size S(Icand) for a

fragment Icand, we can estimate it based on the sizes of fragments

currently in P(V,A) that overlap with Icand. We assume that val-

ues are uniformly distributed within each fragment, and thus we can

use the relative overlap between Icand and an intervals in P(V,A)
to estimate the size as:

S(Icand) =
∑

I∈P(V,A):I∩Icand 6=∅

‖Icand ∩ I‖

‖I‖
· S(I)

Based on this estimate of the size for a candidate fragment we

have not materialized yet (otherwise we would know its size) we

estimate the cost of creating the fragment as:

COST(Icand) = wwrite·S(Icand)+
∑

I∈P(V,A):I∩Icand 6=∅

wread·S(I)

Here wread (and wwrite) denote implementation specific con-

stants for reading (respectively, writing) data. In our implementa-

tion of Deepsea, wwrite is typically much larger than wread if we

store a fragment in HDFS. Given the cost and estimated size, we

only consider fragments for which the benefits are larger than the

creation cost:

Psel = {I | I ∈ Pcand ∧ COST(I) ≤ B(I)}

7.3 View and Fragment Selection
Given the prefiltered set of candidate views Vsel, we now deter-

mine which of them to materialize (admit to the pool). In case this

causes the total size of the views and fragments to exceed the limit

Smax, we also have to decide which views or fragments to evict

from the pool. Note that for selection we treat each fragment of

a view independently. That is, the views in the pool do not par-

take in the selection process, only their fragments. However, can-

didate views and fragments are treated alike (candidate fragments

are only created for partitioned views in the pool and view candi-

dates are only created for views that do not currently exist in the

pool). Thus, the set of views and fragments that are considered to

be selected for the next configuration are:

ALLCAND = Vsel ∪ Psel ∪
⋃

V ∈V,A∈SCHEMA(V)

P(V,A)

We rank the elements (views and fragments) in this set based

on their value Φ (defined in Section 7.1). We then greedily add

elements to the new configuration based on their rank.

Let ALLCAND[i] be the ith element from ALLCAND accord-

ing to Φ in decreasing order. We keep the first n elements from

ALLCAND for the largest n such that
∑n

i=0 S(ALLCAND[i]) ≤
Smax:

Ci+1 = {ALLCAND[i] | i ∈ {0, . . . , n}}

where

n = argmax
j∈N

(

j
∑

i=0

S(ALLCAND[i]) ≤ Smax)

204

8. VIEW AND PARTITION MATCHING
The first important step when processing a query Q with our ap-

proach is to determine which views (whether in the pool or not)

can be used to answer query Q. We call this process matching. The

purpose of this step is to 1) update the statistics of views and frag-

ments that could be used to answer query Q and 2) to determine the

most efficient way of executing the query given the current config-

uration. The problem of finding all rewritings of a query Q given a

set of views, i.e., queries that use the views and are equivalent to the

input query, has often been called query answering with views. As

mentioned earlier this problem in its full generality is undecidable

for the class of queries we are interested in. We adopt a technique

from Goldstein and Larson [14] that uses a sufficient condition to

determine whether a view can be used to answer a query and in-

dexes views such that this condition can be efficiently tested. We

use a modified version of the index structure introduced in this work

adapted for partitioned views to speed up matching.

8.1 A Sufficient Condition for Matching
The sufficient matching condition of Goldstein and Larson is

checked over a representation of the query and the view (called sig-

nature) which is mostly independent of syntax, but can nonetheless

be constructed from a concrete plan for the query. Signatures ab-

stract away certain syntactic features such as join order. Our logical

matching approach compares subqueries of a query with material-

ized views by computing the signatures for both the view and the

subquery, and then checking the sufficient condition of Goldstein

and Larson. Thus, we are able to also match parts of a query with

a view. The signature of a query consists of the set of relations

accessed by the query (relation classes), information on join and

selection predicates (attribute equivalence classes, selection pred-

icate ranges, and remaining selection predicates), projections, ag-

gregation functions and group-by expressions. We refer the reader

to Goldstein and Larson [14] for definitions of these abstractions.

8.2 Partition Matching
Once we have determined a rewriting using the views, the next

step is to determine which partition of each view included in the

rewriting to use and for each partition determine a subset of the

fragments to be used. In order to match a fragment and a query, we

must first find a match between the view represented by the frag-

ment and the query. Note that a fragment of a view V corresponds

to a view σl<A<u(V) where A is the attribute on which V is parti-

tioned on, and u and l are the boundaries of the fragment.

For every view V partitioned on A that is matched against a sub-

query Q′ of the current query Q, we determine the restrictions Q′

places on attribute A. This is done by using information about

value ranges of selection conditions that are stored in the Attribute

Value Ranges part of a query’s signature (see [14] for a detailed

explanation of the signature). Given our definitions of overlapping

partitioning, the matching between a set of overlapped fragments

and a query selection range is a set cover problem and thus is in-

tractable. We use Algorithm 2 that greedily matches the fragments

to a query selection range. Note that we use I to denote the lower

and Ī to denote the upper bound of an interval I . We look for a

set of fragments whose union covers the selection range. We main-

tain a variable ucovered that stores the upper bound of the region

covered so far. ucovered is initialized to the lower bound of the

selection range of the query uθ . In each iteration of the loop, we

greedily add the fragment that has the largest lower bound among

the fragments that cover ucovered from the left.

8.3 Indexing Partitioned Views

Algorithm 2 Partition Matching Algorithm

1: procedure PARTITIONMATCHING(θ, I)
2: uθ ← Upperbound of θ
3: lθ ← Lowerbound of θ
4: F ← ∅
5: ucovered ← lθ
6: while ucovered < uθ do

7: Icand ← {I | I ∈ I ∧ I ≤ ucovered ∧ Ī > ucovered}
8: Icur = argmaxI∈Icand

I

9: ucovered ← ¯Icur
10: F ← F ∪ {Icur}
11: end while
12: return F

When computing matches between a query Q and a set of mate-

rialized views, it would be too slow to evaluate the sufficient match-

ing condition over the signatures of all pairs of subqueries of Q and

views in the pool. We adapt an in-memory index for view signa-

tures called a filter tree [14] to be able to prune the search space

early-on. A node in the tree is represented by a set of (key, pointer)

pairs, where the key is a set of values, and the pointer points to

a node on the next level. Each level represents one of the signa-

ture parts, e.g., the relations accessed by the view. The pointer of

a leaf node points to a view. For each view, we store its partition

information. For each partition of a view, we store the boundaries

and statistics for each of its fragments. Note that we allow multiple

partitions for the same view to exist as long as they are on different

attributes. The search key for a query Q is its signature. We also

use this index to keep the statistics for view and partition candidates

(covered in Section 6).

8.4 Updating View and Partition Statistics
During view matching we update the statistics we keep for each

view and its fragments, no matter whether the view or fragment is

currently in the pool or not. For every rewriting Qrewr ∈ Rewr(Q)
let V be a view that has been used in Qrewr and for each such view

P(Qrewr, V, A) be the fragments of the partition of V on attribute

A that are accessed by Qrewr . We update the statistics for each

such view and its fragments to reflect that it could be used to an-

swer the query Q using the formulas presented in Section 7.1.

9. IMPLEMENTATION
DeepSea extends Hive [27], an SQL-on-Hadoop system [1]. While

we have chosen Hive, because it is relatively mature, our techniques

are applicable for any system that supports declarative querying on-

top of shared-nothing dataflow systems.

Query Processing in DeepSea. Figure 4 shows how a query is

processed by DeepSea. We use the parser and semantic analyzer

of Hive to transform the input query into an abstract syntax tree

(AST). The AST is translated into a directed acyclic graph (DAG)

of operators (operator tree) and a task DAG (task tree) is generated

from the operator DAG. Task DAGs assign operators to map and

reduce phases. Our view matching module (see Section 8) rewrites

the task DAG by replacing subqueries with references to material-

ized views or fragments. The rewritten DAG is then transformed

into a DAG of MapReduce jobs to form a execution plan. We have

implemented a partition operator that splits its input based on a list

of fragment predicates which determine which input tuple belongs

to which fragment. The output for each fragment is routed to a file

sink operator that writes the fragment’s content to a file.

Simulator. Testing view and fragment selection strategies requires

extensive experiments over a large number of diverse workloads.

205

Query AST Tree
Operator

Tree
Task Tree

Execution
Engine

View/Partition

Matcher
View/Partition

Generator

View/Partition

Selector

Materialized

Views/Partitions

Pool

MR Jobs

Figure 4: Query processing in DeepSea

Description Values (default in bold)

Instance size 100GB, 500GB

Pool size 50GB, 125GB, 250GB, 500GB, ∞
Query selectivity 1% (Small), 5% (Medium), 25% (Big)

Query skew Uniform (U), Light (L), Heavy (H)

Table 1: Parameters and their values

Since the benefits of partitioned views are more pronounced for

large datasets, it is necessary to consider such datasets which re-

sults in large query runtimes. To be able to quickly test variations

of a workload with different selection conditions ranges we have

developed a simulator to study the efficiency of our selection al-

gorithm and compare it to alternative approaches. We run a series

of query templates with different selection patterns (introduced in

Section 10) and gather statistics such as the storage size of views

and fragments as well as the elapsed time. The simulator keeps

track of the query template and the selection pattern that is running.

It builds the necessary views and partitions based on the selection

strategies and the size limit of the materialized view pool. Once

sufficient statistics have been gathered for a query template, we es-

timate the runtime of future executions of a query template using

linear regression.

Bounding Fragment Size. There are situations where bounding

the size of a fragment (from above or below) may be beneficial.

If the access patterns of queries are limited to a small subrange of

the domain of an attribute, then our approach may create very large

fragments for the parts of the domain that are accessed infrequently.

In general it would be beneficial to split such large fragments, be-

cause the potential benefit of large fragments is small while the

overhead of creating a few medium sized fragments instead is not

very high. We approach this problem by limiting the maximal size

of the fragments we create relative to the size of a view. We define

a threshold φ for the relative size of a fragment. When we material-

ize and partition a view, we split every fragment that is larger than

φ × S(V) into smaller, equi-sized fragments. Big data systems

are usually built on top of distributed file systems that favors large

block sizes. For instance, HDFS has a default block size of 128

MB (or 64 MB depending on the version). We use the file system’s

block size as the lower bound for fragment size.

10. EVALUATION
We evaluate our system using the big data benchmark suite Big-

Bench [13]. We demonstrate the overall performance of DeepSea

using queries and data distributions that are modeled based on the

SDSS workload [2]. This ensures that our evaluation considers im-

portant characteristics of real workloads. We also use BigBench

to generate a set of synthetic workloads that are tailored to evalu-

ate our major contributions: adaptive and progressive partitioning,

exploitation of fragment correlations, and overlapping partitioning.

We generate instances of size 100GB and 500GB, both with uni-

form distribution, for the synthetic workloads. Table 1 shows pa-

rameters that we vary in the experiments as independent variables.

The default value for each variable is shown in bold. We use the

default value for the experiments unless otherwise mentioned. We

consider three different query selectivities: Small (S) means that the

selection condition returns 1% of the data; Medium (M) means that

the selection condition returns 5%; and Big (B) means 25%. We

use three different distributions for selection conditions of queries:

uniform distributed (U), lightly skewed (L), and heavily skewed

(H). Uniform means that for a fixed interval size, we pick a set

of intervals such that the mid-point of the intervals is uniformly

distributed. Lightly skewed means the mid-point of the selection

intervals follows a normal distribution over the domain with a vari-

ance set to 7.5% of the domain. Heavily skewed also uses a normal

distribution, but with the variance set to 0.25% of the domain.

Our evaluation is conducted on a cluster of 32 nodes. One node

is a dedicated master node with 8 threads and 48GB memory. Each

of the remaining 31 slave nodes has 6 threads, 12GB memory, and

a 400GB disk. All results are based on the average of at least three

runs, unless mentioned explicitly.

10.1 Workload for a Real-Life Application
We demonstrate two key properties of our system on a real-life

application: 1) we compare the performance of DeepSea when

there is no size limit for the materialization pool to Hive that does

not uses materialization and NP, a materialization strategy that stores

each view without partitioning them; 2) we compare the perfor-

mance of DeepSea when there is a size limit for the pool to state-

of-the-art view selection strategies such as the one of Nectar [15].

We create a histogram over the values of attribute ra for the

table PhotoPrimary of SDSS. We then generate a BigBench

dataset, and for all tables that contain attribute item_sk use the

histogram that we obtained from SDSS attribute ra to sample val-

ues for item_sk. Furthermore, we generate a query workload:

we pick ten query templates (Q1, Q5, Q7, Q9, Q12, Q16, Q20,

Q26, Q29, Q30) from BigBench that contain joins, and we add a

selection on attribute item_sk to these templates. We randomly

pick 1000 selection ranges from the SDSS workload (selections

on attribute ra of the table PhotoPrimary, kept in order of the

query submission time). Next, we randomly picked a BigBench

query template and mapped the selections of SDSS to selections on

item_sk of the BigBench queries. Thus, we obtain a workload

of 1000 BigBench queries simulating SDSS access patterns over

an SDSS data distribution to evaluate the overall performance of

DeepSea.

In this experiment, we compare DeepSea with two baselines.

The first is the unmodified Hive system (H in the graphs). The sec-

ond is a materialization strategy that does not use partitioning. We

call this strategy non-partition (or NP in the graphs). This is akin

to using a materialization strategy like ReStore [12]. However, in

constrast to ReStore which only uses physical matching, NP applies

our logical matching technique. Figure 5a shows performance re-

sults for the 500GB dataset without a pool size limit. Our approach

requires only 64.2% of the time of non-partition materialization to

execute the whole workload. Materialization without partitioning

results in roughly 65.6% of the time of Vanilla Hive.

To evaluate the effectiveness of DeepSea’s selection strategy, we

compare it with the view selection strategy of Nectar [15]. Nectar

does not consider accumulated benefit as a factor. To understand

the performance gain due to the use of accumulated benefit in con-

trast with the other innovations in DeepSea, we extended Nectar’s

cost-benefit model to include the accumulated benefit of a view or

fragment. The modified cost-benefit measure N+ for views which

we call Nectar+ is: N+(V) = COST(V)×N (V)
S(V)×∆T

where ∆T is the

time elapsed since the last access to V and

N (V) =
∑

Q used V at t

(COST(Q)− COST(Q/V))

For fragments, we adapt our formula from Section 7.1 in a simi-

lar fashion by removing the application of the decay function. Fig-

206

0

100000

200000

300000

400000

E
la
p
se
d
)
m
e
 (
se
c)

H

NP

DS

(a) DS vs. NP vs. H

0

300000

600000

900000

10% 25% 50% 100%

E
la
p
se
d
)
m
e
 (
se
c)

Pool size (% of base tables)

N

N+

DS

(b) Selection strategies

Figure 5: Workload simulating SDSS (1000 queries), 500GB

ure 5b shows results for Nectar (N in the graph), Nectar+ (N+ in the

graph), and DeepSea (DS in the graph) for different pool size lim-

its. We observe that Nectar+ consistently outperforms Nectar, and

DeepSea consistently outperforms Nectar+. When the size limit of

the materialized view pool is relatively large (500GB, which is the

total size of all base tables), the difference between Nectar, Nectar+

and DeepSea is marginal. When the size limit is shrunk to 10% of

the total size of all base tables, DeepSea shows its strength requir-

ing only ∼ 28% of the time of Nectar (20% faster than Nectar+) and

being 30% faster than Vanilla Hive. DeepSea keeps fragments that

can improve the overall performance in the pool, because they are

neighbors of more frequently accessed fragments. Nectar and Nec-

tar+, however, evict these fragments because of their low hit count.

When the pool limit is decreased to 5% of the total database size, all

three techniques perform poorly (worse than original Hive with no

materialization (Figure 5a)). This is because with such a small ma-

terialized view pool, all three strategies evict fragments that are ac-

cessed earlier and admit fragments that are accessed more recently.

Since evicted fragments may be accessed soon after eviction, there

is an "oscillation" in the pool with extra working being done for the

materialization and little or no gain seen from this extra work.

10.2 Adaptive and Progressive Partitioning
To understand the benefits of partitioning strategy, we compare

DeepSea with equi-depth partitioning (E in the graphs or E fol-

lowed by a number indicating the number of fragments). Equi-

depth is a simple, non-adaptive and non-progressive alternative to

DeepSea’s partitioning approach. To evaluate the benefit of pro-

gressive partitioning standalone, we tease out the benefits of using

DeepSea which is workload aware.

For this experiment, we do not bound the size of the largest frag-

ment. We use instances of query template Q30 and vary the selec-

tion condition of this query to produce workload sequences where

Q30_i denotes the ith query in a sequence.

First we generate a sequence of queries that has small selectivity

and is heavily skewed as defined at the beginning of this section.

Figure 6 shows the cost of partitioned view creation and the cost

for queries that reuse fragments. Figure 6a shows that when the

number of generated fragments increases, the cost for creating and

partitioning the view increases as well. In Figure 6b, we notice that

if the same number of fragments are generated by both approaches

(6 fragments in this experiment), equi-depth performs worse than

DeepSea because of the larger size of fragments that must be read

during query evaluation. Increasing the number of generated frag-

ments for equi-depth reduces the average runtime for the following

queries. However, when we set the number of fragments to be rel-

atively large (60 fragments), performance decreases. Small frag-

ment size affects performance negatively, because a large number

of files has to be read and data is unevenly distributed among tasks.

Figure 6c shows the cumulative time for the query sequence.

In addition to better performance, DeepSea also differs from

equi-depth partitioning in terms of the execution of MapReduce

jobs on the cluster. We analyze cluster utilization for the queries

that reuse the generated fragments by running the default query se-

quence on the default dataset. Besides noticing the time needed

in DeepSea is about 20% less than equi-depth, the number of map

tasks issued to the Hadoop engine is about 40% to 50% more for

equi-depth. The reason is that the fragments used by equi-depth to

answer the query are larger than the ones used by DeepSea. Thus,

the Hadoop engine issues more map tasks to parallelize the read

as much as possible. This indicates that equi-depth uses more re-

sources than DeepSea to answer the same queries.

We now investigate how characteristics of the workload affect

the performance of DeepSea compared to non-adaptive partition-

ing approaches such as equi-depth. In addition to measuring time

for running a workload of 10 such queries, we also project the time

(using linear regression) for 100 queries. Figure 7 shows the per-

formance of materialization without partitioning (NP), materializa-

tion using an equi-depth partition of a fixed size (E), and our Deep-

Sea approach using workload-aware partitioning (DS) compared to

Hive on a 500GB dataset. The settings are indicated by concatenat-

ing the abbreviations for the selectivity and query-skew settings, for

example, ML stands for medium selectivity and a lightly skewed

distribution over the selection ranges.

Figure 7a shows that both partitioning techniques (DeepSea and

equi-depth) perform well compared to Hive and non-partition ma-

terialization in all experiments. When the selectivity is large, (in-

dicated by B), our partition techniques can save 50 to 60% com-

pared to Hive. For medium (M) selectivity, the partition techniques

can save 60 to 70% and for small (S) selectivity the partition tech-

niques can save 70 to 80%. Materialization alone without partition-

ing (NP) provides only a 15 to 25% improvement over Hive.

For uniformly distributed selections, DeepSea, as expected, does

not provide a performance improvement over an equi-depth strat-

egy (E). This is because equi-depth is tailored for such a distribu-

tion and the adaptive techniques of DeepSea do not pay off. How-

ever, for lightly skewed and heavily skewed selections, DeepSea

has a noticeable advantage (up to 30%) over equi-depth partition-

ing. The performance of DeepSea increases and that of equi-depth

decreases when introducing more skew (switching from uniformly

distributed to lightly skewed and heavily skewed workloads). This

is because we use the same number of fragments for DeepSea and

equi-depth. When the workload is more and more skewed, there are

fewer and smaller fragments needed by DeepSea to get the same

benefit achieved by equi-depth.

Most optimizers will push down selections for reducing the size

of intermediate results. Our materialization strategy requires that

selections are not pushed down and hence we incur a performance

hit initially. But even for small selectivities, this cost is quickly

amortized over a workload. To understand when the additional

work DeepSea does (by not pushing selections) is worth the cost,

we plot the number of queries needed to recoup the cost of Deep-

Sea in Figure 7b. Notice that for both DeepSea and equi-depth

partitioning, the cost of not pushing a selection is recouped at al-

most the same point unless the workload is heavily skewed and

includes queries with a large selectivity (requesting large portions

of the data) in which case DeepSea has an advantage.

10.3 Exploitation of Fragment Correlations
We now compare our selection strategy that exploits fragment

correlations against Nectar’s strategy that is oblivious of such cor-

relations. We use a workload that consists of ten queries (template

Q30) that have big selectivity and are heavily skewed followed by

another ten queries (also template Q30) that have small selectivity

and are heavily skewed. We use a 500GB dataset with the pool

207

2000

3000

4000

5000

Q30_1

E
a
p
se
d
 (
m
e
 (
se
c)

DS E‐6 E‐15 E‐30 E‐60

(a) Instrumented query materializing a view

40

80

120

A
v
e
ra
g
e
 (
m
e
 (
se
c)

Q30_2 to Q30_10

DS E‐6 E‐15 E‐30 E‐60

(b) Rewritten queries reusing a view

2500

3500

4500

5500

C
u
m
u
la
&
v
e
 &
m
e

(s
e
c)

Query sequence (Q30_1 to Q30_10)

DS E‐6 E‐15 E‐30 E‐60

(c) Cumulative time over the whole workload

Figure 6: Comparing equi-depth vs. adaptive partitioning (DeepSea) over workload using 10 instances of query template Q30, 100GB

0

0.2

0.4

0.6

0.8

1

BU BL BH MU ML MH SU SL SH

P
ro
je
c'
o
n
 '
m
e

(%
 o
f
H
iv
e
)

NP E DS

(a) Expected elapsed time for 100 queries (% of Hive)

0

5

10

15

20

BU BL BH MU ML MH SU SL SH

N
u
m
b
e
r
o
f

q
u
e
ri
e
s

NP E DS

(b) # of queries needed to recoup materialization cost

Figure 7: Varying selectivity and skew, Q30, 500GB

size limit set to 7GB. Figure 8a shows that DeepSea benefits from

smoothing the distribution of hits to fragments from the same par-

tition and, thus, is more likely to keep fragments that are similar to

frequently accessed fragments.

Recall that we smoothen the distribution of hits over an attribute’s

range by fitting it to a normal distribution. Figure 8 shows how the

performance of our approach is affected by the distribution under-

lying the selections in a workload. DeepSea significantly outper-

forms Nectar’s selection strategy if the real hits follow a normal

distribution. Importantly, it does not perform worse than Nectar if

the selection ranges follow a radically different distribution (Zipf).

0

5000

10000

15000

20000

C
u
m
u
la
&
v
e

&
m
e
 (
se
c)

Q30_1 to Q30_20

N DS

(a) Normal

0

100000

200000

300000

4 8 25 E
la
p
se
d
)
m
e

(s
e
c)

Pool size (GB)

N DS

(b) Zipf

Figure 8: Selection ranges following Normal resp. Zipf distribution

10.4 Overlapping Partitioning
A key benefit of overlapping partitioning is that it writes less data

when repartitioning for certain patterns that we observe in real-life

applications frequently. In order to compare overlapping partition-

ing with horizontal partitioning, we generate a workload sequence

of 30 queries from template Q30 with small selectivity and heavy

skew. The selections of Q30_1 to Q30_10 have a midpoint of

20,000, the selections of Q30_11 to Q30_20 have a midpoint of

40,000, and the selections of Q30_21 to Q30_30 have a midpoint

of 60,000. The domain of the selection attribute is [0, 400,000].

We generate this workload to simulate the common query selection

pattern that we have observed in SDSS.

0

5000

10000

Q30_1 Q30_11 Q30_21

C
u
m
u
la
&
v
e
 &
m
e

(s
e
c)

Horizontal Par33oning Overlapping Par33oning

Figure 9: Overlapping partitioning (Q30_1 to Q30_30)

We are switching the pattern between Q30_10 and Q30_11 and

between Q30_20 and Q30_21. Figure 9 shows that overlapping

partitioning is more robust against changes in the workload, be-

cause it avoids writing a fragment that extends from the current

upper bound of the selections to the upper bound of the domain

that has not been queried yet.

We also generated a workload with 200 queries using query tem-

plate Q5, all of which have big selectivity and are heavily skewed.

The selection ranges for the first 100 queries were sampled from

one distribution while the selection ranges for the next 100 queries

follow a different distribution. Running this workload on the 100GB

dataset, we compare against materialization without partitioning

(NP in the graph), equi-depth partitioning with 5 fragments (E-5 in

the graph) and DeepSea with no repartitioning (NR in the graph).

Figure 10a shows for changing workloads, DeepSea outperforms

the non-progressive approach that never repartitions by 7% and

equi-depth partitioning by 27%. Figure 10b shows the cumulative

time of DeepSea normalized to the cumulative time of the NR ap-

proach (no repartitioning), from query 101 (the first query follow-

ing the new distribution) to query 200. DeepSea performs worse

than NR for the first 30 queries because of the cost of repartition-

ing. This cost, however, is amortized by the subsequent queries.

0

8000

16000

24000

E
la
p
se
d
)
m
e

(s
e
c)

Q5_101 to Q5_200

NP E‐5 NR DS

(a) Cumulative time

0.8

1

1.2

1.4

Q5_101 Q5_131 Q5_161 Q5_191

Q5_101 to Q5_200

NR / NR DS / NR

(b) Cumulative time ratio (DS/NR)

Figure 10: Adaptation to workload changes, Q5, 100GB

11. CONCLUSIONS
DeepSea is the first adaptive, progressive, workload-aware ap-

proach for automatic materialization and partitioning of views. Our

208

cost-benefit model for both views and fragments takes the correla-

tions among fragments into account. Our progressive partitioning

accommodates both dynamic analytic workloads and exploratory

workloads where users explore multiple regions in the data before

finding (and then focusing on) a region of interest. DeepSea is

implemented in Hive and our experiments demonstrate that our ap-

proach is more effective than traditional materialization techniques

that do not consider the physical design of materialized views or do

not adapt online to the workload. We also demonstrate that for real

workloads, our view/fragment selection strategy outperforms state-

of-the-art selection techniques when the materialized view pool has

a small size limit.

In the short term, there are several interesting ways in which we

can improve DeepSea including considering how to merge consec-

utive fragments that are mostly accessed together and how to best

partition views on multiple attributes. DeepSea contributes to a rich

literature on adaptive, progressive physical design strategies. For a

fixed memory overhead, DeepSea selects a set of partitioned views

and fragments of views to optimize the query performance (or min-

imize the read overhead). In the future, we would like to consider

updates and explore how our techniques could be used with dif-

ferent optimization goals (including minimizing update overhead).

We also would like to integrate our approach with query optimiza-

tion, this would allow us to explore strategies that potentially select

a more expensive query plan if it allows the materialization of in-

teresting views that could benefit the workload.

12. ACKNOWLEDGMENTS
We thank Tilmann Rabl and Michael Frank for providing Big-

Bench for our experiments. Stan Zdonik and Nesime Tatbul gave

advice to improve the work. We also thank the anonymous review-

ers for their helpful suggestions. This research was funded in part

by a Bell Graduate Scholarship and NSERC.

13. REFERENCES

[1] Hadoop. http://hadoop.apache.org/.

[2] Sloan Digital Sky Survey. http://cas.sdss.org/.

[3] S. Abiteboul and O. M. Duschka. Complexity of answering

queries using materialized views. In PODS, pages 254–263,

1998.

[4] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated

Selection of Materialized Views and Indexes in SQL

Databases. In VLDB, pages 496–505, 2000.

[5] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical

design tuning: workload as a sequence. In SIGMOD, pages

683–694, 2006.

[6] I. Alagiannis, D. Dash, K. Schnaitter, A. Ailamaki, and

N. Polyzotis. An automated, yet interactive and portable DB

designer. In SIGMOD, pages 1183–1186, 2010.

[7] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A

Hands-free Adaptive Store. In SIGMOD, pages 1103–1114,

2014.

[8] E. Baralis, S. Paraboschi, and E. Teniente. Materialized

views selection in a multidimensional database. In VLDB,

pages 156–165, 1997.

[9] N. Bruno and S. Chaudhuri. To tune or not to tune?: a

lightweight physical design alerter. In VLDB, pages

499–510, 2006.

[10] S. Chaudhuri and V. Narasayya. Self-tuning database

systems: a decade of progress. In VLDB, pages 3–14, 2007.

[11] S. Dar, M. J. Franklin, B. T. Jonsson, D. Srivastava, M. Tan,

et al. Semantic data caching and replacement. In VLDB,

pages 330–341, 1996.

[12] I. Elghandour and A. Aboulnaga. ReStore: Reusing Results

of MapReduce Jobs. PVLDB, 5(6):586–597, 2012.

[13] A. Ghazal, M. Hu, T. Rabl, F. Raab, M. Poess, A. Crolotte,

and H. Jacobson. BigBench: Towards an Industry Standard

Benchmark for Big Data Analytics. In SIGMOD, pages

1197–1208, 2013.

[14] J. Goldstein and P.-A. Larson. Optimizing queries using

materialized views: a practical, scalable solution. SIGMOD

Rec., 30(2):331–342, 2001.

[15] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and

L. Zhuang. Nectar: automatic management of data and

computation in datacenters. In OSDI, pages 75–88, 2010.

[16] A. Y. Halevy. Answering queries using views: A survey. The

VLDB Journal, 10(4):270–294, 2001.

[17] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap. Stochastic

database cracking: Towards robust adaptive indexing in

main-memory column-stores. PVLDB, 5(6):502–513, 2012.

[18] S. Idreos, M. L. Kersten, and S. Manegold. Database

cracking. In CIDR, pages 68–78, 2007.

[19] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.

Gonçalves. An architecture for recycling intermediates in a

column-store. TODS, 35(4):309–320, 2010.

[20] S. Jain, D. Moritz, B. Howe, and E. Lazowska. SQLShare:

Results from a multi-year sql-as-a-service experiment. In

SIGMOD, pages 281–293, 2016.

[21] A. Y. Levy, A. O. Mendelzon, and Y. Sagiv. Answering

queries using views (extended abstract). In PODS, pages

95–104, 1995.

[22] F. Nagel, P. Boncz, and S. D. Viglas. Recycling in pipelined

query evaluation. In ICDE, pages 338–349, 2013.

[23] S. Papadomanolakis and A. Ailamaki. AutoPart: Automating

schema design for large scientific databases using data

partitioning. In SSDBM, pages 383–392, 2004.

[24] L. Perez and C. Jermaine. History-aware query optimization

with materialized intermediate views. In ICDE, pages

520–531, 2014.

[25] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating

physical database design in a parallel database. In SIGMOD,

pages 558–569, 2002.

[26] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.

On-line index selection for shifting workloads. In ICDE,

pages 459–468, 2007.

[27] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,

S. Antony, H. Liu, and R. Murthy. Hive - a petabyte scale

data warehouse using hadoop. In ICDE, pages 996–1005,

2010.

[28] D. Wackerly, W. Mendenhall, and R. Scheaffer.

Mathematical Statistics with Applications. Duxbury Press,

5th edition, 1996.

[29] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and

M. Urata. Answering complex sql queries using automatic

summary tables. In SIGMOD, pages 105–116, 2000.

209

	DeepSea: Progressive Workload-Aware Partitioning of Materialized Views in Scalable Data AnalyticsJiang Du, Renée Miller, Boris Glavic, Wei Tan

