
 

 

Series ISSN: 2367-2005 270

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.25


271



272



273



Algorithm 2 In
uence set with Exact algorithm

Input: Interaction graph G(V; E). ‘G is the list of inter-
actions reversely ordered by time stamp
Threshold ! (maximum allowed duration of an in
u-
ence channel)

Output: ’(u) for all u ∈ V

function Add(’(u),(v; t))

if ∃t
′

: (v; t
′
) ∈ ’(u) then

. There is at most one such entry

if t < t
′

then
’(u) = (’(u) \ (v; t

′
)) ∪ (v; t)

end if
else

’(u) = ’(u) ∪ {(v; t)}
end if

end function

function Merge(’(u),’(v),t,!)
for all (x; tx) ∈ ’(v) do

if tx − t < ! then Add(’(u),(x; tx))
end if

end for
end function

Initialize: ’(u)← ∅ ∀u ∈ V
for all (u; v; t) ∈ ‘G do

Add(’(u),(v; t))
Merge(’(u),’(v),t,!)

end for

number of nodes of the graph. This will not scale well
for large graphs as we want to keep this data structure in
memory for e�cient querying. Hence in the next section
we will present an approximate but more memory and
time e�cient version of the algorithm.

3.2 Approximate Algorithm
Algorithm presented in the previous section computes

the IRS exactly, albeit at the cost of high space com-
plexity and update time. In this section, we describe an
approximate algorithm which is much more e�cient in
terms of memory requirements and update time. The
approximate algorithm is based on an adaptation of the
HyperLogLog sketch [9].

3.2.1 HyperLogLog Sketch
A HyperLogLog (HLL) sketch [9] is a probabilistic data

structure for approximately counting the number of dis-
tinct items in a stream. Any exact solution for counting
the number of distinct items in a stream would require
O(N) space with N the cardinality of the set. The HLL
sketch, however, approximates this cardinality with no
more than O(log(log(N))) bits. The HLL sketch is an
array with � = 2k cells (c1; : : : ; c�), where k is a constant
that controls the accuracy of the approximation. Initially
all cells are 0. Every time an item x in the stream ar-
rives, the HLL sketch is updated as follows: the item x is
hashed deterministically to a positive number h(x). The
�rst k bits of this number determines the 0-based index of
the cell in the HLL sketch that will be updated. We de-
note this number �(x). For the remaining bits in h(x), the
position of the least signi�cant bit that is 1 is computed.
This number is denoted �(x). If �(x) is larger than c�(x),
c�(x) will be overwritten with �(x).

For example, suppose that we use a HLL sketch with
� = 22 = 4 cells. Initially the sketch is empty:

0 0 0 0

Suppose now item a arrives with h(a) = 1110100110010110b.
The �rst 2 bits are used to determine �(a) = 11� = 3. The
rightmost 1 in the binary representation of h(a) is in posi-
tion 2, and hence c3 becomes 2. Suppose that next items
arrive in the stream with (c�(x); �(x)) equal to: (c1; 3),
(c0; 7), (c2; 2), and (c1; 2), then the content of the sketch
becomes:

7 3 2 2

It is clear that duplicate items will not change the sum-
mary. Furthermore, for a random element x, P (�(x) ≥
‘) = 2−‘. Hence, if d di�erent items have been hashed
into cell c�, then P (c� ≥ ‘) = 1 − (1 − 2−‘)d. This prob-
ability depends on d, and all ci are independent. Based
on a clever exploitation of these observations, Flajolet et
al. [9] showed how the number of distinct items in a stream
can be approximated from the HLL sketch. Last but not
least, two HLL sketches can easily be combined into a sin-
gle sketch by taking for each index the maximum of the
values in that index of both sketches.

3.2.2 Versioned HLL Sketch
The HLL sketch is an excellent tool for our purpose; ev-

ery time an edge (a; b) needs to be processed (recall that
we process the edges in reverse chronological order), all
nodes reachable by an information channel from b, are also
reachable by an information channel from a. Therefore,
if we keep the list of reachable nodes as a HLL sketch,
we can update the reachable nodes from a by unioning
in the HLL sketch of the reachable nodes from b into the
HLL sketch of those reachable from a. One aspect, how-
ever, that is not taken into account here is that we only
consider information channels of length !. Hence, only
those nodes reachable from b by an information channel
that ends within time window ! should be considered.
Therefore, we developed a so-called versioned HLL sketch
vHLL. The vHLL maintains for each cell ci of the HLL
a list Li of �(x)-values together with a timestamp and is
updated as follows: let tcurrent be the current time; peri-
odically entries (r; t) with t−tcurrent+1 > ! are removed
from vHLL. Whenever an item x arrives, �(x) and �(x)
are computed, and the pair (�(x); tcurrent) is added to the
list L�(x). Furthermore, all pairs (r; t) such that r ≤ �(x)
are removed from L�(x). The rationale behind the update
procedure is as follows: at any point in time tcurrent we
need to be able to estimate the number of elements x that
arrived within the time interval [tcurrent; tcurrent+!−1].
Therefore it is essential to know the maximal �(x) of all x
that arrived within this interval. We keep those pairs (r; t)
in L� such that r may, at some point, become the maxi-
mal value as we shift the window further back in time. It
is easy to see that any pair (r; t) such that r ≤ �(x) for a
newly arrived x at tcurrent will always be dominated by
(�(x); tcurrent). On the other hand, if �(x) < r we still do
have to store (�(x); tcurrent) as (r; t) will leave the window
before (�(x); tcurrent) will.

Example 3. Suppose that the elements e; d; c; a; b; a have
to be added to the vHLL. Recall that we process the
stream in reverse order, hence the updates are processed
in the following order: (a; t6), (b; t5), (a; t4), (c; t3), (d; t2),

274



275





277





279






	Information Propagation in Interaction NetworksRohit Kumar, Toon Calders

