
http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.03








17



We first discuss the various data stores handled by this sub-
system, then dive into the design of its various components.

6.1 Data Layer
GraphCache’s Cache Manger maintains a number of com-

plementary data stores, conceptually bundled together into
two groups: the Cache stores and the Window stores.

The Cache stores include three components: First, a com-
ponent storing copies of cached queries (i.e., the actual graph
submitted as a query to GC) alongside their result sets
(i.e., the sets of dataset graph IDs containing (for subgraph
queries) or being contained in (for supergraph-queries) the
query graph). This component is implemented as an in-
memory hash table, loaded from disk on startup and writ-
ten back to disk on shutdown of the Cache Manager sub-
system. In said hash table, the serial number of the query
is used as the key and the query graph and result set as
the value. At startup, an upper limit is set on the size of
this hash table (expressed in number of records); the Cache
is deemed full when this upper limit is reached. Second, a
combined subgraph/supergraph index, indexing the afore-
mentioned query graphs to expedite subgraph/supergraph
matching of future queries against past queries. We have
loosely based our query index design on the GraphGrepSX
subgraph query index[2], augmented with additional meta-
data to allow for the processing of supergraph queries. This
index is loaded on startup and written back on shutdown
of the Cache Manager subsystem. Our index design allows
us to have a single index for both subgraph and supergraph
queries, thus providing for lower disk space and I/O over-
head, and a memory footprint low enough to allow for the
index to be easily resident in main memory throughout the
lifetime of the Cache Manager process. Third, a component
storing statistics for each cached query, implemented as an
in-memory key-value store, loaded from disk on startup and
written back on shutdown of GC. The query serial number
is again used as the key, pointing to a variable size array
of columns, sorted by column name. Columns in this store
include, but are not limited to: static query such as the
number of nodes, edges and distinct labels in the query; to-
tal filtering and verification time of the query when first exe-
cuted; count of times the query was matched by either of the
GCsub/GCsuper Processors plus number of optimal matches
(see §5.1); last (most recent) time a query contributes, ex-
pressed as the serial number of the benefited query; total
contribution of the cached query in reducing the candidate
sets and processing times of future queries, expressed as the
number of dataset graphs removed from the candidate set of
queries due to their being in the cached query’s answer set
and the cumulative sub-iso test time alleviated; etc.

On the other hand, the Window stores include two com-
ponents: First, a component storing new graph queries and
their result sets, implemented in the same manner as the first
component of the Cache stores above. An upper limit on the
size of this store is also configured at startup; the Window is
deemed full when said limit is reached. Second, a component
storing statistics for each query in the previous component,
also implemented as an in-memory key-value store like the
statistics component of the Cache stores. In this case, the
statistics include only static information regarding the new
queries, including the number of nodes, edges and distinct
labels in the query, as well as the total filtering and verifica-
tion time of the query.New queries are sent to the Window

Manager directly from the Query Dispatcher to be added to
the appropriate store, while their answer sets are added at
the end of their processing.

All updates to the query statistics stores are performed
through the Statistics Manager using values supplied by the
Statistics Monitor. The Statistics Manager is currently im-
plemented as a lightweight wrapper library, encapsulating
accesses to the statistics stores. The design of this sub-
system has explicitly been abstract enough to allow for an
easy replacement of the data stores with other in-memory,
on-disk or even remote/distributed stores without requiring
changes to the rest of our code. The Statistics Manager ex-
poses an interface akin to that of contemporary key-value
stores; i.e., it stores triplets of the form {key, column name,
column value}, accessible either by key (returns a“row”with
all triplets with the given key), or by column name alone
(returns a “column” with all triplets with the given column
name), or by key and column name (returns a single triplet).

6.2 Window Manager with Admission Control
The Window Manager, implemented as a separate thread,

is the brain of the Cache Manager subsystem. It keeps track
of the queries in the current Window and invokes the Cache
Admission Control algorithm to decide whether each new
query should be considered as a candidate for addition to the
cache. It also executes the Cache Replacement algorithms
when the Window is full, and rebuilds GCindex to reflect
any changes in the cached queries store. In the latter case,
the Window Manager first computes the new contents of
the cache (by replacing evicted queries with admitted Win-
dow queries) and invokes the indexing mechanism; queries
arriving at the system while this procedure is taking place,
continue being served by the old index and update the old
statistics. Once the re-indexing is over, the new cache con-
tents and index are swapped in place of the old ones, and
any statistics entries corresponding to evicted queries are re-
moved lazily from the statistics store. The driving force be-
hind this design was the fact that, much like all index-based
graph-matching methods, our current version of GCindex
does not support dynamic concurrent updates. Neverthe-
less, our design allows for low-latency/high-throughput pro-
cessing of new queries, even while the index is rebuilt, and
incurs minimal locking overhead (i.e., only for the swapping
of old and new cache contents/index structures, actually im-
plemented as simple in-memory reference (pointer) swaps),
trading off some possible cache hits against window queries.

Cache Admission Control. While experimenting with dif-
ferent workloads and datasets we observed that often the
performance of GraphCache would be lower than expected;
that is, although GraphCache benefited the majority of que-
ries, the overall speedup achieved was very low (close to
1). The reason behind this proved to be that the cache
was polluted, storing and improving the performance pri-
marily of inexpensive graph queries. To alleviate this situ-
ation, we make the natural conjecture that past expensive
(time-wise) queries are more likely to benefit later coming
expensive queries as they will help in alleviating more ex-
pensive sub-iso tests (and vice-versa for inexpensive queries).
We therefore propose a novel admission control mechanism,
part of the Window Manager component, which optimises
the graph cache by preventing inexpensive queries from be-
ing added to the cache. To quantify the expensiveness of a

18













24


	GraphCache: A Caching System for Graph QueriesJing Wang, Nikos Ntarmos, Peter Triantafillou

