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ABSTRACT
While traditional algorithms for multiway join are based on re-
ordering binary joins, more recent approaches have instantiated a
new breed of “worst-case-optimal” in-memory algorithms wherein
all relations are scanned simultaneously. Veldhuizen’s Leapfrog
Trie Join (LFTJ) is an example. An important advantage of LFTJ is
its small memory footprint, due to the fact that intermediate results
are full tuples that can be dumped immediately. However, since the
algorithm does not store intermediate results, recurring joins must
be reconstructed from the source relations, resulting in excessive
memory traffic. In this paper, we address this problem by incorpo-
rating caches into LFTJ. We do so by adopting recent developments
in join optimization, tying variable ordering to a tree decomposi-
tion of the query. While the traditional usage of tree decomposition
computes the entire result for each bag, our proposed approach in-
corporates caching directly into LFTJ and can dynamically adjust
the size of the cache. Consequently, our solution balances between
memory usage and repeated computation. Our experimental study
over the SNAP dataset compares between various (traditional and
novel) caching policies, and shows significant speedups over state-
of-the-art algorithms on both join evaluation and join counting.

CCS Concepts
•Information systems → Join algorithms; Query optimization;
Main memory engines;
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1. INTRODUCTION
Traditional optimization of multiway joins has been based on de-

composing the query into smaller join queries, and combining in-
termediate relations. This approach has roots in Selinger’s pairwise-
join enumeration [26], and it includes the application of the algo-
rithm of Yannakakis [30] over a tree decomposition of the query [13,
14]. Recent approaches have developed a new breed of in-memory
algorithms wherein all relations are scanned simultaneously [1, 10,
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15,16,21,28,29], featuring the complexity guarantee of worst-case
optimality. This yardstick of efficiency has been introduced by Ngo
et al. [21], and it states that for every join query, no algorithm can
be asymptotically faster on the space of all databases; in that work
they presented the first worst-case optimal algorithm, later termed
NPRR [21]. Effectively, the running time is bounded by the AGM
bound [5] that determines the maximal number of tuples in the mul-
tiway join of relations with given sizes.

Leapfrog Trie Join (LFTJ) [29] is another worst-case-optimal al-
gorithm, introduced by LogicBlox and implemented in the com-
pany’s product [3]. It operates in a manner of variable elimination
where there is a linear order over the variables, and query results
are generated one by one by incrementally assigning values to each
variable in order. Trie-structured indices over the relations allow
to efficiently determine whether the next variable in consideration
can be assigned a value that is consistent with the assignments to
the previous variables. (We give a detailed description of LFTJ in
Section 2). Beyond being worst-case optimal, LFTJ has two impor-
tant features. First, it avoids the potential generation of intermedi-
ate results that may be substantially larger than the final output size
(which is a key property in guaranteeing worst-case optimality).
Second, LFTJ is very well suited for in-memory join evaluation,
since besides the trie indices it has a close to zero memory con-
sumption. Of course, memory is required for buffering the tuples
in the final result, but these are never read and can be safely dumped
to higher storage upon need. Moreover, these tuples are not even
needed in the case of common aggregate queries (e.g., count the
number of tuples in the result).

Yet, intermediate results have the advantage that their tuples can
be reused, and this is especially substantial in the presence of a sig-
nificant skew. In our experiments, we have found that LFTJ often
loses its advantage to the built-in caching of intermediate results of
the traditional approaches, and in particular, LFTJ is often required
to apply many repetitions of computations. The repeated traversals
back and fourth on the trie index generate excessive memory traffic,
which has detrimental impact on the performance of database sys-
tems [2]. For example, our analysis of the memory load induced by
LFTJ found that running a single count 5-cycle query on the SNAP
ca-GrQc dataset generates over 45 ·109 memory accesses, whereas
running the same query using tree decomposition and Yannakakis’s
join generates less than 16 · 109 accesses. (The implementation of
both algorithms is discussed in Section 5.)

Our goal in this work is to accelerate LFTJ by incorporating
caching in a way that (a) allows for computation reuse, and (b)
does not compromise its key advantages. In particular, our goal
is to incorporate caching in LFTJ so that it can utilize whatever
memory it has at its disposal towards memoization. However, it is
not clear how LFTJ can cache intermediate results (without com-
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puting and storing full results of subqueries as done in other algo-
rithms [1, 28]). Intuitively, the challenge lies in the fact that every
iteration involves a different partial assignment, and variables are
interdependent through the query structure. Our solution is inspired
by recent developments in the theory of join optimization, relating
to worst-case optimality and tree decomposition [15, 16, 28]. But
unlike existing work, we do not apply the join algorithm on each
bag independently (which would result in high memory consump-
tion due to intermediate results), but rather execute LFTJ as origi-
nally designed.

Specifically, to enable effective caching our approach applies the
following steps. We first build a Tree Decomposition (TD) for the
query, in a manner that we discuss later on. Intuitively, a TD trans-
forms the query into a tree structure by grouping together several
relations, where each group is called a bag. We then execute LFTJ
as usual, but throughout the execution we use caches (deploying
a caching/eviction policy) for partial assignments. More formally,
each bag of the TD is assigned a cache, and the application of the
cache happens when the iteration over the variables enters a new
bag. The correctness of the cache usage (i.e., the fact that the inter-
mediate assignments are consistent with the current assignment in
construction) is crucially based on two properties.

1. The variable ordering is required to be compatibile with the
TD. Intuitively, compatibility means that the variable order is
consistent with the preorder of the TD. (The formal definition
is in Section 2.)

2. Each cache applies to partial assignments only for the vari-
ables it contains (for evaluation) or the subtree underneath
(for counting).

For TD computation, there is a plethora of algorithms with differ-
ent quality guarantees. The classical graph-theoretic measure refers
to the maximal size of a bag, and a generalization to hypergraphs
is based on the notion of a hypertree width. The optimal values of
those (i.e., realizing the tree width and the hypertree width, respec-
tively) are both NP-hard problems [4, 13], and efficient algorithms
exist for special cases and different approximation guarantees [8].
Other notions include decompositions that approximate the mini-
mal fractional hypertree width [15,19]. In our case, a TD defines a
caching scheme, and various factors determine the effectiveness of
this scheme. Caches are more reusable in the presence of skewed
data, and hence, data statistics can be used to estimate the good-
ness of a TD. Importantly, our caches correspond to the adhesions
(parent-child intersections); in order to better capture opportunities
of a high skew (and a high hit rate), we give precedence to keys
from a domain of a smaller dimension, and hence, we favor smaller
adhesions. Due to these arguments, we chose not to use any specific
algorithm that generates a single tree decomposition, but rather to
explore a large space of such decompositions. We devise a heuris-
tic algorithm for enumerating TDs, tailored primarily towards small
adhesions. Once such a collection of TDs are generated, we deploy
a cost function that takes various factors into account, including the
skew-based cost model of Chu et al. [10].

We experiment on three types of queries: paths, cycles and ran-
dom. In par with recent studies on join algorithms, we base our ex-
periments on datasets from the SNAP [18] and IMDB workloads.
We explore several attributes of our cached LFTJ, such as the cache
size and the eviction policy. We also experiment with the count ver-
sion of the queries. Our experiments compare among LFTJ, with
and without caching, and Yannakakis’s algorithm over the TD (as
in DunceCap [24,28]), as well as other various systems and engines
(LogicBlox [3], PostgreSQL [27] and EmptyHeaded [1]). The re-
sults show consistent improvement compared to LFTJ (in orders
of magnitude on large queries), as well as general improvement

Figure 1: Mass-count disparity plots for value accesses on the
evaluation of a 5-path (left) and a 5-cycle (right) over the SNAP
ca-GrQc dataset; the double-headed arrows indicate that 80%
of the accesses are applied to just 20% (left) and 5% (right) of
the nodes

compared to the examined algorithms and systems. The only al-
ternative that outperforms our implementation on a large portion
of the count queries is EmptyHeaded, as it implements a parallel
implementation using the Single Instruction Multiple Data (SIMD)
parallelization model (while our implementation applies standard
sequential computation). We defer hardware utilization of this sort
to future research.

While retaining the inherent features of LFTJ, our caching dra-
matically reduces the memory accesses. For illustration, running
a 5-cycle count query generates only 1.4 · 109 memory accesses,
which is over 30× fewer accesses than vanilla LFTJ (and over 10×
fewer accesses than TD with Yannakakis’s algorithm). Figure 1
provides some intuition on why we are able to establish such a
dramatic improvement with a modest memory usage. The figure
depicts mass-count disparity plots [11] for value accesses on the
evaluation of a 5-path (left) and a 5-cycle (right) over the SNAP ca-
GrQc dataset, which has a graph structure. The x-axis corresponds
to the number of accesses. A tick at number n refers to the nodes
that are accessed at most n times by our algorithm (node popular-
ity); the dashed curve shows the fraction of such nodes among all
nodes, and the solid curve shows the fraction of accesses to such
nodes among all accesses. On the left plot we can see, for example,
that 80% of the accesses are directed to around 20% of the most
popular nodes (as indicated by the double-headed arrow), and on
the right one we can see that 80% of the accesses are applied to 5%
of the most popular nodes!

To summarize, our contributions are as follows. First, we extend
LFTJ with caching, without compromising the key benefits. Our
caching is executed alongside LFTJ, and its size can be determined
dynamically according to memory availability. This is achieved
by combining LFTJ with a TD, a suitable variable ordering, and a
suitable set of target variables for each cache. Second, we devise
a heuristic approach to enumerating tree decompositions of a CQ;
this approach favors small adhesions, and is based on enumerat-
ing graph separating sets by increasing size. Third, we present a
thorough experimental study that evaluates the effect of caching on
LFTJ, on both evaluation and counting, and compares the results to
state-of-the-art join algorithms.

2. BACKGROUND
In this section we give preliminary definitions and notation that

we use throughout the paper.

2.1 Conjunctive Queries
We study the problem of evaluating a Conjunctive Query (CQ),

and the problem of counting the number of tuples in the result of
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a CQ. As in recent work on worst-case optimal joins [21, 22, 29],
we focus here on full CQs, which are CQs without projection. For-
mally, a full CQ is a sequence ϕ1, . . . , ϕm where each ϕi is a sub-
goal of the formR(τ1, . . . , τk) withR being a k-ary relation name
and each τj being either a constant or a variable. In the remainder
of this paper, we say simply “CQ” instead of “full CQ.” We denote
by vars(ϕj) the set of variables that occur in ϕj , and we denote by
vars(q) the union of the sets vars(ϕj) over all atoms ϕj in q (i.e.,
the set of all variables appearing in q).

Let q be a CQ. A partial assignment for q is function µ that maps
every variable in vars(q) to either a constant value or null (denoted
⊥). If µ is a partial assignment for q, then we denote by q[µ] the CQ
that is obtained from q by replacing every variable x with µ(x), if
µ(x) 6= ⊥, and leaving x intact if µ(x) = ⊥. If X is a subset of
vars(q), then we denote by µ|X the restriction of µ to X; that is,
µ|X is defined only over X , and µ|X(x) = µ(x) for all x ∈ X .

For a CQ q, a partial assignment that maps every variable to a
(nonnull) constant is called a complete assignment. Let D be a
database over the same relation names as q. Evaluating q over D is
the task of producing the set q(D), which consists of all complete
assignments µ such that all the ground subgoals of q[µ] are facts
(tuples) of D; such an assignment is also called an answer (for q
over D). Counting q over D is the task of computing the number
of answers, that is, |q(D)|.

The Gaifman graph of a CQ q is the undirected graph that has
vars(q) as its node set and an edge between every two variables that
co-occur in a subgoal of q.

EXAMPLE 2.1. Our running example uses the following CQ q
over a single binary relation R.

R(x1, x2), R(x2, x3), R(x2, x4), R(x3, x4), R(x3, x5), R(x4, x6)

Observe that q does not have constant terms. This CQ is illustrated
in the graph of Figure 2(a); in this case the graph is also the Gaif-
man graph of q (since q is binary). The graph is also the Gaifman
graph of the following CQ:

R(x1, x2), S(x2, x3, x4), R(x3, x4), R(x3, x5), R(x4, x6)

Let µ be the partial assignment that maps x1 and x2 to the constants
1 and 2, respectively, and the other variables to ⊥. Then q[µ] is

R(1, 2), R(2, x3), R(2, x4), R(x3, x4), R(x3, x5), R(x4, x6) .

Our example database D, depicted in Figure 2(b), consists of a
single relation. It can verified that q(D) contains the following
assignments µ1 and µ2:
• µ1: x1 7→ 1, x2 7→ 2, x3 7→ 1, x4 7→ 2, x5 7→ 3, x6 7→ 1
• µ2: x1 7→ 1, x2 7→ 2, x3 7→ 2, x4 7→ 1, x5 7→ 1, x6 7→ 3

If we remove from µ1 and µ2 the assignments for x1 and x2, then
we get answers in q[µ](D) for the above defined µ.

2.2 Ordered Tree Decompositions
Let q = ϕ1, . . . , ϕm be a CQ. A Tree Decomposition (TD) of q

is a pair 〈t, χ〉 where t is a tree and χ is a function that maps every
node of t to a subset χ(v) of vars(q), called a bag, such that both
of the following hold.
• For each ϕj there is a node v of t with vars(ϕj) ⊆ χ(v).
• For each x in vars(q), the nodes v with x ∈ χ(v) induce a

connected subtree of t.
An ordered TD of a CQ q is pair 〈t, χ〉 defined similarly to a TD,

except that t is a rooted and ordered tree. We denote the root of
t by root(t). Let v be a node of t. We denote by t|v the subtree
of t that is rooted at v and contains all of the descendants of v. If

x1

x5 x6

x4x3

x2

(a)

R
1 2
1 3
2 1
2 2
3 1

(b)

x2x1

x2

x4x3

x6x4x5x3

x4x2

v

x3

(c)

Figure 2: (a) Example of a CQ q; (b) A databaseD with a single
relation; (c) An ordered tree decomposition of q

v is a non-root node, then the parent adhesion of v (or simply the
adhesion of v) is the set χ(p) ∩ χ(v) where p is the parent of v,
and is denoted by adhesion(v). Every set adhesion(u), where u
is a non-root node of t, is called an adhesion of 〈t, χ〉.

EXAMPLE 2.2. We continue with our running example. Fig-
ure 2(c) depicts an ordered tree decomposition 〈t, χ〉 of the query q
of Figure 2(a). The tree t has four nodes, and the order is top down,
left to right. The root is the top node with the bag {x1, x2}. To
verify that it is indeed a tree decomposition of q, the reader needs
to check that every edge in Figure 2(a) is contained in some bag of
〈t, χ〉. The adhesions of 〈t, χ〉 are shown in the gray boxes. Let v
be the node of t with χ(v) = {x2, x3, x4}. The parent adhesion of
v, which we denote by adhesion(v), is the singleton {x2}.

Let q be a CQ, and let 〈t, χ〉 be an ordered TD of q. The preorder
of t is the order ≺ over the nodes of t such that for every node v
with a child c preceding another child c′, and nodes u and u′ in
t|c and t|c′ , respectively, we have v ≺ u ≺ u′. We denote the
preorder of t by ≺pre. For a variable x in vars(q), the owner bag
of x, denoted owner(x), is the minimal node v of t, under ≺pre,
such that x ∈ χ(v). For a node v of t, we denote by owned(v)
the set of variables x that have v as the owner. We say that 〈t, χ〉
is compatible with an ordering 〈x1, . . . , xn〉 if i < j whenever
owner(xi) ≺pre owner(xj). We may also say that the ordering
〈x1, . . . , xn〉 is compatible with 〈t, χ〉 if the latter is compatible
with the former.

EXAMPLE 2.3. Consider the given ordering 〈x1, . . . , x6〉 of the
variables in our running example (Figure 2), and the TD 〈t, χ〉 of
Figure 2(c). The preorder of t is given by {x1, x2}, {x2, x3, x4},
{x3, x5}, {x4, x6}. We have owner(x3) = owner(x4) = v, and
owned(v) = {x3, x4}. Note that owner(x2) 6= v since x2 occurs
already in the root of t (and therefore owner(x2) = root(t)).

2.3 Trie Join
We now describe the Leapfrog Trie Join (LFTJ) algorithm [29].

Our description is abstract enough to apply to the tributary join of
Chu et al. [10]. Let q = ϕ1, . . . , ϕm be a CQ. The execution of
LFTJ is based on a predefined ordering 〈x1, . . . , xn〉 of vars(q).
The correctness and theoretical efficiency of LFTJ are guaranteed
on every order of choice, but in practice the order may have a sub-
stantial impact on the execution cost [10]. Moreover, in our instan-
tiation of LFTJ we will use orderings with specific properties.

For every subgoal ϕk, LFTJ maintains a trie structure on the
corresponding relation r. Each level i of the trie corresponds to
a variable xj in vars(ϕk), and holds values that can be matched
against xj . Whenever xj is in a level above xj′ it holds that j < j′.
Moreover, every path from root to leaf corresponds to a unique
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Figure 3: The trie structures for subgoals R(x1, x2) and
R(x2, x3), respectively, in the running example

tuple of r and vice versa. Sibling values in the trie are stored in a
sorted manner.

EXAMPLE 2.4. Figure 3 depicts two of the tries used for eval-
uating the CQ q of Example (2.1), of our running example. The
left trie is for R(x1, x2) and R(x2, x3). (The reader should ignore
the gray triangles for now; we discuss them in the next example.)
In this case, the tries are identical (as they index the same rela-
tion), but they are used differently during query evaluation. Each
level of the trie corresponds to a variable and a corresponding at-
tribute. The path root→1→2 corresponds to the tupleR(1, 2), and
root→2→1 corresponds to R(2, 1).

LFTJ applies a sequence of unary joins, called leapfrog joins, as
follows. Each trie holds an iterator, initialized by pointing to the
root. A mapping µ, which is initialized with nulls, is maintained
throughout the execution. First, all the subgoals that contain x1
advance their iterators in the first level until a matching value a
is found (i.e., all iterators point to a), and µ(x1) is set to a. The
matching value is found efficiently in a technique referred to as
leapfrogging [29]. The algorithm then proceeds recursively1 with
the CQ q[µ] by proceeding to the next matching value, and so on,
until all variables are assigned values (and then µ is printed) or
no matching values are found; then backtracking takes place by
advancing the previous iterator. A balanced-tree storage of the sib-
ling collections in the tries guarantees that alignment of the iterators
on matching attributes is done efficiently (in an amortized sense),
which in turn guarantees that LFTJ is worst-case optimal [21].

EXAMPLE 2.5. Continuing Example 2.4, the gray triangles in
Figure 3 show a possible positioning of the pointers on the tries
during the execution. Here, the pointer for x1 is set on 2, the point-
ers of x2 in both tries is set on 1 (which is a matching value found),
and next a matching value for x3 will be sought in under the pointed
node in the right trie (and the other tries).

We refer the reader to the original publication [29] for more de-
tails on LFTJ. In this paper, it suffices to regard LFTJ abstractly as
depicted in Figure 4. We call the algorithm of Figure 4 trie join
and denote it by TrieJoin. This algorithm updates the global partial
assignment µ using the subroutine RJoin (Recursive Join).

3. CACHING IN TRIE JOIN
In this section we devise an algorithm that incorporates caching

within TrieJoin (Figure 4). We first discuss the intuition.

3.1 Intuition
The general idea is as follows. Let q be the evaluated CQ, and let
〈x1, . . . , xn〉 be vars(q) in the order of iteration. Consider a point
in the iteration where we complete the assignment for x1, . . . , xj
(j < n), and suppose that we have already encountered the assign-
ment for xi, . . . , xj in the past for some i such that 1 < i < j. We
1The actual algorithm of [29] is not recursive, but rather applies a
single procedure call. Recursion simplifies our presentation.

Algorithm TrieJoin(q, 〈x1, . . . , xn〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: RJoin(1)

Subroutine RJoin(d)

1: if d = n+ 1 then
2: print µ
3: return
4: for all matching values a for xd in T do
5: position T on xd 7→ a
6: µ(xd) := a
7: RJoin(d+ 1)
8: reset xd pointers in T

Figure 4: Trie join

would like to be able to reuse the past assignments, at least for a few
of the next variables, say xj+1, . . . , xk, instead of searching again
for matches. Integrating simple memoization in the algorithm will
not suffice. The problem is that the assignments for xj+1, . . . , xk
may depend not just on those for xi, . . . , xj , but rather on the as-
signments for variables in x1, . . . , xi−1, and so reusing past assign-
ments may lead to incorrect results (false assignments).

The above problem is avoided as follows. First, we deploy an
ordered TD 〈t, χ〉, and use an ordering 〈x1, . . . , xn〉 that is com-
patible with 〈t, χ〉 (as defined in Section 2.2). Second, cache keys
are assignments to sequences xi, . . . , xj of variables only if the set
{xi, . . . , xj} is an adhesion of some node v of t. Finally, we cache
assignments only for the variables xj+1, . . . , xk that are owned by
v. Due to the nature of the TD, we can rest assured that the as-
signments to xj+1, . . . , xk are independent of the assignments to
x1, . . . , xi−1 (once we know the assignments for xi, . . . , xj).

EXAMPLE 3.1. Consider again our running example around Fig-
ure 2. At some point in the execution of TrieJoin we construct the
assignment µ with µ(x1) = 1 and µ(x2) = 2, and then continue
to the rest of the variables in order. The next assignments we con-
struct are x3 7→ 1 and x4 7→ 2. Once we are done with the com-
plete assignments for the extended µ, we construct the assignments
x3 7→ 2 and x4 7→ 1, and later on x3 7→ 2 and x4 7→ 2. Later
in the execution, we encounter the assignment µ′ with µ(x1) = 2
and µ(x2) = 2. Since adhesion(x) = {x2}, we check to see
whether there is a cache for x2 7→ 1, and if so, then it tells us ex-
actly where to position the pointers for x3 and x4 (which are the
variables owned by v) in each of the possibilities (which are (1, 2),
(2, 1), (2, 2) and nothing else). We may similarly have a cache for
{x3} (lower left adhesion) and for {x4} (lower right adhesion).

Caching could be obtained by computing the complete join for
every bag (using TrieJoin), and then joining the intermediate re-
sults using an algorithm for acyclic joins such as Yannakakis [30],
as done in DunceCap [24, 28]. However, we wish to control the
memory consumption and avoid storing the complete joins of sub-
queries. Our algorithm executes TrieJoin ordinarily, yet caches re-
sults during the execution based on a deployed caching policy.

COMMENT 3.2. Compatibility of the variable ordering with the
TD has implications on the trie structures, which need to be consis-
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Algorithm CacheTrieJoin(q, 〈x1, . . . , xn〉, 〈t, χ〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: for all nodes v of t do
4: cachev := ∅
5: CacheRJoin(1)

Subroutine CacheRJoin(d)

1: if d = n+ 1 then
2: print µ
3: return
4: v := owner(xd)
5: {xl, xl+1, . . . , xk} := owned(v)
6: α := adhesion(v)
7: if v 6= root(t) and d = l then
8: if µ|α is a cache hit in cachev then
9: for all cached entries µ′ in cachev(µ|α) do

10: for i = l, . . . , k do
11: µ(xi) := µ′(xi)
12: AdjustTries(T , µ′)
13: CacheRJoin(k + 1)
14: reset xl, . . . , xk pointers in T
15: return
16: for all matching values a for xd in T do
17: position T on xd 7→ a
18: µ(xd) := a
19: CacheRJoin(d+ 1)
20: if v 6= root(t) and d = k then
21: ApplyCachePolicy(cachev, µ|α, µ|owned(v))
22: reset xd pointers in T

Figure 5: TrieJoin with caching

tent with the variable ordering [29]. Therefore, similarly to Empty-
Headed [15], the design of our tries depends on the TD. As building
the trie may take considerable time, our approach matches the sce-
nario where the join is known in advance, but not the data (which
is common in Web applications where queries arise due to user
interaction with the UI). Another matching scenario is where the
relations are narrow (e.g., graphs), and then we can compute in ad-
vance multiple trie structures (which is the design choice of Emp-
tyHeaded [15]) and load the proper ones upon need.

3.2 Algorithm
We now turn to a more formal description of our algorithm,

which we call CacheTrieJoin, and is depicted in Figure 5. The
algorithm extends upon the algorithm of Figure 4 in the sense that
when no caching takes place, the two algorithms coincide. The al-
gorithm takes as input a CQ q, a variable ordering 〈x1, . . . , xn〉,
an ordered TD 〈t, χ〉 that is compatible with 〈x1, . . . , xn〉, and a
trie structure T for a database D. The algorithm prints all tuples
in q(D). The algorithm uses a cache, denoted cachev , for every
node v of t, for caching computed assignments for the variables
owned by v. The algorithm CacheTrieJoin simply initializes a
global partial assignment µ and each cachev , and calls the sub-
routine CacheRJoin (the caching version of RJoin of Figure 4),
which we describe next.

The first part of the algorithm, lines 1–3, tests whether we are
done with the variable scan (that is, the algorithm is called with the
index n + 1) and, if so, prints µ. Now assume that d ≤ n. So the
currently iterated variable is xd. We denote by v the owner of xd,
and by α the adhesion of v (as defined in Section 2). Moreover,
we assume that the nodes owned by v are xl, . . . , xk in ascend-
ing indices. Observe that owned(v) is indeed a consecutive set of
variables, since the order is compatible with t.

In lines 8–15 we handle the case where we have just entered v
from a different node of t, which means that xd is the first node xl
owned by v, and v is not the root (that is, v > 1). From our con-
struction, the adhesion of v is already assigned values in µ (again
due to compatibility), and we check whether there is a cache hit for
µ|α (the restriction of µ to α) in cachev . If indeed there is a cache
hit, then in lines 9–15 we scan the cache that contains all assign-
ments µ′ that we have already computed for µ|α. For each such µ′,
we extend µ with µ′ and adjust the trie structure T according to µ′.
By adjusting T we consider every variable xi in xl, . . . , xk and if
xi is later used for a join, then we position the pointer precisely
where it should have been if we scanned the trie and got to µ′(xi);2

and if xi is not used for a future join, then we do nothing. As an
example, in our running example (Figure 2), we ignore x5 if we
have a cached assignment for it.

Lines 16–22 are executed in the case where we have not just
entered v, or we do but had a cache miss on line 8. In this case, we
continue exactly as in RJoin (Figure 4), but we also test whether xd
is the last variable owned by v (i.e., xd is xk). If so, we either cache
or do not cache the assignment µ|owned(v) based on the underlying
caching policy for µ|α. Observe that this action may lead to an
eviction of a previously stored entry for some µ′|α.

EXAMPLE 3.3. We will now show how the scenario of Exam-
ple 3.1 is realized in the algorithm CacheTrieJoin, where we con-
sider again our running example (Figure 2). The algorithm first
calls CacheRJoin(1), and the execution is the same as in RJoin, all
the way until we reach the call to CacheRJoin(3) where we have
µ(x1) = 1 and µ(x2) = 2. Observe that owner(x3) = v, which is
a non-root node, owned(v) = {x3, x4} (hence, l = 3 and k = 4).
Also note that adhesion(v) = {x2}. The test of line 7 is true, but
that of line 8 is false since cachev is empty at that point. So, we
continue to lines 16–19 and apply the different assignments for x3,
starting with x3 7→ 1. We then call CacheRJoin(4), where we find
the assignment x4 7→ 2. The test of line 20 is true, since x4 is the
last owned by v. Therefore, we may decide (based on the applied
caching policy) to cache the entry x2 7→ 2 in cachev , and then we
store there the assignment (x3, x4) 7→ (1, 2). We later store in that
entry the assignment (x3, x4) 7→ (2, 2).

Later in the execution, we call CacheRJoin(3) when we have
µ(x1) = 2 and µ(x2) = 2. We may then find out that in cachev
we have cached the entry of x2 7→ 2, and we simply use the two
tuples µ′ that maps (x3, x4) to (1, 2) and to (2, 2), as in lines 9–
13. However, if there is a cache miss then we repeat the above first
execution of CacheRJoin(3).

The following theorem states the correctness of the algorithm
CacheTrieJoin. The proof is by a fairly straightforward application
of the basic separation properties of a tree decomposition.

THEOREM 3.4. Let q be a CQ, 〈x1, . . . , xn〉 an ordering of
vars(Q) and 〈t, χ〉 a TD compatible with 〈x1, . . . , xn〉. Let D
be a database, and T a trie structure for TrieJoin. Algorithm
CacheTrieJoin(q, 〈x1, . . . , xn〉, 〈t, χ〉, T ) prints q(D).
2Technically, this is done by storing the position with µ′ in cachev .
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3.3 Counting
We now describe a variation of CacheTrieJoin (Figure 5) for

counting the number of tuples in q(D). The counting algorithm,
which we refer to as CacheTJCount, is depicted in Figure 5. The
input is the same as that of CacheTrieJoin, and the flow is very sim-
ilar. There are, however, a few key differences, and our explanation
(next) will focus on these.

The algorithm CacheTJCount uses some new global variables
and data structures. The variable total counts the joined tuples
throughout the execution, and in the end stores the required number.
For every non-root node v of t we have a counter intrmd(v) that
stores the intermediate count of the assignments to the variables
owned by the nodes in t|v (i.e., the subtree of t that consists of v
and all of its descendants), given the assignment to adhesion(v) in
the current iteration. More precisely, let i be the maximal num-
ber such that xi is in the adhesion of v, and consider a partial
assignment µ that is nonnull on precisely x1, . . . , xi. In an iter-
ation where µ is constructed, intrmd(v) will eventually hold the
number of assignments µ′ that TrieJoin can assign to the variables
owned by the nodes in t|v . As 〈t, χ〉 is compatible with the or-
dering 〈x1, . . . , xn〉, this number is the same for all assignments µ
that agree on the adhesion α of v. The counter intrmd(v) holds
the correct value once we are done with the variables owned by v.
Another fundamental difference from CacheTJCount is that now
cachev stores a natural number (rather than a collection of assign-
ments) for each assignment µα; this number is precisely the value
of intrmd(v) once we are done with the variables in t|v .

Following the initialization, the algorithm calls the subroutine
CacheRJoinCount, which is the counting version of CacheRJoin.
The input takes not only the variable index d, but also a factor f
that aggregates cached intermediate counts. When we are done
scanning all of the variables (i.e., we reach line 2), the factor f is
added to total . When we are at the first node owned by the current
non-root owner v (lines 7–13), we reset the counter intrmd(v). If
we have a cache hit for µ|α in cachev , then we copy the number
cachev(α) into intrmd(v), multiply f by this number, and jump
directly to the first index outside of t|v (line 12). This skipping
is where compatibility is required, since it ensures that the nodes
owned by t|v constitute a consecutive interval in 〈1, . . . , n〉.

As previously, lines 14–20 are executed in the case where we
have not just entered v, or experience a cache miss. We then con-
tinue as in RJoin. However, if xd is the last variable owned by v,
then we update the intermediate count by adding the product of the
intermediate results intrmd(c) of the children c of v. (Note that
this product is 1 when v is a leaf.) Finally, in lines 22–23 we con-
sider again the case where we have just entered a node v. Then,
we are about to go back to the previous node, and so we apply the
caching policy to possibly cache the number intrmd(v) for µ|α in
cachev . (This is why we maintain intrmd(v) to begin with.)

EXAMPLE 3.5. We illustrate CacheTJCount on our running
example (Figure 2). On CacheRJoinCount(1, 1) we set (in lines 16–
17) µ(x1) = 1 and call CacheRJoinCount(2, 1), where we set
µ(x2) = 2 and call CacheRJoinCount(3, 1). We reach line 8 and
initialize intrmd(v) to 0. We have a cache miss (as the cache is
empty), and we reach line 14, where CacheRJoinCount(4, 1) is
called with µ(x3) = 1. From there we call CacheRJoinCount(5, 1)
with µ(x4) = 2. Let cl and cr be the left and right children of v,
respectively. When the call returns, we have intrmd(cl) = 2 and
intrmd(cr) = 2, as x5 can be mapped to 2 and 3 and x6 can be
mapped to 1 and 2. At this point total is equal to 4, since the scan
has ended four times. We then reach line 18 (since x4 is the last
owned by v) and set intrmd(v) = 0 + 2× 2 = 4. Similarly, after

Algorithm CacheTJCount(q, 〈x1, . . . , xn〉, 〈t, χ〉, T )

1: for d = 1, . . . , n do
2: µ(xd) := ⊥
3: for all nodes v of t do
4: cachev := ∅
5: intrmd(v) := 0
6: total := 0
7: CacheRJoinCount(1, 1)
8: return total

Subroutine CacheRJoinCount(d, f)

1: if d = n+ 1 then
2: total := total + f
3: return
4: v := owner(xd)
5: {xl, xl+1, . . . , xk} := owned(v)
6: α := adhesion(v)
7: if v 6= root(t) and d = l then
8: intrmd(v) := 0
9: if µ|α is a cache hit in cachev then

10: intrmd(v) := cachev(µ|α)
11: m := max{i | owner(xi) is in t|v}
12: CacheRJoinCount(m+ 1, f · cachev(µ|α))
13: return
14: for all matching values a for xd in T do
15: position T on xd 7→ a
16: µ(xd) := a
17: CacheRJoinCount(d+ 1, f)
18: if v 6= root(t) and d = k then
19: let c1, . . . , ck be the children of v in t
20: intrmd(v) := intrmd(v) +

∏k
i=1 intrmd(ci)

21: reset xd pointers in T
22: if v 6= root(t) and d = l then
23: ApplyCachePolicy(cachev, µ|α, intrmd(v))

Figure 6: Cached count over trie join

the call to CacheRJoinCount(4, 1) with µ(x3) = 2 there will be
a call with µ(x4) = 1 and intrmd(v) will be incremented by an-
other 4, and so will be the case with µ(x4) = 2. So, when we reach
line 23 for d = 3, we may cache the number 12 as cachev(µα).

The next time CacheRJoinCount(3, 1) is called with µ(x2) =
2 (i.e., when µ(x1) = 2), we check cachev and may find that
cachev(µα) exists (i.e., cache hit) with cachev(µα) = 12. If so,
we reach line 12 and call CacheRJoinCount(7, 1×12). As 7 > n,
we skip to line 2 and add 12 to total . If there is a cache miss
for µα in cachev , there might still be a cache hit when we call
CacheRJoinCount(5, 1) with µ(x3) = 2, and then we immedi-
ately call CacheRJoinCount(6, 1× 2) on line 12, as 6 is the mini-
mal index outside the subtree of cl (which contains only cl).

The following theorem states the correctness of the algorithm
CacheTJCount.

THEOREM 3.6. Let q be a CQ, 〈x1, . . . , xn〉 an ordering of
vars(Q) and 〈t, χ〉 a TD that is compatible with 〈x1, . . . , xn〉. Let
D be a database, and T a trie structure for TrieJoin. Algorithm
CacheTJCount(q, 〈x1, . . . , xn〉, 〈t, χ〉, T ) computes |q(D)|.
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Figure 7: 4-cycle (top) and 6-cycle (bottom) queries on IMDB,
each with two isomorphic TDs

The proof is more involved than Theorem 3.4, and has two steps.
We first prove, by induction on time, that whenever we complete
iterating the variables of v, the number intrmd(v) is correct (i.e.,
it is the number of intermediate results for t|v given the assignment
for adhesion(v)). In the second step we show that every unit added
to total accounts for a unique tuple in q(D) and vice versa.

4. DECOMPOSITION
We now discuss the challenge of finding a TD 〈t, χ〉 and a com-

patible variable ordering. A typical TD algorithm aims at opti-
mising some specific cost function such as generalized/fractional
hypertree width [12, 15]. In our case, an important factor in the ef-
fectiveness of the caches in our algorithms is their dimensionality,
which is determined by the size of the adhesions. To better cap-
ture opportunities of a high skew and hit rate, we give precedence
to keys from a domain of a smaller dimension, and hence, we fa-
vor smaller adhesions. There are, however, additional criteria be-
yond the topological properties of the TD. For example, we would
like to use adhesions such that their corresponding subqueries have
high skews in the data, and then caching a small number of in-
termediate results can save a lot of repeated computation. More-
over, we would like to have a TD that is compatible with an order
that is estimated as good to begin with. For a (rather extreme) il-
lustration, Figure 7 depicts two TDs of two queries, 4-cycle and
6-cycle, over the IMDB dataset (see Section 5), where m and p de-
note movie and person identifiers, respectively. The left TD favors
persons for caching and the right favors movies for caching. While
the decompositions are isomorphic, their performance of counting
varies greatly: 4-cycle took around 40 seconds with the left TD,
and around 4,000 with the right one; and 6-cycle took around 600
seconds and 27,000 on the left and right TDs, respectively.

We take the approach of generating many TDs, estimating a cost
on each, and selecting the one with the best estimate. In our imple-
mentation (described in the next section), we deploy a heuristic cost
function that ranks TDs based on three criteria, in a lexicographic
manner: the maximal size over the adhesions (lower is better), the
number of bags (higher is better), the sum of adhesions (lower is
better), and the cost function of Chu et al. [10] for some variable
ordering that is compatible with the TD.

4.1 Enumerating TDs
We now describe our technique for enumerating ordered TDs. In

future work we plan to compare our enumeration to a recent one

Subroutine GenericTD(g, C)

1: 〈S,U〉 ← ConstrainedSep(g, C)
2: if S = ⊥ then
3: return the singleton decomposition of g
4: 〈t0, χ0〉 := RecursiveTD(g[S ∪ U ], C ∪ S)
5: let V1, . . . , Vk be the connected comps. of g − (S ∪ U)
6: for i = 1, . . . , k do
7: 〈ti, χi〉 := RecursiveTD(g[S ∪ Vi], S)
8: let t be obtained from t0, t1, . . . , tk by connecting the root

of t0 to the root of ti for all i > 1
9: χ := ∪ki=0χi

10: return (t, χ)

Figure 8: Tree decomposition via adhesion selection

by Carmeli et al. [9]. We begin with a simple method for gener-
ating a single TD. The two common heuristics to generating TDs
are graph separation and elimination ordering [7]. We adopt the
former, as it will later allow us to plug in an algorithm for enumer-
ating separating sets of a graph. The algorithm calls a method for
solving the side-constrained graph separation problem, or just the
constrained separation problem for short, which is defined as fol-
lows. The input consists of an undirected graph g and a set C of
nodes of g. The goal is to find a separating set S of g, that is, a
set S of nodes such that g−S (obtained by removing from g every
node of S) is disconnected. In addition, S is required to have the
property that at least one connected component in g− S is disjoint
from C. Hence, S is required to separate C from some nonempty
set of nodes. We call S a C-constrained separating set. We denote
a call for a solver of this problem by ConstrainedSep(g, C). We
later discuss an actual solver. For convenience, we assume that a
solver returns the pair 〈S,U〉, where U is the set of all nodes in the
connected components of g − S that intersect with C.

The algorithm, called GenericTD(g, C), is depicted in Figure 8.
It takes as input a graph g and a set C of nodes that is empty on the
first call. The algorithm returns an ordered TD of g with the prop-
erty that the root bag contains all nodes inC. So, the algorithm first
calls ConstrainedSep(g, C). Let 〈S,U〉 be the result. It may be the
case that the subroutine decides that no (good) C-constrained sep-
arating set exists, and then the returned S is null (⊥). In this case,
the algorithm returns the TD that has only the nodes of g as the
single bag. This case is handled in lines 1–3. Suppose now that the
returned 〈S,U〉 is such that S is a C-constrained separating set.
Denote by V1, . . . , Vk the connected components of g − (S ∪ U).
The algorithm is then applied recursively to construct several or-
dered TDs. First, an ordered tree decomposition 〈tU , χU 〉 of the
induced subgraph of S ∪ U , which we denote by g[S ∪ U ], such
that the root contains C ∪ S (line 4). Second, for i = 1, . . . , k, an
ordered tree decomposition 〈ti, χi〉 of g[S∪Vi] (the induced graph
of S ∪ Vi) such that the root bag contains S (lines 5–7). Finally,
in lines 8–10 the algorithm combines all of the tree decompositions
into a single tree decomposition (returned as the result), by con-
necting the root of each 〈ti, χi〉 to 〈tU , χU 〉 as a child of the root.

The algorithm GenericTD(g, C) of Figure 8 generates a sin-
gle ordered TD. We transform it into an enumeration algorithm by
replacing line 1 with a procedure that efficiently enumerates C-
constrained separating sets, and then executing the algorithm on
every such set. A key feature of the enumeration is that it is done
by increasing size of the separating sets, and hence, if we stop the
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enumeration of separating sets after k sets have been generated (to
bound the number of the generated TDs), it is guaranteed that we
have seen the k smallest C-constrained separating sets.

We are then left with the task of enumerating the C-constrained
separating sets by increasing size. For that, we have devised an
algorithm that establishes the following complexity result.

THEOREM 4.1. The S-constrained separating sets of a graph
g can be generated by increasing size with polynomial delay.

Our algorithm uses the well known technique for ranked enumer-
ation with polynomial delay, namely the Lawler-Murty’s proce-
dure [17, 20]3 that reduces a general ranked (or sorted) enumera-
tion problem to an optimization problem with simple constraints.
Roughly speaking, to apply the procedure to a specific setting, one
needs just to design an efficient solution to a constrained optimiza-
tion problem. Due to lack of space, we omit the details and defer
them to the long version of the paper.

5. EXPERIMENTAL STUDY
Our experimental study examines the performance benefits of

our approach and algorithms. We compare our implemented al-
gorithms to state-of-the-art solutions, and explore the effect of a
number of key parameters and design choices.

5.1 Algorithms and Systems Evaluated
Our evaluation compares between implementations of several

join algorithms, as listed below. All implementations were com-
piled using g++ 4.9.3 with the -O3 flag.

Our algorithms are CacheTrieJoin for CQ evaluation (Figure 5)
and CacheTJCount for CQ counting (Figure 6). These implemen-
tations extend the vanilla implementation of LFTJ [29], which we
describe below. We refer to the implementations by the acronyms
CTJ-E and CTJ-C, respectively. The caches are implemented using
STL’s unordered_map. The computation of a TD is as described
in Section 4. If no bound is mentioned for the cache size, then no
eviction takes place (and every partial assignment is cached). We
compare against the following alternatives.

LFTJ: We use a vanilla implementation of LFTJ [29]. Our imple-
mentation uses C++ STL map as the underlying Trie data structure.
Notably, this implementation adheres to the complexity require-
ments of LFTJ.

YTD: This algorithm combines Yannakakis’s acyclic join algo-
rithm [30] with a TD, as described by Gottlob et al. [14]. The
implementation is based on DunceCap [24]. For each intermediate
join (bag) a worst-case optimal algorithm is used. The complex-
ity requirement for the indices seekLowerBound is provided by a
binary search, enabled through the use of the cascading vectors for
the Trie. We use the query compiler from EmptyHeaded [1] (which
uses a YTD-like algorithm) to generate the TD and variable order-
ing. For queries with only two bags we use a regular join since,
in this case, the Yannakakis reduction stage generates an unneces-
sary overhead. Moreover, for count queries whose TDs yield more
than two bags, we save the relevant result for the matching join at-
tributes (rather than storing full intermediate results). Notably, we
have experimented with alternative YTD implementations, but they
all proved inferior to the one described above.

YTD-Par: EmptyHeaded [1] is a state-of-the-art graph query en-
gine that operates as a parallel implementation of DunceCap [24],

3Lawler-Murty’s procedure is a generalization of Yen’s algo-
rithm [31] for finding the k shortest simple paths of a graph.

Dataset #Nodes #Edges Category

ca-GrQc 5,242 14,496 Collaboration net
p2p-Gnutella04 10,876 39,994 P2P net
ego-Facebook 4,039 88,234 Social net
wiki-Vote 7,115 103,689 Social net
ego-Twitter 81,306 1,768,149 Social net
imdb-Actresses 2,714,695 4,700,000 Movies
imdb-Actors 3,539,013 7,000,000 Movies

Table 1: Dataset (SNAP) statistics

with optimizations for graph databases. We view it as a query en-
gine rather than a pure algorithm, since the implementation is tied
to the hardware: it parallelizes the execution through the Single-
Instruction Multiple-Data (SIMD) model. Parallel operations are
executed using the vector unit available on modern Intel proces-
sor cores. Specifically, each core on our test platform (Intel Xeon
E5-2630 v3) includes a 256-bit vector unit that executes 8 integer
(4-byte) operations in parallel.

In addition to pure algorithms, we also experiment with full sys-
tems. Pure algorithm implementations avoid the overhead associ-
ated with a full DBMS. We make this comparison simply to provide
a context for the recorded running times.

LB-LFTJ: LogicBlox (LB) 4.3.18 [3]: A commercial DBMS con-
figured to use LFTJ as an its join engine.

LB-FAQ: LogicBlox (LB) 4.3.18 configured to use InsideOut [16]
as its join engine.

PGSQL: PostgreSQL [27] is an open-source relational DBMS (ver-
sion 9.3.4). For query evaluation (as opposed to count), we use the
curser API of PGSQL to avoid storage of join results in memory.

Other popular DBMSs and graph engines were compared to the
above systems in a previous study [22], and were shown to be in-
ferior in performance. Hence, we omit the other DBMSs from our
experimental study. We further emphasize that our experiments ex-
plicitly restricted all algorithms and systems to utilize only a single
core on the test machine, which does not affect YTD-Par SIMD
parallelization.

5.2 Methodology
The setup and methodology we adopted in our experimental study

are as follows.

Workloads. In par with other studies on join algorithms our eval-
uation is based, for the most part, on datasets from the SNAP col-
lection [18], similarly to Nguyen et al. [22]. The datasets consist
of wiki-Vote, p2p-Gnutella04, ca-GrQc, ego-Facebook and ego-
Twitter. Table 1 gives some basic statistics on the datasets. As
the distribution of values in SNAP dataset is highly skewed, we
also use IMDB to explore the effect of datasets that are less skewed
and whose data skew is not uniform across attributes. To this end,
we partition IMDB’s cast_info table into a male_cast and a fe-
male_cast tables, each with attributes (person_id and movie_id).
We exclude the TPC-C and TPC-H benchmarks as the join queries
in these benchmarks are small.

Queries. Our datasets can be viewed as graphs, and so, we ex-
periment using 3 types of CQs (again, consistently with Nguyen et
al. [22]). The first type, denoted n-path for n = 3, . . . , 7, finds all
paths of length n. For example, the 4-path CQ is

E(x, y), E(y, z), E(z, w) .
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Figure 9: The speedups obtained with CTJ-E over LFTJ and
YTD for full query evaluation. Bars that represent executions
that timed out are marked as gray.

The second type is n-cycle, where n = 3, . . . , 6, and the query
finds cycles of length 3 to 6. For example, the 4-cycle CQ is

E(x, y), E(y, z), E(z, w), E(w, x) .

The third type consists of random CQs. We generate such CQs
by forming a graph pattern using the Erdös-Reyni generator. The
generator takes n nodes and adds an edge between every two nodes,
independently, with a specified probability p. The graph is undi-
rected and without self loops. We use only connected graphs with
n = 5 and n = 6, and with p = 0.4 and p = 0.6. Random graph
queries are denoted as n-rand(p). For each set of parameters we
generate four different graphs. We do not examine clique queries
as these cannot be decomposed, and hence our algorithms are the
same as LFTJ in this case.

Hardware and system setup. Our experimental platform uses Su-
permicro 2028R-E1CR24N servers. Each server is configured with
two Intel Xeon E5-2630 v3 processors running at 2.4 GHz, 64GB
of DDR3 DRAM, and is running a stock Ubuntu 14.0.4 Linux.

Testing protocol. Each experiment was run three times, and the
average runtime is reported. We set an execution timeout of 10
hours. Executions that timed out are highlighted.

5.3 Experimental Results
We start by experimenting with unlimited caches on query eval-

uation of CQs. Next, we compare different cache sizes, caching
policies and other cache attributes.

Query evaluation produces all the tuples in the result of the query.
We focus our exploration of query evaluation on computing the ma-
terialized result rather than storing it. With the help of the related
parties, the algorithms and systems were configured to ignore the
final result and not store it. The only exception is YTD-Par, for
which we could not disable the materialization of the final result. It
is therefore not shown in our examination of query evaluation.

Figure 9 presents the results for running query evaluation of 5-
path and 5-cycles queries. The figure shows that for 5-path queries,
CTJ-E outperforms YTD by 4× and LFTJ by over 9×. The per-
formance gap is attributed to CTJ-E’s caching, which captures fre-
quently used intermediate results. CTJ-E’s caching eliminates re-
dundant scans of the Trie structure that occur in LFTJ. CTJ-E also
outperforms YTD by up to 4.6× (3.2× on average), because the
computation of YTD becomes memory bound in the final join stages
due to the memory complexity of the Yannakakis joins.

For 5-cycle queries, Figure 9 shows that CTJ-E is faster than
LFTJ by an average of 8× for ca-GrQc, twitter and wiki datasets.

Query Algorithms Systems

CTJ-E YTD LFTJ LB-FAQ LB-LFTJ PGSQL

3-path 23 2× 1.3× 46× 34× 10116×
4-path 133 4× 5× 17× 26× 27679×
5-path 2222 4× 8× 23× 19× t/o
6-path 78528 4× 10× 23× 23× t/o
7-path 3265542 4× 10× t/o t/o t/o

4-cycle 558 1.1× 1.9× 9× 5× 4409×
5-cycle 4125 41× 8× 11× 19× 11526×
6-cycle 84248 9× 14× 40× 37× 564×

Query Algorithms Systems

CTJ-E YTD LFTJ LB-FAQ LB-LFTJ PGSQL

3-path 72 1.5× 3× 14× 17× 18355×
4-path 791 4× 9× 23× 21× 59157×
5-path 29458 4× 11× 26× 24× t/o
6-path 1.33e+06 4× 11× 26× t/o t/o
7-path t/o t/o t/o t/o t/o t/o

4-cycle 2192 0.7× 1.7× 5× 4× 2312×
5-cycle 27855 11× 6× 3× 14× t/o
6-cycle 415783 4× 17× 5× 44× t/o

Figure 10: CTJ-E runtimes (in msecs) for {3–7}-path and {4–
6}-cycle queries and relative runtimes for compared solutions
(i.e.,m×meansm times slower than CTJ-E), for ca-GrQc (top)
and Wiki (bottom) datasets. Timeout (t/o) means over 10 hours.
YTD-Par is omitted from the comparison as it always stores the
materialized result.

For the facebook and p2p-Gnutella04 datasets, however, CTJ-E ex-
periences a small slowdown. Finally, CTJ-E outperforms YTD by
26× on average. The reason is that YTD’s Yannakakis and the
worst-case optimal join algorithm used by YTD, favor the opposite
attributes order, which dramatically affects its performance.

CTJ-E also delivers performance benefits for sparse random pat-
tern queries. Figure 9 shows the results for representative graphs
(which are consistent with the results for the other graphs). Specif-
ically, for 5-rand(0.4) queries, CTJ-E outperforms LFTJ by 5× on
average. CTJ-E is also consistently 3–4× faster than YTD, with the
exception of p2p-Gnutella04 for which the results are comparable.
These trends are consistent for denser 5-rand(0.6) random graphs.
Here too, the results demonstrate the effectiveness of CTJ-E, whose
runtime is, on average, 10× faster than LFTJ and 7× than YTD
(CTJ-E and LFTJ runtimes are comparable for p2p-Gnutella04).

Figure 10 presents the results of query evaluation for {3–7}-path
and {4–6}-cycle queries over the ca-GrQc (top) and Wiki (bottom)
datasets for different algorithms and systems. For brevity, we show
the results for only two datasets: ca-GrQc and Wiki. These results
are consistent with the results obtained for the other SNAP datasets.

The figure shows that the performance benefits of CTJ-E over
LFTJ increase with the size of the query. CTJ-E is 10× faster than
LFTJ for 7-path queries and 14× for 6-cycle queries. Compared
to YTD, CTJ-E speedup is 4× for 7-path queries and 4–9× for 6-
cycle queries. The only case where CTJ-E is slower than another
algorithm is the small 4-cycle query, for which YTD is faster by
30% on the Wiki dataset. Importantly, these results are consistent
across the other datasets, excluding p2p-Gnutella04 for which the
algorithms are comparable.

Figure 10 also compares the performance of our algorithms to
that of full DBMSs (PGSQL, LB-LFTJ, and LB-FAQ). We observe
that the speedups are even larger (as expected, due to system over-
head). Notably, the ratio between the performance of LFTJ and
LB-LFTJ is more or less constant, showing that the system over-
head here accounts for around 2× slowdown.
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5-path 5-cycle
dataset 25% 10% 1% 25% 10% 1%

ca-GrQc 1.7× 3× 18× 1.9× 3× 5×
p2p-Gnutella04 4× 5× 6× 1.3× 1.3× 1.3×
ego-twitter 6× 9× 18× 2× 2× 2×
wiki-Vote 1.2× 1.3× 3× 4× 4× 4×

Table 2: Slowdown due to cache sizes with LRU, over unlimited
cache size for 5-path and 5-cycle query evaluation

On average, CTJ-E is over 20× faster than LB-FAQ and LB-
LFTJ for all path queries, and 3-44× faster for all cycle queries. An
even more extreme speedup is evident when comparing to PGSQL,
where CTJ-E is consistently 3–5 orders of magnitude faster.

To conclude, we have shown that CTJ-E is substantially faster
than the alternatives. Furthermore, the performance benefits of
CTJ-E increase with the size of the query.

5.3.1 Cache Parameters
Tuning the parameters of the CTJ-E cache (e.g., cache size, evic-

tion policy, cache partitioning) do not affect the correctness of the
CTJ-E. Instead, these parameters only affect the caching efficiency
of CTJ-E and, by proxy, the performance of the algorithm. The
caching of partial results in CTJ-E thus presents a tradeoff between
memory consumption and performance. Interestingly, LFTJ and
YTD represent the two extremes of this classic tradeoff. On one
hand, LFTJ caches no partial or intermediate results but rather re-
peatedly scans the Trie to regenerate partial results. On the other
hand, YTD must maintain all intermediate results generated by the
individual joins on each bag. As a result, its memory consumption
is even higher than CTJ-E with an unbounded cache.

In this section we explore the memory-performance tradeoff by
examining the impact of the different cache parameters on the per-
formance of LFTJ. Unless stated otherwise, the memory allocated
for the cache is evenly partitioned across the individual caches.

Cache size. The size of the CTJ-E cache is, naturally, the pri-
mary parameter that affects caching performance. We explore this
parameter’s impact on performance by bounding the cache size to
1%, 10%, and 25% of the size needed to store all partial results.
For example, a 5-cycle query running on the twitter dataset re-
quires 476MB to cache all partial results. We thus examine CTJ-E
performance when bounding the total cache size to 4.76MB (1%),
47.6MB (10%) and 119MB (25%). In this experiment, all bounded
caches use the least-recently-used (LRU) eviction policy.

Table 2 presents the performance of CTJ-E with bounded cache
size for representative queries and datasets. The performance is
presented as the slowdown over a run with an unbounded cache.

As expected, the table shows that performance degrades when
reducing the cache size. For example, the performance of a 5-
path query on the ca-GrQc dataset (0.4MB unbounded cache) slows

dataset 5-path 5-cycle

ego-twitter 1.8× 11×
ca-GrQc 1.3× 2×
p2p-Gnutella04 1.3× -1.3×
wiki-Vote -1.1× 4×

Table 3: Speedup for LRU over RANDOM on cache bounded
to 10% for 5-path and 5-cycle query evaluation

5-path 5-cycle
dataset 1x 2x 5x 1x 2x 5x

ca-GrQc 11.6× 3.4× 3× 10.4× 9.2× 8.3×
wiki-Vote 2.3× 1.5× 1.6× 5.5× 5× 5×
p2p-Gnutella04 5× 5× 5× 1.3× 1.3× 1.3×
ego-twitter 14× 8× 5.5× 2.4× 2.4× 2.4×

Table 4: Slowdown due to different cache partitioning with
LRU bounded to 5% of the full cache capacity, over unlimited
cache size for 5-path and 5-cycle query evaluation)

down by 1.7× when bounding the cache to 25% of full capacity, by
2.5× with 10% of full capacity, and by 18.4× with 1% of full ca-
pacity. The performance degradation is less acute in other cases.
A 5-cycle query running on ca-GrQc (8.8MB unbounded cache)
slows down by 1.9×, 3×, and 5× for caches bounded at 25%,
10%, and 1%, respectively, of full capacity. In other cases, the
performance impact of a bounded cache is fairly constant regard-
less of the bound. For example, running a 5-cycle query on the
twitter dataset (476MB unbounded cache) results in a slowdown of
2.4–2.5× for caches bounded at 1–25% of full capacity.

In summary, Table 2 shows that bounding the cache size to 25%
of its full capacity only yields an average slowdown of ∼3× over
an unbounded CTJ-E run. Bounding the cache size even further
to 10% of an unbounded cache results in an average slowdown of
∼2.7× over the performance obtained with an unbounded cache.
Notably, the performance obtained with a 10% bound is still supe-
rior to LFTJ, as well as to YTD 5-cycle queries, and comparable to
YTD for 5-path queries.

Eviction policy. We now turn to examine the impact of the cache
eviction policy on overall CTJ-E performance. Specifically, we
compare the performance obtained with both LRU and Random
eviction policies (the Random policy, as its name suggests, ran-
domly selects a cache entry to evict with uniform distribution). We
note that we have experimented with other eviction and insertion
policies, some based on statistical analysis of the datasets, but none
provided much better results than the classic LRU policy.

Table 3 presents the LRU performance as speedup over Random.
For brevity, we only show results for a 10% cache bound. The table
shows that for path queries LRU outperforms Random by 1.4× on
average. This is because most cached values will be effective in
path queries on the datasets we tested, and due to the overhead of
the LRU bookkeeping. On cycle queries, LRU outperforms Ran-
dom by 4.5× on average. We therefore choose to use the LRU
eviction policy with bounded CTJ-E caches.

Cache partitioning. The final parameter we explore is the allo-
cation of memory among caches. We test the LRU performance
speedup for bounded cache size, which is partitioned between the
caches in three different configurations. The first configuration
(1×) divides the allocated memory equally between the caches.
The second (2×), divides the allocated memory between the caches,
such that each level is bounded to 2× of the size of the level above
it. Here, a cache level means the position in the pre-order of the
TD. As an example, for the 5-cycle query on the twitter dataset,
we allocate a total of 476MB. In the second configuration, the first
cache will be bounded to 1/3 (158MB) and the second cache will
be bounded to 2/3 (317MB). The last configuration (5×) is similar
to the previous, but with a scale of 5× instead of 2×.

Table 4 shows the results for CTJ-E with LRU eviction, bounded
to 5%, over the different partitioning configurations. The results
show that for small caches of equal size, the caches can become
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Figure 11: Runtimes for count queries using the different algorithms. Gray bars represent executions that timed out.

ineffective due to thrashing. The results also show that a differ-
ent cache partitioning that allocates more memory to greater level
caches, such as 2× and 5×, can improve the performance by 10%-
3×. With these configurations CTJ-E outperforms LFTJ even with
very small memory allocation. The reason we observed is that a
cache in a greater level is accessed more often, and therefore ac-
counts for a larger portion of the recurring joins. Note that differ-
ent cache partitions do not affect queries on p2p-Gnutella04, since
CTJ-E caches are less effective for this dataset. This crude alloca-
tion depicts the importance of dynamically allocating the memory
between the caches, which we plan to pursue in future research.

Summary. We conclude that bounded caches enable CTJ-E to
benefit from both worlds. On one hand, it delivers substantial speed-
ups over LFTJ while preserving the bounded memory footprint
property. On the other hand, it can execute in settings where tra-
ditional join algorithms, which store all intermediate results, either
cannot execute or suffer substantial slowdowns due to disk I/O.

5.4 Results on Count Queries
We now examine the performance benefits of CTJ-C for count

queries. Figure 11 presents the runtime of 5-path, 5-cycle, and 5-
rand queries on different datasets. It shows that CTJ-C executes
the queries substantially faster than the alternatives for all datasets
except p2p-Gnutella04. CTJ-C is faster than LFTJ by over an or-
der of magnitude. When compared to YTD, CTJ-C is typically 2–
5× faster, with the exception of 5-rand(0.4) over p2p-Gnutella04,
where CTJ-C results in a marginal slowdown.

The distinction between the datasets is rooted in their value dis-
tribution. Skewed value distributions are more amenable to caching.
Specifically, when some values appear frequently in multiple tu-
ples, caching partial walks through the LFTJ Trie will likely pre-
vent redundant walks over the Trie. For example, the ego-Twitter
dataset exhibits such skew. For this dataset, CTJ-C is consistently
2–5× faster than YTD and orders of magnitude faster than LFTJ.

On the other hand, when the distribution of values across the
dataset is not skewed, as is the case with p2p-Gnutella04, caching
partial values have little benefit. Indeed, for this dataset the per-
formance benefits of CTJ-C are moderate (for 5-rand queries, both
YTD and LFTJ even marginally outperform CTJ-C). The results
demonstrate the effectiveness of CTJ-C when running on datasets
whose value distribution is skewed.

Figure 11 compares the algorithms when running two represen-
tative 5-rand random graph queries. Comparing CTJ-C with the
LFTJ algorithm, we see that CTJ-C is consistently faster by or-
ders of magnitude. The only exception is the p2p-Gnutella04 that,
as discussed above, exhibits a balanced value distribution. When

comparing CTJ-C to YTD, we observe an average speedup of∼8×.
Again, the only exception is the p2p-Gnutella04 dataset. Notably,
the results for 6-rand (not shown) are consistent with 5-rand.

The performance benefits of CTJ-C are consistent across differ-
ent query sizes. Figure 12 presents the runtimes for {3–7}-path and
{3–6}-cycle queries. For brevity, we show the results for only two
of the datasets. (The figure also shows the performance of DBMSs,
which is discussed below.) The figure shows that for path queries
CTJ-C is consistently 3× faster than YTD. Moreover, CTJ-C is or-
ders of magnitude faster than LFTJ, and the performance benefits
only increase with the size of the query.

For {3–7}-cycle queries, Figure 12 shows that CTJ-C outper-
forms LFTJ and YTD, especially on larger cycle queries. Inter-
estingly, we see little difference in the running times for 3-cycle
queries. The reason for that is there is no tree decomposition for
triangles, and CTJ-C effectively behaves like LFTJ. Similarly, the
performance of CTJ-C and YTD is comparable for 3-cycle queries.

When comparing the benefits of CTJ-C over large cycle and path
queries (Figure 12), we see that CTJ-C delivers better speedups for
paths. This is attributed to the cache dimension property (the size of
adhesions). Therefore, the cache dimension for paths is set to one,
and for cycles it is set to two. Notably, a cache whose dimension
is one is shown to be much more effective. 5-cycle queries present
another interesting result. For these queries YTD performs worse
than LFTJ (and CTJ-C). The reason is that YTD’s Yannakakis and
the worst-case optimal join algorithm used by YTD, favor the op-
posite attributes order, which dramatically affects its performance.

Figure 12 shows that the performance benefit of CTJ-C and YTD
over LFTJ increase with the query size at an exponential rate. More-
over, while CTJ-C and YTD have similar scaling trends for path
queries, CTJ-C is an order of magnitude faster for {5–6}-cycle.

Comparison to systems and engines. To explore the scaling
trends of the pure algorithms compared to those of DBMSs, we ran
the queries on PGSQL (using pairwise join), LB-LFTJ, LB-FAQ
(worst-case optimal join algorithms) and YTD-Par (parallel imple-
mentation of YTD). For brevity, we show the results for only two
datasets: Wiki-Vote and ego-Facebook. Notably, these are consis-
tent with the results obtained for the other SNAP datasets.

Figure 12 shows the results for {3–7}-path count queries. The
first thing to note in the table is that the scaling of vanilla LFTJ
and LB-LFTJ are correlated. We attribute the 4–10× ratio in per-
formance between the two to overheads associated with running a
full DBMS vs. a pure algorithm. A comparison between YTD-Par
and YTD shows that YTD-Par is much faster than YTD. This to be
expected, as YTD-Par engine is a parallel implementation of YTD
pure algorithm, using the processor’s wide vector unit. Due to the
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Algorithms Systems and engines

query CTJ-C YTD LFTJ LB-FAQ LB-LFTJ PGSQL YTD-Par

3-path 36 3× 5× 9× 54× 19× 0.08×
4-path 58 3× 133× 5× 615× 364× 0.05×
5-path 78 3× 4362× 8× 21113× 11161× 0.09×
6-path 97 3× 157691× 7× t/o 402735× 0.10×
7-path 119 4× t/o 7× t/o t/o 0.13×

3-cycle 24 1× 1× 13× 13× 41× 0.21×
4-cycle 1474 0.85× 3× 7× 7× 3× 0.16×
5-cycle 9401 16× 16× 1.66× 43× 13× 2×
6-cycle 28615 11× 235× 1× 617× 242× 0.90×

Algorithms Systems and engines

query CTJ-C YTD LFTJ LB-FAQ LB-LFTJ PGSQL YTD-Par

3-path 26 5× 4× 14× 39× 22× 0.12×
4-path 48 4× 62× 10× 308× 174× 0.06×
5-path 94 4× 818× 7× 7973× 2116× 0.07×
6-path 119 3× 15086× 6× t/o 56534× 0.08×
7-path 150 3× t/o 6× t/o t/o 0.09×

3-cycle 48 1.1× 1× 12× 12× 42× 0.13×
4-cycle 569 1.31× 1× 5× 5× 4× 0.12×
5-cycle 1785 74× 8× 3× 37× 26× 12×
6-cycle 4639 54× 81× 3× 366× 208× 5×

Figure 12: CTJ-C runtimes (in msecs) for {3–7}-path and {3–
6}-cycle count queries and relative runtimes for compared so-
lutions (i.e.,m×meansm times slower than CTJ-C), shown for
Wiki (top) and Facebook (bottom) datasets. t/o indicates run-
time over 10 hours (timeout).

parallel implementation, YTD-Par is also faster than CTJ-C and
LFTJ on path queries. Nevertheless, the sequential CTJ-C imple-
mentation is comparable to YTD-Par for {5–6}-cycles queries (and
is even faster on some datasets).

On average, CTJ-C is over 39× faster than LB-LFTJ for all path
queries, and 5-208× faster for all cycle queries. CTJ-C speedup
over LB-FAQ is 7× and 4× on average for path and cycle queries,
respectively. Compared to PGSQL, CTJ-C is consistently 3–5 or-
ders of magnitude faster for big cycle and path queries.

6. CONCLUDING REMARKS
We have studied the incorporation of caching in LFTJ by tying

an ordered tree decomposition to the variable ordering. The re-
sulting scheme retains the inherent advantages of LFTJ (worst case
optimality, low memory footprint), but allows it to accelerate per-
formance based on whatever memory it decides to (dynamically)
allocate. Our experimental study shows that the result is consis-
tently faster than LFTJ, by orders of magnitude on large queries,
and usually faster than other state of the art join algorithms.

This work gives rise to several directions for future work. These
include further exploration of different caching strategies, different
TD enumerations and cost functions, extension to general aggre-
gate operators (e.g., based on the work of Joglekar et al. [15] and
Khamis et al. [16]), and generalizing beyond joins [29]. A highly
relevant work is that on factorized representations [6,23,25], which
we can incorporate in two manners. First, our caches can hold fac-
torized representations instead of flat tuples. Second, the final result
can be factorized by itself, and in that case our caching is likely to
become even more effective, since it will save the cycles then we
effectively spend on de-factorizing our cached results.
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