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ABSTRACT

The discrete Fréchet distance (DFD) captures perceptual and geo-
graphical similarity between discrete trajectories. It has been suc-
cessfully adopted in a multitude of applications, such as signature
and handwriting recognition, computer graphics, as well as ge-
ographic applications. Spatial applications, e.g., sports analysis,
traffic analysis, etc. require discovering the pair of most similar
subtrajectories, be them parts of the same or of different input tra-
jectories. The identified pair of subtrajectories is called a motif.
The adoption of DFD as the similarity measure in motif discov-
ery, although semantically ideal, is hindered by the high computa-
tional complexity of DFD calculation. In this paper, we propose a
suite of novel lower bound functions and a grouping-based solution
with multi-level pruning in order to compute motifs with DFD ef-
ficiently. Our techniques apply directly to motif discovery within
the same or between different trajectories. An extensive empirical
study on three real trajectory datasets reveals that our approach is 3
orders of magnitude faster than a baseline solution.

1. INTRODUCTION
Spatial trajectories are prevalent in many applications, e.g., mov-

ing object analysis, traffic estimation and prediction systems. In
this paper, we study motif discovery on spatial trajectories (i.e.,
finding the pair of most similar subtrajectories). Trajectory motifs
are used in many applications, e.g., sports sense analysis [11], traf-
fic analysis [15], or used as a building block for other trajectory
mining and analysis methods [16, 31, 12]. As an example, Fig-
ure 1(a) visualizes a pedestrian’s GPS trajectory from the GeoLife
trajectory dataset [32], by a 3D plot with timestamp number at the
horizontal axis. The motif corresponds to the most similar pair of
subtrajectories (in red and blue). Figure 1(b) illustrates the mo-
tif (i.e., the two subtrajectories) on a map, which could be used in
human behavior analysis.

It is important to choose a suitable similarity measure for motif
discovery. The Fréchet metric is amongst the most popular mea-
sures for trajectory similarity [24, 10]. Generally speaking, the
Fréchet distance between two spatial trajectories, Sa and Sb, is the
length of the shortest leash needed to walk a dog when the person
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(a) A pedestrian’s trajectory (b) Discovered motif
April 10-12, 2009 red: 07:33-7:48, April 10, 2009

blue: 07:33-7:50, April 12, 2009

Figure 1: Subtrajectory motif discovered in a trajectory from

the GeoLife trajectory dataset

walks along Sa and the dog walks along Sb. In the geographic
information handbook [10], the authors conclude that “The most

successful fundamental distance measure to this date is probably

the Fréchet metric, which is one of the most natural measures to

calculate the similarity between two trajectories”. The Fréchet
distance and its variants have been successfully used in a num-
ber of application domains, such as handwriting recognition [22],
bioinformatics [27], computational geometry [5], as well as geo-
graphic applications [2]. In the literature, many recent systems
have adopted the discrete Fréchet distance (DFD) to measure the
distance between discrete trajectories (or the Fréchet distance for
continuous curves) [2, 10, 3, 12, 25]. In addition, as we will elabo-
rate in Section 2, DFD is particularly suitable for real-world spatial
trajectories, which often exhibit the following properties: (i) non-
uniform/varying sampling rate, and (ii) missing samples at some
time points. For example, the GeoLife dataset [32], a real spatial
trajectory dataset collected by Microsoft, has all the above proper-
ties.

In this paper, we discover motifs in spatial trajectories with DFD
as the similarity measure. This problem is computationally chal-
lenging for two reasons:
(I) The computation of DFD between two subtrajectories takes
O(ℓ2) time [11], where ℓ denotes the subtrajectory length. There
have been attempts to speed up DFD computation by using
GPUs [12] or a faster algorithm (with O(ℓ2 · log log ℓ

log ℓ
) time com-

plexity) [1]. In contrast, we take an orthogonal research direction
to reduce the number of DFD computations for motif discovery,
e.g., by using various types of pruning on DFD computations and
subtrajectory pairs.
(II) The problem involves O(n4) pairs of subtrajectories, where
n is the length of the input trajectory/ies. The fact that DFD ex-
hibits non-monotonicity (cf. Section 4.1) precludes us from apply-
ing efficient algorithmic paradigms (like binary search) to reduce
the number of candidate pairs.

To overcome these challenges, we exploit the properties of DFD
and devise lower bound functions that incur low computation time.
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These lower bound functions serve for two purposes: first, prun-
ing unpromising pairs of subtrajectories without invoking expen-
sive DFD computation; second, guiding the search to discover the
motif as soon as possible. Our lower bound functions are novel;
nothing similar has been used in previous work. Additionally, they
can be computed in amortized O(1) time.

Furthermore, we propose a grouping-based solution with multi-
level pruning. This solution (i) divides the input trajectory into
groups, (ii) prunes dissimilar pairs of groups, and then (iii) ag-
gressively processes the surviving pairs of groups until the result
is found. At the heart of this approach lies a suite of lower bound
functions to prune unpromising pairs of groups.

All our techniques apply directly to motif discovery within the
same or between different input trajectories. Importantly, besides
motif discovery, they can be incorporated readily to other applica-
tions [2, 3] which employ DFD as the similarity measure.

2. RELATED WORK
In this section, we survey previous work but, due to the strict

page limit, we focus only on the most relevant pieces. First, we
present alternative similarity measures and pinpoint the advantages
offered by the Fréchet metric that render it the ideal choice for
(sub)trajectory similarity [10]. Next, we overview existing mo-
tif discovery approaches and juxtapose them to ours. Finally, we
provide an outlook of other practically relevant trajectory analysis
techniques.

Trajectory similarity measures: Several similarity measures have
been proposed for trajectories, e.g., Euclidean Distance (ED), Dis-
crete Fréchet Distance (DFD) [8, 1], Dynamic Time Warping
(DTW) [28], Longest Common Subsequence (LCSS) [26], Edit
Distance on Real Sequence (EDR) [6]. Real-world trajectories
(e.g., those in GeoLife dataset) exhibit two key characteristics,
namely, non-uniform/varying sampling rate and missing samples
for some time points. Thus, a desirable similarity measure would
account for both these characteristics. In Table 1, we summarize
the properties of the aforementioned trajectory similarity measures
and their computation cost, expressed in terms of (sub)trajectory
length ℓ. Local time shifting refers to the ability of tolerating short-
term discrepancies (e.g., missing samples, measurement errors) in
aligning two trajectories [6].

Distance metric Non-uniform/varying Local Computation
sampling rate time shifting cost

ED O(ℓ)

DTW
√

O(ℓ2)

LCSS
√

O(ℓ2)

EDR
√

O(ℓ2)

DFD
√ √

O(ℓ2)

Table 1: Distance measures and their characteristics

We will use examples to illustrate the advantages of discrete
Fréchet Distance (DFD) over typical alternatives (e.g., ED, DTW).
We first apply two different measures (ED and DFD) to compute
motifs on the GeoLife trajectory dataset [32]. Figures 2(a) and 2(b)
show the most similar pair of subtrajectories by ED and DFD, re-
spectively. Observe that the result of DFD (in Figure 2(b)) captures
much better a human’s interpretation. The reason is that ED mea-
sures spatial proximity only, and dismisses the movement pattern.

In Figure 3, we demonstrate the effect of non-uniform sam-
pling in real-world data using DTW and DFD between trajecto-
ries Sa, Sb and Sa, Sc. Trajectories Sa (black color) and Sb (blue
color) are uniformly sampled, while trajectory Sc (red color) is

Scale ratio = 15 Scale ratio = 14 

(a) Most similar pair in ED (b) Most similar pair in DFD
ED: 8.71 m; DFD: 0.09 m ED: 19.42 m; DFD: 0.08 m

Figure 2: ED and DFD

Figure 3: DTW and DFD; Sc is non-uniformly sampled

non-uniformly sampled. Intuitively, trajectory Sc is more simi-
lar to Sa than Sb, i.e., DFD(Sa, Sc) < DFD(Sa, Sb), however,
DTW(Sa, Sc) > DTW(Sa, Sb). The reason is DTW requires each
point to be matched to another (and adds up all distances between
matched pairs) thus being sensitive to non-uniform sampling.

In summary, ED is the fastest metric to compute but it is not
robust to local time shifting. More robust measures, such as
DTW [28], LCSS [26], EDR [6], are defined as the sum of point-to-
point distances, which makes them sensitive to the sampling rate.
As shown in Table 1, only DFD [8, 1], also known as the “dog-
man” distance, can tolerate non-uniform/varying sampling rate [11,
24, 12]. Other distance measures require that points along the tra-
jectories are uniformly and densely sampled, which is rarely the
case in real settings [11]. For more details on trajectory similarity
measures, we refer the reader to surveys [10, 24, 7].

The parallel computing [12] and computational geometry [1]
communities have proposed some techniques to speed up DFD
computation. In contrast, in our work we take an orthogonal ap-
proach to accelerate DFD computations for trajectory motif dis-
covery via novel pruning techniques.

Trajectory motif discovery techniques: For spatial trajectories,
most of the motif discovery techniques adopt the symbolic ap-

proach [17, 11, 20]. This approach employs symbols to represent
pre-defined movement patterns; some example symbols and pat-
terns are illustrated in Figure 4(a). To convert a trajectory into
a string of symbols, it first partitions a trajectory into fragments,
and then maps each fragment to a symbol (i.e., pre-defined move-
ment pattern). After that, it applies substring matching techniques
to discover motifs [30, 14]. Unfortunately, this approach may pro-
duce similar strings even if their original trajectories are far apart.
For example, we illustrate two trajectories of Uber drivers (in two
different cities) in Figures 4(b) and 4(c). Although these two tra-
jectories are geographically far apart (in two different cities), both
of them are mapped to string ‘RVLH’. Since this approach cannot
capture the spatial distance between trajectories, we dismiss it.

Motifs have also been studied for time series data [19, 18]. How-
ever, these techniques are tailored to time series with Euclidean
distance, and are not suitable for spatial trajectories with DFD.

Other trajectory analysis techniques: Besides motif discovery,
there are many other spatial trajectory analysis problems, e.g., con-
voy discovery [13], outlier detection [29, 17], trajectory cluster-
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symbol movement pattern

V vertical long straight
H horizontal long straight
L left turn
R right turn

(a) Pre-defined movement patterns and symbols

(b) A trajectory in Beijing; (c) A trajectory in Shenzhen;
string: RVLH string: RVLH

Figure 4: Example of the symbolic approach

ing [16, 11, 12], etc. We refer the interested reader to a recent
survey [31].

3. PROBLEM STATEMENT
In this section, we introduce the problem and present a baseline

solution, starting with several basic definitions.

DEFINITION 1 (SPATIAL TRAJECTORY & SUBTRAJECTORY).
A spatial trajectory S = 〈· · · , si, · · · 〉 is a sequence of points. We

denote its trajectory length by n = |S|.
Given a trajectory S, we denote a subtrajectory of S as Si,ie =

S[i..ie] , where 0 ≤ i < ie ≤ n− 1.

Let T (S) = 〈· · · , ti, · · · 〉 be a sequence of ascending times-

tamps, where ti is the timestamp of location si in S. The times-

tamps may be non-uniform.

We assume each point si is a latitude-longitude (ϕi, λi) pair. We
measure the ground distance between two trajectory points si =
(ϕi, λi), sj = (ϕj , λj) as the great circle distance on Earth [21]:

dG(i, j) = 2R arcsin

√

sin2
(ϕj − ϕi

2

)

+ cosϕi cosϕj sin
2
(λj − λi

2

)

where R is the radius of the earth. Nevertheless, our methods are
directly applicable to higher dimensions (e.g., 3-d data points) and
other types of ground distance (e.g., Euclidean).

As discussed in Section 2, we adopt the discrete Fréchet distance
(DFD) to measure the distance between two subtrajectories Si,ie

and Sj,je , defined as:

dF (i, ie, j, je) =max



















dG(ie, je)

min











dF (i, ie − 1, j, je),

dF (i, ie, j, je − 1),

dF (i, ie − 1, j, je − 1)

For ie = i and je = j, dF (i, i, j, j) = dG(i, j), and the DFD
computation recursion terminates at ie = i and je = j.

We study the motif discovery problem within a single input tra-
jectory or between different trajectories; for simplicity, we focus
presentation on single input trajectory but also elaborate on (and
evaluate) the latter variant too. To produce a meaningful trajectory
motif (Si,ie ,Sj,je), we require that: (i) subtrajectories Si,ie and
Sj,je are sufficiently long (e.g., each has length at least ξ), and (ii)
their timestamp intervals do not overlap.

PROBLEM 1 (TRAJECTORY MOTIF DISCOVERY PROBLEM).
Given a trajectory S and a minimum motif length ξ, return the pair

of subtrajectories Si,ie and Sj,je with the smallest DFD distance

dF (i, ie, j, je) among all pairs of non-overlapping subtrajectories

(that is, i < ie < j < je) with length at least ξ (that is,

ie > i+ ξ, je > j + ξ).

As mentioned previously, a variant of Problem 1 is to discover
a motif between different trajectories. I.e., considering two trajec-
tories S and T , to return the pair of subtrajectories Si,ie and Tj,je

whose DFD is the smallest among all possible pairs of their subtra-
jectories.

With Problem 1 in mind, a straightforward solution is to enu-
merate all pairs of subtrajectories (Si,ie ,Sj,je) and then compute
the DFD value for each pair. Its time complexity is O(n6), as
there are O(n4) pairs of subtrajectories and each call to DFD takes
O(ℓ2) = O(n2) time. Even if we implement each call to DFD
by [1], the time complexity is still O(n6 · log logn

logn
).

We observe that, for all subtrajectory pairs (Si,ie ,Sj,je) with the
same start point (i, j), their DFD computation can be shared via
dynamic programming. By incorporating this idea into the above
solution, we obtain BruteDP (Algorithm 1) – a brute force algo-
rithm that uses dynamic programming. A further optimization is to
eliminate redundant calls of the ground distance function dG(·, ·).
We propose to precompute all pairs of ground distances, and store
them in matrix dG[·][·] for quick access.

Algorithm 1 BruteDP (Trajectory S, minimum length ξ)

Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅
2: for i← 0 to n− 2ξ + 1 do

3: for j ← i+ ξ to n− ξ + 1 do
4: dF [i][j]← dG(i, j) ⊲ initialization
5: for t← i+ 1 to n do

6: dF [i][t]← max(dG(i, t), dF [i][t-1])
7: dF [t][j]← max(dG(t, j), dF [t-1][j])

8: for ie ← i+ 1 to j − 1 do ⊲ share DFD computation
9: for je ← j + 1 to n do

10: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
11: dF [ie][je]← max(dG(ie, je), tmp)
12: if ie > i+ ξ, je > j + ξ and dF [ie][je] < bsf then

13: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je )

14: return bpair

Algorithm 1 can be adapted to motif discovery between different
trajectories easily, i.e., with Sj,je playing the role of a subtrajectory
in the second input trajectory, and by incrementing i until n−ξ+1
(instead of n− 2ξ + 1) at Line 2, and j starting from 0 (instead of
i+ξ) at Line 3 (because this variant considers separate trajectories,
thus not imposing the constraint i < ie < j < je).

Analysis: With all pairs of ground distances available in matrix dG,
the time complexity of Algorithm 1 is O(n4), which is attributed
to the nested for-loops for variables i, j (at Lines 2-3) and vari-
ables ie, je (at Lines 8-9). The space complexity of the algorithm
is O(n2), as it employs two 2-dimensional matrices: (i) dF [·][·] for
implementing dynamic programming, and (ii) dG[·][·] for holding
all-pair ground distances.

Before we proceed to our advanced techniques, we summarize
frequently used notation in Table 2.

4. BOUNDING-BASED SOLUTION
We first analyze the properties of DFD (in Section 4.1). Then

we exploit these properties to devise novel lower bound functions
for DFD (in Section 4.2). Our lower bounds can be computed in
amortized O(1) time, and guarantee no false negatives (in Section
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Symbol Meaning

S input trajectory

S[i] (ϕi, λi), the ith point of S
Si,ie the subtrajectory of S starting at S[i] and ending at S[ie]
n the length of trajectory S
ξ the minimum motif length

dG(i, j) the ground distance between S[i] and S[j]
dF (i, ie, j, je) the DFD between subtrajectories Si,ie and Sj,je

Table 2: Notation

4.3). Finally, we propose a bounding-based solution that applies
our lower bound functions to prune unpromising pairs of trajecto-
ries and reduce the number of DFD computations (in Section 4.4).

4.1 Properties of DFD

4.1.1 Non-monotonicity

Typical sequence/string mining algorithms exploit the monotone
property to develop efficient Apriori-style algorithms. An example
of the monotone property would be: “given a string S, if qα is a
substring of qβ , then the frequency of qα in S cannot be smaller
than the frequency of qβ in S.” It would be tempting to adapt such
an idea to solve our problem efficiently. Unfortunately, the DFD
metric does not satisfy the monotone property. Formally:

DEFINITION 2 (CONTAINMENT ⊆). Si,ie is said to contain

Si′,i′e
, denoted as Si′,i′e

⊆ Si,ie , iff i′ ≥ i and i′e ≤ ie.

LEMMA 1 (NON-MONOTONICITY). Let (Si,ie , Sj,je) be a

subtrajectory pair of S. Let Si′,i′e
,Sj′,j′e

be subtrajectories that

satisfy Si′,i′e
⊆ Si,ie ,Sj′,j′e

⊆ Sj,je . It holds that, dF (i, ie, j, je)
is neither monotone increasing nor monotone decreasing with re-

spect to dF (i
′, i′e, j

′, j′e).

We provide a counter-example to demonstrate the non-
monotonicity as follows.

Example: We illustrate Lemma 1 using a trajectory S with length
n = 12. Figure 5 shows the ground distance for each pair
(S[i], S[j]). Consider three subtrajectories S0,2 ⊆ S0,3 ⊆ S0,4

and their DFD distances from S6,9. Using Algorithm 1, we can
compute these DFD values: dF (0, 2, 6, 9) = 4, dF (0, 3, 6, 9) = 1,
dF (0, 4, 6, 9) = 7. When comparing S0,2 and S0,3, the DFD value
(from S6,9) decreases from 4 to 1. However, when comparing S0,3

and S0,4, the DFD value (from S6,9) increases from 1 to 7. I.e.,
DFD does not satisfy the monotone property.

8 7 6 5 9 7 7 3 3 2 9   

5 6 7 6 8 6 6 6 8 1 

2 2 4 1 7 6 8 7 7  
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Figure 5: Example of dG matrix

4.1.2 Crucial Observation

Non-monotonicity aside, we make a crucial observation which
is quintessential to our approach. Specifically, the computation of
DFD by recurrence is equivalent to a path finding problem in the
dG matrix.

OBSERVATION 1. The DFD between Si,ie and Sj,je must be

contributed by a path from (i, j) to (ie, je) such that: (i) the path

travels along non-decreasing positions, (ii) the worst-case ground

distance along the path is minimized.

We illustrate using two subtrajectories S0,3 and S6,9. Figure 6(a)
shows the ground distance dG for each pair of points from S0,3 and
S6,9 (note that only the relevant part of the dG matrix from Figure 5
is shown). We compute the dF value for each pair of points, as
illustrated in Figure 6(b). The DFD distance is dF (0, 3, 6, 9) = 1,
which is contributed by the path of gray cells from (0, 6) to (3, 9),
that minimizes the maximum ground distance among the cells it
visits.
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(a) Relevant part of dG (b) dF computation as a path in dG

Figure 6: DFD computation for S0,3 and S6,9

4.2 Pattern-based Lower Bounds
Based on Observation 1, we devise novel lower bound functions

for DFD by accessing/traversing the dG matrix according to differ-
ent patterns (e.g., a single cell, cells in a cross, cells in a band).

Specifically, assuming that matrix dG is precomputed and that
bsf is the DFD of the best subtrajectory pair encountered so far in
the search process, we propose a set of lower bound functions that
apply to candidate subtrajectory pairs, or entire groups of candidate
pairs, such that if the bound is greater than bsf , the candidates
are safe to prune, i.e., to disqualify without further consideration,
because they are guaranteed not to be the motif.

4.2.1 Cell-based Lower Bound

We refer to a subtrajectory pair (Si,ie ,Sj,je) as candidate
(i, ie, j, je). We define a candidate subset CSi,j to represent all
candidates with the same start positions i and j. This compact no-
tation, using a pair (i, j), allows us to represent O(n2) candidates.

DEFINITION 3 (CANDIDATE SUBSET). Given two start po-

sitions i and j, the candidate subset is defined as CSi,j =
{(i, ie, j, je) : ie > i ∧ je > j}.

The following holds for any CSi,j .

OBSERVATION 2. For every (i, ie, j, je) ∈ CSi,j , the path

leading to dF (i, ie, j, je) must start from cell (i, j).

For example, in Figure 6(a), for each candidate in CSi,j , the path
leading to DFD must start at cell (0, 6). We thus derive our first
bound, which applies to any candidate in CSi,j :

LBcell(i, j) = dG(i, j) (1)
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For every (i, ie, j, je) ∈ CSi,j , LBcell(i, j) ≤ dF (i, ie, j, je).

Example: In Figure 5, for candidate subset CS5,9 (i.e., for all can-
didate pairs that start at the red cell), we obtain LBcell(5, 9) =
dG(5, 9) = 6. This is a lower bound for the DFD of any candi-
date pair in CS5,9. E.g., for pair (S5,6,S9,11), the exact DFD is
dF (5, 6, 9, 11) = 7.

4.2.2 Cross-based Lower Bound

If a candidate subset is not pruned using LBcell, we attempt to
prune it with tighter lower bounds.

OBSERVATION 3. For every (i, ie, j, je) ∈ CSi,j , the path

leading to dF (i, ie, j, je) must pass through the (i+ 1)-th column

and (j + 1)-th row.

Example: In Figure 5, consider candidate (4, 6, 8, 10) in the can-
didate subset CS4,8. For this candidate, any path from the start-cell
(4,8) to the end-cell (6,10) must pass through the 5-th column and
9-th row; otherwise, the path cannot reach the end-cell (6,10). We
thus define the following lower bounds.

LBrow(i, j) = min
i′∈[i,j−1]

{dG(i
′, j + 1)} (2)

LBcol(i, j) = min
j′∈[j,n−1]

{dG(i+ 1, j′)} (3)

For every (i, ie, j, je) ∈ CSi,j , it holds that LBrow(i, j) ≤
dF (i, ie, j, je) and that LBcol(i, j) ≤ dF (i, ie, j, je). Thus, we
combine the two into the cross-based lower bound below:

LBstart
cross(i, j) = max (LBrow(i, j), LBcol(i, j)) (4)

For every (i, ic, j, jc) ∈ CSi,j , LBstart
cross(i, j) ≤ dF (i, ic, j, jc).

Example: Consider cell (4,8) in Figure 7(a), and assume that n =
12. LBstart

cross(4, 8) is computed over the gray cells as follows:

LBstart
cross(4, 8) = max(LBrow(4, 8), LBcol(4, 8))

= max
(

min
i′∈[4,7]

{dG(i
′, 9)}, min

j′∈[8,11]
{dG(5, j

′)}
)

= max(6, 6) = 6

(a) LBstart
cross(4, 8) (b) LBend

cross(3, 9)

Figure 7: Examples of cross-based bounds

4.2.3 Band-based Lower Bound

Our problem definition considers only subtrajectories with
length at least ξ. Based on that, we extend Observation 3 to:

OBSERVATION 4. For every (i, ie, j, je) ∈ CSi,j that satisfies

the constraint ie > i + ξ and je > j + ξ, the path leading to

dF (i, ie, j, je) must pass through columns i+1 to i+ξ and through

rows j + 1 to j + ξ.

Hence, we define the following band-based lower bounds:

LBrow
band(i, j) = max

j′∈[j,j+ξ−1]
{LBrow(i, j

′)} (5)

LBcol
band(i, j) = max

i′∈[i,i+ξ−1]
{LBcol(i

′, j)} (6)

For every (i, ie, j, je)∈ CSi,j where ie > i+ ξ and je > j + ξ it
holds that:

LBrow
band(i, j) ≤ dF (i, ie, j, je) (7)

and LBcol
band(i, j) ≤ dF (i, ie, j, je) (8)

If LBrow
band(i, j) ≥ bsf or LBcol

band(i, j) ≥ bsf we can safely prune
CSi,j .

(a) LBrow
band

(1, 6) (b) LBcol
band

(1, 8)

Figure 8: Example of band-based bound

Example: Consider candidate subset CS1,6 in Figure 8(a). Sup-
pose the minimum motif length is ξ = 4 and n = 12. By
the definition of LBrow(i, j), the minimum values in the 7-th,
8-th, 9-th and 10-th row are 2, 1, 1 and 6, respectively. Hence,
LBrow

band(1, 6) = max(2, 1, 1, 6) = 6. Similarly, consider candi-
date subset CS1,8 in Figure 8(b). By the definition of LBcol(i, j),
the minimum value of the 2-nd, 3-rd, 4-th and 5-th column are
1, 1, 5 and 6, respectively, as shown in Figure 8(b). Hence,
LBcol

band(1, 8) = max(1, 1, 5, 6) = 6.

4.2.4 Pruning within Candidate Subset

The bounds presented so far prune entire candidate subsets. If a
candidate subset CSi,j survives these bounds, we need to consider
candidate pairs inside of it. To avoid considering all candidate pairs
in CSi,j , here we introduce a cross-based bound that prunes candi-
date pairs within CSi,j .

As introduced in Section 3, for all candidate pairs (i.e.,
Si,ie ,Sj,je ) in candidate set CSi,j , their DFD computation can be
shared via dynamic programming. Assume that at some point, the
dynamic programming reaches end-cell (ie, je), where ie − i > ξ,
je − j > ξ and bsf = dF (i, ie, j, je). We define the following
cross-based lower bound for the end-cell:

LBend
cross(ie, je) = max (LBrow(ie, je), LBcol(ie, je)) (9)

If (i, ic, j, jc) is a candidate in CSi,j where ic > ie and jc >
je, it holds that LBend

cross(ie, je) ≤ dF (i, ic, j, jc). Hence, if
LBend

cross(ie, je) ≥ bsf , we can safely avoid expanding cell
(ie, je), i.e., eliminate paths within CSi,j that pass via cell (ie, je).

Example: In Figure 7(b), suppose ξ = 2, i = 0, j = 6, ie = 3
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and je = 9. LBend
cross(ie, je) is computed over the gray cells:

LBend
cross(3, 9) = max(LBrow(3, 9), LBcol(3, 9))

= max
(

min
i′e∈[3,8]

{dG(i
′

e, 10)}, min
j′e∈[9,11]

{dG(4, j
′

e)}
)

= max(6, 7) = 7

If LBend
cross(3, 9) ≥ bsf , we prune the candidates (i.e., subtrajec-

tory pairs) in CS0,6 whose end-cells fall in the red dotted box.

4.3 Relaxed Lower Bounds
If we follow the aforementioned equations directly, a cross-based

bound takes O(n) time to compute and a band-based bound takes
O(ξn) time. Although both of them are more efficient than raw
DFD computation (i.e., O(n2)), in this section, we drop their amor-
tized time complexity to O(1) by relaxing them slightly. These
relaxed bounds incur no false negatives, i.e., they are guaranteed
not to miss the motif. Due to the space limit, we illustrate our re-
laxation approach for band-based bounds only. The relaxation of
cross-based bounds follows the same lines.

The key idea is to employ one parameter per bound, and keep
them in matrices for rapid access. First, we compute the minimum
value for each column i and each row j:

Cmin[i] = min
j′∈[0,j−1]

(dG(i+ 1, j′)) (10)

Rmin[j] = min
i′∈[i,n−1]

(dG(i
′, j + 1)) (11)

This step takes O(2 · n · n) = O(n2) time.
We define the relaxed version of cross-based bounds as:

rLBstart
cross(i, j) = max{Cmin[i], Rmin[j]} (12)

rLBend
cross(ie, je) = max{Cmin[ie], Rmin[je]} (13)

In turn, the relaxed band-based bounds are defined as:

rLBrow
band(j) = max

j′∈[j,j+ξ−1]
{Rmin[j

′]} (14)

rLBcol
band(i) = max

i′∈[i,i+ξ−1]
{Cmin[i

′]} (15)

We compute the relaxed version of cross-based bounds by com-
puting Cmin[i] and Rmin[j] for each column i and each row j.
This step takes O(n) time per column/row. Similarly, we com-
pute relaxed band-based bounds for each column i and each row
j. This step takes O(ξn) time per row/column. Thus, the total
computation time of cross-based and band-based lower bounds is
O(n ·n) = O(n2) and O(ξn ·n) = O(n2), respectively. By amor-
tizing the computation time over all candidate subsets CSi,j (i.e.,
O(n2) of them), the computation time per CSi,j for each relaxed
bound is only O(n2/n2) = O(1).

The following lemma proves the correctness of the relaxed band-
based bounds. The proof for the relaxed cross-based bounds fol-
lows the same lines and is omitted for brevity.

LEMMA 2. It holds that:

rLBrow
band(j) ≤ LBrow

band(i, j) and rLBcol
band(i) ≤ LBcol

band(i, j)

PROOF.

min
i′∈[0,j−1]

(dG(i
′, j + 1)) ≤ min

i′∈[i,j−1]
(dG(i

′, j + 1))

⇒ Rmin[j] ≤ LBrow(i, j)

⇒ max
j′∈[j,j+ξ−1]

{Rmin[j
′]} ≤ max

j′∈[j,j+ξ−1]
{LBrow(i, j

′)}

⇒ rLBrow
band(j) = LBrow

band(i, j)

Similarly, rLBcol
band(i) ≤ LBcol

band(i, j).

In the experiments, we compare the effectiveness of the original
bounds with the relaxed ones. We summarize the time requirements
of all lower bounds in Table 3.

Lower bound Time Relaxed bound Time

LBcell(i, j) O(1)
LBstart

cross(i, j) O(n) rLBstart
cross(i, j) O(1)

LBend
cross(ie, je) O(n) rLBend

cross(ie, je) O(1)
LBrow

band
(i, j) O(ξn) rLBrow

band
(j) O(1)

LBcol
band

(i, j) O(ξn) rLBcol
band

(i) O(1)

Table 3: Summary of lower bounds

4.4 Optimized Solution

Combining all bounds: Given a candidate subset CSi,j , we com-
pute a tighter lower bound for CSi,j , denoted by CSi,j .LB, using:

max{LBcell(i, j), rLB
start
cross(i, j), rLB

row
band(j), rLB

col
band(i)}.

This lower bound takes O(1) time because each term can be ob-
tained in O(1) time, as shown in Table 3.

Prioritizing search order: To support effective pruning of CSi,j

by lower bounds, it is desirable to obtain a small bsf (i.e., a good
temporary motif) as early as possible. Intuitively, a candidate sub-
set with small CSi,j .LB tends to contain a candidate with small
DFD value. Thus, we propose to process CSi,j in ascending order
of CSi,j .LB.

Putting it all together: Algorithm 2 presents the pseudocode for
bounding-based trajectory motif (BTM), which incorporates all
above ideas to solve the trajectory motif discovery problem.

Algorithm 2 BTM (Trajectory S, minLength ξ)

Input: trajectory S, length n, minimum motif length ξ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅; jend ← n
2: Compute { LBcell, rLB

start
cross, rLB

end
cross, rLB

row
band

, rLBcol
band

}
3: Construct a list A with one element a per candidate subset
4: Sort A in ascending order of a.LB
5: for each a in A with bsf > a.LB do

6: for ie ← a.i+ 1 to a.j do

7: for je ← a.j + 1 to jend do
8: tmp← min(dF [ie-1][je-1], dF [ie][je-1], dF [ie-1][je])
9: dF [ie][je]← max(dG(ie, je), tmp)

10: if ie > a.i+ ξ, je > a.j + ξ and dF [ie][je] < bsf then

11: bsf ← dF [ie][je]; bpair ← (Si,ie ,Sj,je )

12: if bsf ≤ rLBend
cross(bpair.ie, bpair.je) then

13: jend ← bpair.je ⊲ Pruning by LBend
cross(ie, je) from

Equation 9

14: return bpair

At Line 2, we first compute all lower bounds (and store them
in matrices). Then, we insert each candidate subset CSi,j with
its bound CSi,j .LB into a list (at Line 3), and sort that list (at
Line 4). Next, we process the elements of the list in the sorted
order. For each candidate subset, we examine its candidates via
nested loops (at Lines 6-7), and compute the DFD of each candi-
date (at Line 8-9). Finally, we update bsf and the temporary motif
pair (at Lines 10-11). Note that Lines 12-13 implement pruning
by LBend

cross(ie, je), as defined in Equation 9; this essentially per-
forms pruning within the candidate subset currently considered, by
disqualifying some of the candidate pairs it contains.

The lower bounds presented in this section are also applicable
to motif discovery between different trajectories. Hence, similarly
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to Algorithm 1, Algorithm 2 is readily applicable to that problem
variant too.

Analysis: The time complexity of Algorithm 2 is O(n4) in the
worst case, which is attributed to the nested for-loops for variables
a [that is, O(n2) iterations], ie [that is, O(n) iterations] and je
[that is, O(n) iterations] at Lines 5-7. The space complexity of
Algorithm 2 is O(n2).

Algorithm 2 follows the best-first search paradigm with several
effective lower bounds. As we will show in the experimental eval-
uation, it outperforms Algorithm 1 by two orders of magnitude.

5. GROUPING-BASED SOLUTION
In this section, we enhance the scalability of our techniques for

long trajectories. Inspired by trajectory indexing methods [4, 9],
we organize trajectory points into groups, then attempt pruning un-
promising pairs of groups, before applying our solution from Sec-
tion 4. To enable pruning, we design novel bounding functions for
DFD on groups.

Figure 9: Grouping-based computation framework

We outline our grouping-based computation framework in Fig-
ure 9. First, we divide a trajectory into groups of τ samples (where
τ is a tunable parameter), and compute a ground distance bound
for each group pair (Steps 1 and 2, in Section 5.1). Next, we
apply O(1)-time lower bounds (Step 3, in Section 5.2) to prune
group pairs, before using tighter bounds for pruning (Step 4, in Sec-
tion 5.3). For the surviving group pairs, we repeat the above steps
by halving the group size, until τ reaches 1. Finally, we compute
the exact DFD of candidates in the surviving groups (Step 5).

By combining the advantages of all techniques in Section 4 and
in the current one, our grouping based computation framework out-
performs the baseline solution by over 3 orders of magnitude. Im-
portantly, all our techniques conduct only safe pruning, meaning
that they produce exact answers (motifs).

5.1 Grouping Trajectory Points
We employ a group size parameter τ in order to partition a long

trajectory into small groups. We proceed to define a group and the
ground distances between groups.

DEFINITION 4 (τ -GROUPING). Given the group size τ , we

define the u-th group as the interval gu = [uτ, (u+ 1)τ − 1].
For two groups gu and gv , we define the minimum and the maxi-

mum ground distance between them as:

dmin
G (gu, gv) = min

i∈gu,j∈gv
dG(i, j) (16)

dmax
G (gu, gv) = max

i∈gu,j∈gv
dG(i, j) (17)

By Definition 4, the ground distances between two groups satisfy
the following property:

COROLLARY 1. For every i ∈ gu, j ∈ gv , it holds that:

dmin
G (gu, gv) ≤ dG(i, j) ≤ dmax

G (gu, gv)

We utilize this property to devise lower bound functions in Sec-
tions 5.2, 5.3.

Example: Consider a trajectory S with n = 12 points. Given τ =
2, we obtain six groups: g0, g1, g2, g3, g4, g5, as illustrated in Fig-
ure 10(a). For example, for groups g2 = [4, 5] and g5 = [10, 11],
we compute the minimum ground distance as dmin

G (g2, g5) =
min(dG(4, 10), dG(4, 11), dG(5, 10), dG(5, 11)) = 6, and the
maximum ground distance as dmax

G (g2, g5) = max(8, 9, 6, 7) =
9. We show the minimum and maximum ground distances for
group pair g2 and g5 in Figure 10(b).
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Figure 10: Example of 2-grouped trajectory

5.2 Pattern-based Bounds for Groups
To enable pruning on unpromising pairs of groups, we adapt

our proposed lower bounds in Section 4 to groups. We denote the
corresponding lower bounds with prefix G, i.e., GLBcell(u, v),
GLBstart

cross(u, v), GLBend
cross(ue, ve), GLBrow

band(u, v), and
GLBcol

band(u, v). Later, we discuss their O(1)-time implementa-
tion.

Cell-based lower bound: We first define the cell-based lower
bound for groups, denoted by GLBcell, as follows:

GLBcell(u, v) = dmin
G (gu, gv) (18)

In Figure 10(b), GLBcell(2, 5) = dmin
G (2, 5) = 6. For any i ∈ u

and j ∈ v, it holds that GLBcell(u, v) ≤ dF (i, ie, j, je).

Cross-based lower bounds: Next, we show that the cross-
based lower bounds for groups can be expressed in terms of
GLBcell(u, v). We demonstrate using an example, rather than pre-
senting ugly definitions and lemmas.

We denote the row and column based lower bounds for
groups as GLBrow(u, v) and GLBcol(u, v), respectively. In
Figure 11(a), assuming n = 16 and τ = 2, we obtain
GLBrow(1, 4) = minu′∈[1,3](GLBcell(u

′, 5)) = min(2, 5, 7) =
2. Similarly, GLBcol(1, 4) = min(5, 5, 6, 5) = 5. The
cross-based lower bound for start-cell (1,4) is GLBstart

cross(1, 4) =
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max(GLBrow(1, 4),GLBcol(1, 4)) = max(2, 5) = 5.
GLBend

cross(ue, ve) is defined similarly to GLBstart
cross(u, v).

(a) GLBstart
cross(1, 4) (b) GLBrow

band
(0, 4)

Figure 11: Grouping based lower bounds

Band-based lower bounds: We also present band-based lower
bounds for groups using an example. In Figure 11(b), we il-
lustrate GLBrow

band(0, 4). We compute it as GLBrow
band(0, 4) =

maxv′∈[4,5](GLBrow(0, v
′)) = max(2, 5) = 5. GLBcol

band(u, v)
is defined similarly to GLBrow

band(u, v).

Relaxed lower bounds for groups: The concept of relaxed lower
bounds, introduced in Section 4.3, can be adapted directly to the
above pattern-based bounds for groups. This allows us to obtain
relaxed lower bounds for groups in O(1) time.

5.3 Bounding by DFD Computation
By exploiting the recurrence of DFD, we devise a tighter lower

bound and a tighter upper bound for pairs of groups. While the
lower bound is used to prune unpromising pairs of groups, the up-
per bound can be used to tighten bsf and thus improve the effec-
tiveness of pruning.

Below we define a subtrajectory group, together with group-
based DFD bounds.

DEFINITION 5 (GROUP-BASED DFD). Let subtrajectory

group Gt,te correspond to the interval [tτ, (te + 1)τ − 1], i.e., it

covers group t to group te.

Given two subtrajectory groups Gu,ue and Gv,ve , we de-

fine the group-based DFD bounds dFmin(u, ue, v, ve) and

dFmax(u, ue, v, ve) as:

dFmin(u, ue, v, ve) = max



















dmin
G (gue , gve)

min











dFmin(u, ue − 1, v, ve)

dFmin(u, ue − 1, v, ve − 1)

dFmin(u, ue, v, ve − 1)

dFmax(u, ue, v, ve) = max



















dmax
G (gue , gve)

min











dFmax(u, ue − 1, v, ve)

dFmax(u, ue − 1, v, ve − 1)

dFmax(u, ue, v, ve − 1)

The following lemma proves the bounding property of
dFmin(u, ue, v, ve) and dFmax(u, ue, v, ve).

LEMMA 3. Let Gu,ue and Gv,ve be two subtrajectory groups. If

a pair of subtrajectories Si,ie ,Sj,je satisfies i ∈ gu, j ∈ gv, ie ∈
gue and je ∈ gve , it holds that:

dFmin(u, ue, v, ve) ≤ dF (i, ie, j, je) ≤ dFmax(u, ue, v, ve)

PROOF. ∀u′ ∈ [u, ue], ∀v
′ ∈ [v, ve] and i′ ∈ gu′ , j′ ∈

gv′ , according to Corollary 1, we have dmin
G (gu′ , gv′) ≤

dG(i
′, j′). By Observation 1, dFmin(u, ue, v, ve) is attributed

to a path among dmin
G (gu′ , gv′) values, and dF (i, ie, j, je) to a

path among dG(i
′, j′) values. Hence, for i ∈ gu, j ∈ gv, ie ∈

gue , je ∈ gve , it holds that dFmin(u, ue, v, ve) ≤ dF (i, ie, j, je).
dFmax(u, ue, v, ve) ≥ dF (i, ie, j, je) is proven similarly.

Example: Consider two subtrajectory groups G1,2 and G4,5 in
Figure 12(a) and assume that n = 12. Their DFD bounds
are dFmin(1, 2, 4, 5) = 5 and dFmax(1, 2, 4, 5) = 8, respec-
tively. In Figure 12(b), the pair of subtrajectories S3,5,S8,10 has
dF (3, 5, 8, 10) = 7. In accordance with Lemma 3, this distance
falls indeed into range [5, 8].

(a) DFD bounds on groups (b) DFD on original trajectory

Figure 12: Illustration of DFD bounds

Recall that our problem definition enforces a minimum motif
length ξ. To comply with it, we define the following lower and
upper bounds between two groups gu and gv:

GLBDFD(u, v) = min
ue,ve

{dFmin(u, ue, v, ve) : (19)

ue − u >
ξ

τ
∧ ve − v >

ξ

τ
}

GUBDFD(u, v) = min
ue,ve

{dFmax(u, ue, v, ve) : (20)

ue − 1− u >
ξ

τ
∧ ve − 1− v >

ξ

τ
}

The following lemma shows their correctness. It is derived by ap-
plying the minue,ve function to both sides of Lemma 3.

LEMMA 4. ∀ i ∈ gu, ∀ i ∈ gv , and ie > i + ξ, je > j + ξ it

holds that:

GLBDFD(u, v) ≤ dF (i, ie, j, je) ≤ GUBDFD(u, v)

GUBDFD(u, v) allows us to tighten bsf , which in turn
boosts the effectiveness of pruning. Both GLBDFD(u, v) and
GUBDFD(u, v) can be computed in O((n

τ
)2). We can re-

duce their computation cost by early termination. Specifically,
if at some point during the computation of GLBDFD(u, v), it
holds that GLBend

cross(ue, ve) ≥ GLBDFD(u, v) with ue −
u > ξ

τ
∧ ve − v > ξ

τ
, we may safely terminate the com-

putation because ∀ue′ > ue and ∀ve′ > ve it must be that
dFmin(u, ue′ , v, ve′) > dFmin(u, ue, v, ve) (i.e., it cannot fur-
ther tighten the bound). Similarly, early termination is possible in
the calculation of GUBDFD(u, v) too.

5.4 GTM Algorithm
Algorithm 3 presents the pseudocode for grouping-based tra-

jectory motif (GTM), which implements the computation frame-
work depicted in Figure 9. We first construct groups at Line 3,
then we compute the pattern-based lower bounds of group pairs
at Lines 4-5. Next, we insert each grouping based candidate sub-
set GCSu,v with its bound GCSu,v.LB = max(GLBcell(u, v),
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rGLBstart
cross(u, v), rGLB

row
band(u, v), rGLB

col
band(u, v)) into a list.

Then, we process the list in ascending order of GCSu,v.LB, and
apply DFD bounds for pruning (Lines 10-11) or for tightening the
bsf (Lines 12-13). After that, we halve the group size and repeat
the above procedure on the set of surviving groups Ssurvive until
the group size drops to 1. When this happens (i.e., τ = 1), each
element in Ssurvive is a candidate subset CSi,j . We invoke Algo-
rithm 2 on Ssurvive to obtain the final result.

Algorithm 3 GTM (Trajectory S, minLength ξ, group size τ )

Input: trajectory S, length n, minimum motif length ξ, group size τ
Output: subtrajectory pair bpair = (Si,ie ,Sj,je )

1: bsf ← +∞; bpair ← ∅
2: while τ > 1 do

3: Group trajectory S to G ⊲ Section 5.1
4: Compute GLBcell, rGLB

start
cross, rGLB

end
cross

5: and rGLBrow
band

, rGLBcol
band

⊲ Section 5.2
6: Construct a list GA of candidate subsets
7: Sort GA in ascending order of Ga.LB
8: Ssurvive ← ∅ ⊲ set of surviving groups
9: for each Ga in GA with bsf > Ga.LB do ⊲ Section 5.3

10: if bsf > GLBDFD(Ga.u,Ga.v) then
11: Ssurvive ← Ssurvive ∪ Ga.u ∪ Ga.v

12: if bsf > GUBDFD(Ga.u,Ga.v) then
13: bsf ← GUBDFD(Ga.u,Ga.v)

14: τ ← τ/2, S ← Ssurvive
15: Invoke Lines 5-13 in Alg. 2 on Ssurvive to compute the result bpair

Example: We demonstrate the grouping-based computation frame-
work in Figure 10. Assume that the minimum trajectory motif
length is ξ = 2 with bsf = 5. We first assign these subtrajectories
into groups (with τ = 2), as illustrated in Figure 10(a). Consider
two subtrajectories S0,5 and S6,11. We compute O(1)-time pattern-
based bounds to prune group pairs; the pruned pairs are shown in
gray in Figure 10(b). Then, we compute GLBDFD,GUBDFD

bounds for surviving pairs, as illustrated in Figure 10(c). The upper
bounds allow us to tighten bsf (to 4), whereas the lower bounds are
used to prune pairs (i.e., the gray region in Figure 10(c)). Finally,
we process the two surviving cells with Algorithm 2.

The group lower bounds developed in this section are directly
applicable to motif discovery between different trajectories, and the
adaptation of Algorithm 3 to that variant is straightforward.

Analysis: The computation cost of the while-loop (Lines 2–14) is
O(

∑log(τ)
i=1 ( ci

τ
)4), where c1 = n and ci is the number of surviving

groups in iteration i. Line 16 takes O(cτ2n2) time, where c is the
number of surviving groups after the while-loop. In summary, the
time complexity of Algorithm 3 is O(

∑log(τ)
i=1 ( ci

τ
)4 + cτ2n2). In

the worst case, Algorithm 3 degenerates to Algorithm 2, with time
complexity O(n4).

The space complexity of the algorithm is O(n2) as it employs
two 2-dimensional matrices for precomputed ground distances (i.e.,
dG[·][·]) and DFD values (i.e., dF [·][·]). In addition, it takes
O((n

τ
)2) space for precomputed group based lower bounds in GA

at Line 6.

5.5 Space-efficient GTM: GTM∗

We present a space-efficient variant of GTM, called GTM∗. It
incorporates three ideas: (i) during DFD computation, we compute
ground distances on-the-fly, (ii) implement DFD computation with
O(n) space, and (iii) execute the while-loop only once for a given
τ . Idea (i) eliminates the need for precomputed ground distances
(i.e., dG[·][·]). Idea (ii) is feasible because, in Lines 8-9 of Algo-
rithm 2, we examine at most two rows of dF [·][·] at the same time.

Idea (iii) requires only O((n
τ
)2) space. Thus, the space complexity

of GTM∗ is O(max{(n
τ
)2, n}).

The time complexity of GTM∗ is O((n
τ
)4 + c′τ2n2), where c′

is the number of group pairs that survive pruning by Idea (i). Since
GTM∗ executes the while-loop only once for a given τ (Idea iii),
the value of c′ in GTM∗ is expected to be larger than c in GTM.

6. EMPIRICAL EVALUATION
In this section, we evaluate the performance of our solutions on

real data. Section 6.1 introduces the experimental setting. Sec-
tion 6.2 studies the effectiveness of our pruning techniques (e.g.,
lower bounds and grouping). Section 6.3 compares the perfor-
mance of different methods with respect to various parameters.

6.1 Experimental Setup
We used three real trajectory datasets from moving people, vehi-

cles and animals. We note that these datasets have different char-
acteristics (such as sampling frequency and data distribution) thus
helping us verify the generality of our findings. The details of each
dataset are as follows.

GeoLife1: This GPS trajectory dataset was collected in the Geo-
Life project by Microsoft. The trajectories were recorded by differ-
ent GPS loggers and GPS-phones, and therefore they have differ-
ent sampling rates. Each trajectory is a sequence of time-stamped
points, each with a latitude, a longitude and an altitude. This dataset
contains 17,621 trajectories with a total distance of 1.2 million kilo-
meters.

Truck2: This dataset contains 276 trajectories of 50 trucks moving
in Athens metropolitan area in Greece. The trucks were carrying
concrete to several construction sites for 33 days.

Wild-Baboon3: This dataset was collected from wild olive ba-
boons at Mpala Research Centre in Kenya [23]. It contains 25
trajectories of baboons with a custom-designed GPS collar that
recorded a location every second from 1-st August to 14-th August,
2012.

In our experiments, we report the average measurements over
10 different trajectories of the same length. The response times
reported include the precomputation time of distances and lower
bounds. For each dataset, we concatenate raw trajectories in order
to build longer trajectories. By default, we fix the motif length
threshold ξ to 100, and the trajectory length n to 5000.

We used C++ for the implementation and conducted all experi-
ments (with single thread) on a machine with an Intel Core i7- 4770
3.40GHz processor. We compare the following methods:

• the baseline solution BruteDP (cf. Algorithm 1)

• the bounding-based solution BTM (cf. Algorithm 2)

• the grouping-based solution GTM (cf. Algorithm 3)

• the space-efficient solution GTM∗ (cf. Section 5.5)

6.2 Pruning Effectiveness
We first assess the effectiveness of our pruning techniques, par-

ticularly of our lower bounds and grouping. For the purposes of this
subsection, we present results only on the GeoLife dataset. Results
on Truck and Wild-Baboon are similar and are omitted in the inter-
est of space.

1
http://research.microsoft.com/en-us/projects/geolife/default.aspx

2
http://chorochronos.datastories.org/

3
https://www.datarepository.movebank.org/handle/10255/move.405
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Figure 13: BTM, effect of trajectory length n
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Figure 14: BTM, effect of minimum motif length ξ

6.2.1 Effectiveness of Relaxed Bounds

We first compare two variants of BTM that use: (i) only the tight

lower bounds from Section 4.2, and (ii) only the relaxed lower

bounds from Section 4.3.
In Figure 13, we compare the tight with the relaxed bounds by

varying the trajectory length n, with ξ fixed to 100. The pruning
percentage in Figure 13(a) corresponds to the ratio of candidate
pairs successfully pruned to the total number of candidate pairs.
Note that because the percentage is high, and in order to show
enough detail, we truncated the y-axis of the plot to start from
80%. In Figure 13(b), we show the overall response time to com-
pute the motif. We observe that the relaxed bounds are only slightly
weaker in pruning power, but they are orders of magnitude faster
computation-wise.

In Figure 14, we investigate the effectiveness and performance
of tight and relaxed bounds as a function of the minimum motif
length ξ, with n fixed to 5000. Again, although the tight bounds
have slightly higher pruning ratio (in Figure 14(a)), the relaxed
bounds render motif computation 10 times faster (in Figure 14(b)).
Since the relaxed bounds perform much better, we adopt them in
our framework (instead of the tight ones) and use them in the sub-
sequent experiments.

6.2.2 Effectiveness of Lower Bounds

In the next experiment, we compare the pruning effectiveness of
the different lower bound functions (LBcell, rLBcross, rLBband)
using BTM. Each bar in Figure 15 corresponds to the total number
of candidate pairs, broken down into the fraction pruned by each
of the 3 types of bounds, and the fraction of the surviving pairs
that required exact DFD computation (labeled as DFD in the bar
charts). In Figures 15(a),(b) we vary the trajectory length n and the
minimum motif length ξ, respectively. The bars are truncated to
start at ratio 50% to retain detail, because the percentage of LBcell

hugely dominates the rest.
Over 92% of the candidates can be collectively pruned by our

lower bounds. An interesting observation is that the bounds
complement each other. For instance, when ξ increases (in
Figure 15(b)), although LBcell deteriorates, rLBband becomes
stronger, thus eliminating many of the candidates that survived
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LBcell. This renders our methodology robust to different problem
settings.

Next, we compare three variants of BTM that use:
(i) LBcell only, (ii) LBcell, rLBcross only, and (iii)
LBcell, rLBcross, rLBband. We vary the trajectory length
n and the minimum motif length ξ in Figures 16(a),(b), respec-
tively. The results verify that the bounds complement each other
gracefully, and that the performance gains achieved are not due to
just one or some of them.

6.2.3 Effect of Group Size τ

In GTM (Algorithm 3), the initial group size τ influences the
pruning effectiveness and the computation cost of the algorithm.
Generally, when τ is small, group-based pruning has a high pruning
power but it requires high computation cost. In contrast, when τ
is large, group-based pruning becomes faster but it becomes less
effective. Figure 17 plots the response time of GTM for different
values of τ (x-axis) and trajectory length n (as indicated by the
label of each line). We observe that the response time is not overly
sensitive to τ . In the following experiments, we set τ = 32 by
default as it seems to work well in all cases.

6.3 Performance Evaluation
We compare the performance of our solutions (BTM, GTM, and

GTM∗) with the baseline (BruteDP) on the real datasets (GeoLife,
Truck, and Wild-Baboon). Recall that GTM∗ is the space-efficient
version of GTM.

Figure 18 plots the average response time for different trajectory
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Figure 20: Response time vs. minimum motif length ξ
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lengths n while fixing ξ = 100. BruteDP is prohibitively slow
even for small trajectories (e.g., n = 1000), thus, we terminate it
when it exceeds 2 hours. For the settings where it does terminate
within reasonable time, our advanced solutions (i.e., GTM, GTM∗)
outperform it by 3 orders of magnitude. GTM is the fastest algo-
rithm, with GTM∗ usually the runner-up. Due to the clear ineffi-
ciency of BruteDP, we exclude it from the following experiments.

In Figure 19, we plot the space requirements of BTM, GTM,
and GTM∗ for the same experiment as Figure 18. All methods
consume more memory as the trajectory length n increases. As
anticipated analytically, the space requirements of BTM and GTM
increase sharply with n, but those of GTM∗ are linear to it. Hence,
we consider GTM∗ as the method of choice for very long trajec-
tories, and the method that strikes the most favourable trade-off
between time and space efficiency.

In Figure 20, we measure response time as we vary the minimum
trajectory motif length ξ (with n fixed to 5000). The relative per-
formance of the methods is the same as in the previous experiment.
The response time of all solutions increases with ξ. That is because
a large ξ disqualifies short motifs with small DFDs, thus making it
harder to identify early a small bsf that enables aggressive pruning
(see also Figure 14(a)).

For completeness, we evaluate our algorithms for motif discov-
ery between different trajectories too. In Figure 21, we randomly
select 10 pairs of input trajectories (from the corresponding real
dataset) and report the average response time when varying their
length n (for fixed ξ = 100). The results demonstrate the efficiency
of our approaches in this problem variant too. Their performance
is very similar to the case of single input trajectory (Problem 1).
The same holds when we vary ξ as well as when we measure space
requirements; we omit the respective plots to avoid duplication.

7. CONCLUSION
In this paper, we study the trajectory motif discovery problem us-

ing the discrete Fréchet distance (DFD). Our contributions include
(i) a suite of novel lower bound functions for DFD, (ii) a grouping-
based solution that leverages on multi-level pruning to discover the
trajectory motif, and (iii) a space-optimized approach that is both
time and space efficient. Our fastest solution is over 3 orders of
magnitude faster than the baseline solution. All our algorithms
are exact. A promising direction for future work is to devise ap-
proximate solutions that trade exactness for shorter running times.
Another challenging direction is to apply similar optimizations in
order to accelerate other trajectory analysis operations that rely on
DFD, such as similarity join, subtrajectory clustering, etc.
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