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ABSTRACT 
XML and JSON have become the default formats to exchange the 
information for web application or within enterprises. Keyword 
Search over XML data has been motivated by the need to relieve 
users from writing difficult XQueries since otherwise users are 
required to know the complex XML schema. In existing XML 
keyword search techniques the XML nodes returned for a keyword 
query are the Lowest Common Ancestor (LCA) nodes for the query 
keywords. In this paper, we argue that the LCA based techniques 
still require users to be well versed with the XML schema and also 
the data to be able to obtain meaningful query results. 

To address these shortcomings, we present a novel system, Generic 
Keyword Search (GKS), - for a given keyword query Q, instead of 
identifying (and returning information) only from LCA nodes, 
GKS returns ‘meaningful’ information from any XML node, which 
contains a subset of keywords in the search query Q. GKS response 
includes LCA nodes, if any, that would have been returned by LCA 
based techniques.  

GKS is also able to find highly relevant keywords and XML 
schema elements, deeper analytical insights - called DI - in the 
XML data in the context of the user query. DI enables users to 
navigate the XML data and to refine their queries even if they are 
not familiar with the data and the schema. Our experiments on real 
data sets show that GKS is able to return highly relevant responses 
to keyword queries efficiently. 

1. INTRODUCTION 
Semi-structured data, e.g. XML and JSON, are default formats to 
represent and exchange data within and across enterprises and web 
[18]. XML data is represented as a labeled, ordered tree T as shown 
in Figure 1(i). The nodes in T are either XML schema elements or 
text nodes. In response to a given keyword query, XML keyword 
search systems return one or more nodes in T, each of which is a 
Lowest Common Ancestor (LCA) node for all the query keywords 
in the XML data tree T [2][5][6][16][17][4]. For instance, in Figure 
1, node x2 is the LCA node for query Q1. We refer to XML keyword 
search technique that return LCA nodes in the XML tree, in 
response to a given keyword query, as LCA based techniques. LCA 
based techniques follow the AND-semantics, i.e., each LCA node 
contains at least one instance of each query keyword [4].  

1.1  Motivation 
For a given keyword query Q={k1,..kn} (|Q|=n), instead of 
identifying LCA nodes and returning information only from these 
nodes, Generic Keyword Search (GKS) returns any node in the 
labeled tree T, if it contains s or more keywords in the search query 
Q (s≤n). More formally, the GKS problem is defined as follows: 
For a keyword query Q, an integer s ≥ 1, search returns all the XML 
nodes which contain at least min(s, |Q|), keywords from Q. The set 
of XML nodes returned by GKS in response to query Q is denoted 
by RQ (s). |RQ (s1)| ≤ |RQ (s2)| if s1 > s2 (cf. Section 2.2). 

There are many notions of LCA nodes in the literature but SLCA 
(Smallest LCA) [13] and ELCA (Exclusive LCA) [17], are most 
widely used. An SLCA node contains all the query keywords in its 
sub-tree and there is no node in its sub-tree which contains all the 
keywords. An ELCA set of nodes is a superset of the SLCA nodes. 
In Figure 1, for query Q1, node x1 is an ELCA node but not an 
SLCA node due to the presence of x2 in its sub-tree. In the figure, 
ki is an instance of keyword k (e.g. ais are instances of a). For 
different notions of LCA nodes, progressively faster algorithms 
have been proposed to retrieve them [16].  The nodes in GKS 
response set follow the semantics of SLCA.  

As pointed out by the authors of [19] “LCA based techniques work 
poorly for documents having irregular schema that have missing 
elements” because the schema allows certain XML nodes to be 
optional. Further noting that if a document is not complete, the 
resulting output could be different from the intended output. 
Authors of [19] develop an alternate approach whose basic premise 
is: for a given keyword search query, specific XML node types are 
targeted [15][19]. However, if the document has “missing XML 
elements”, nodes other than targeted nodes could also be returned 
due to the constraint on LCA based techniques (only LCA nodes 
are returned for the keyword query). Clearly, the motivation for 
[19] highlights that for LCA based techniques a) users need to be 
aware of the schema (i.e., users need to be aware which XML nodes 
to target); b) query keywords must be chosen by taking into account 
the semantic relationship between them (query must be formed 
such that the target nodes could be returned); and c) users need to 
be aware of the keywords in the XML document(s) and their 
distribution in XML tree T (otherwise nodes other than targeted 
nodes could become LCA nodes). In other words, in order to be 
able to effectively search the data using LCA based techniques, 
users have to be well acquainted with the data and the schema. 

AND-semantics constraints underlying LCA based techniques are 
further highlighted by the following example:  

Example 1: Consider keyword queries Q1, Q2, Q3, on the XML 
document in Figure 1(i). Each leaf node in the XML document is a 
text node (text node is an XML element directly containing its 
value). We have represented the document as shown in Figure 1(i) 
for brevity. Response of SLCA and ELCA based algorithms are 
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shown in Table 1. For query Q3, even though the user is able to 
select all the keywords present in the document, the response of 
LCA algorithms is root {r}. ‘r’ is not a meaningful response as it is 
available to the user even in the absence of any query. 

 

Figure 1. Labeled XML data tree and a set of queries.  

Table 1. Nodes returned for different queries on labeled XML 
tree by different keyword search algorithms 

Queries GKS (ranked)  ELCA SLCA 
Q1,s=|Q1| {x2} {x1, x2} {x2} 

Q2, s=2 {x2}, {x3} NULL NULL 

Q3, s=2 {x2,}, {x3}, {x4} {r} {r} 

Therefore, to construct meaningful queries, users need to know the 
keywords distribution in the document. To know the keyword 
distribution, it is imperative to know the semantic relationship 
between query keywords. In order to be aware of the semantic 
relationship between the query keywords, users must know the 
schema of the XML repository. Users must also know the schema 
to form the query such that targeted XML nodes are returned. 

MESSIAH [19] addresses the issues arising due to the AND-
semantics of LCA based techniques. Its authors propose an efficient 
FSLCA algorithm to identify intended nodes, in case of missing 
XML elements in the data. MESSIAH addresses the missing 
element problem, if the data is ‘imperfect’. However, the issues of 
‘missing data elements’ is still not handled in [19] if the user query 
is ‘imperfect’. For instance, if a query keyword occurs in the wrong 
sub-tree, it is difficult to determine the intended return nodes. 
Hence, for a keyword query, possibly containing semantically 
uncorrelated keywords, nodes other than targeted nodes will be 
returned by [19] even if the missing XML elements are identified. 

Consider the following scenario: User starts with query Q2 and Q3 
(shown in Figure 1). GKS returns a set of XML nodes to the user, 
as shown in Table 1, which contain a significant fraction of the 
query keywords but not necessarily all the query keywords (s=2). 
Besides returning these nodes, let us say, GKS system also suggests 
to the user that query Q2 can be morphed to {a, b, c} or {a, b, d} 
from {a, b, e} The user may not be aware of the existence of the 
keywords {‘c’, ‘d’} or their relevance in the context of the query. 
Similarly, for Q3, the system suggests that query be partitioned into 
{a, b, c} and {a, b, d}. Such refinements of the user queries are 
non-trivial. Overall, we are motivated by the following goals 1) to 
relax the need for users to know the XML data precisely; this 
enables them to browse the XML data in a manner similar to web 
search; 2) to relax the need for users to know the XML schema as 
user queries can be refined progressively (as for query Q3).   

1.2 Generic Keyword Search 
In this paper, we introduce a novel concept of Generic Keyword 
Search (GKS) over XML data to address the shortcomings listed 
above. It enables the users to navigate XML data with ease, as 
demonstrated with the help of an example on real data below run 
on the implemented GKS system [20]: 

Example 2: We have a DBLP dataset with more than 2.5 million 
articles. A query Qd = {"Peter Buneman" "Wenfei Fan" 

"Scott Weinstein" "Prithviraj Banerjee"} is run on this 
dataset. The user is most likely interested in articles jointly written 
by these authors. In its response, a total of 234 articles (for s=1) are 
found by GKS, i.e., GKS return all the articles by any of the authors 
in the keyword query since s=1.  

Since the response of GKS contains a large number of XML nodes  
(i.e., <inproceedings>), with different XML nodes in the response 
containing different number of authors, the results are ranked such 
that the more relevant XML nodes are ranked higher (cf. Section 
5). For query Qd, the <inproceedings> nodes with higher number 
of query keywords (i.e., author names) in their sub-tree are likely 
to be ranked higher. We use just <ip> for <inproceedings> later on. 

In the DBLP dataset, there is no article jointly written by 
Prithviraj Banerjee with any of the remaining authors. Of the 
five articles jointly written by the remaining three authors in DBLP 
dataset, 4 were returned as top 4 results in the ranked list of XML 
nodes by GKS. The remaining article was also in top 10 (it was 
ranked lower due to many co-authors, details Section 5). In the 
context of this example, we now explain how GKS overcomes the 
shortcomings of the LCA based techniques:  

GKS relaxes the need for users’ familiarity with the contents: 
For the given query, an LCA based technique would have returned 
{DBLP root}, containing millions of articles as the response due 
to the presence of one “wrong” keyword ‘Prithviraj 
Banerjee’ in the query. On the other hand, GKS produced a more 
“meaningful” response in the presence of “wrong” query 
keyword(s). This helps the users as follows;  

 a) With GKS, users can navigate the XML data without complete 
awareness with underlying data (for LCA based techniques, users 
need to know, which authors have published articles together). 
GKS returns a ranked list of most relevant XML nodes, in the 
context of the query, considerably enhancing the users’ ability to 
search the data with high precision and recall. 

 b)  More importantly, even when users are able to formulate the 
query precisely, there is a lot of information which could be of their 
interest, which are not returned by LCA based techniques due to 
the constraint that only LCA nodes must be returned. For instance, 
in Example 2, the articles by a large enough subset of authors in the 
query Qd could also be of interest to the user in the context of the 
query. Exposing such results in the data helps users navigate the 
data as well as to refine their queries (cf. Section 6.1). 

GKS relaxes the need for users’ familiarity with the schema: 
GKS identifies the XML nodes, which are not necessarily LCA 
nodes but that could be of interest to the user in the context of the 
query. This ability of GKS can be exploited to discover most 
relevant keywords and their semantics in the underlying XML data, 
in the context of the user query. This information is called deeper 
analytical insights or DI. For the query in Example 2, GKS exposes 
<ip: journal: SIGMOD Record>, <ip: year: 2001>, <ip: author: Alok 
N Choudhary> and <ip: booktitle: ICPP>, etc., as DI from the 
XML data in the context of the query (GKS returns a well-
constructed XML chunk. Truncated representation is due to lack of 
space). DI exposes the most relevant journals, year and authors in 
the query response. The user may not be aware of these keywords 
or their relevance in the context of the query. 

DI is defined formally in Section 2.3 (Def. 2.3.1). Discovery of DI 
(Section 6) enhances the users’ ability to navigate the data even if 
they are unaware of the schema details and the semantic 
relationship between the various data keywords.  To discover DI, 
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we exploit the XML schema, embedded in the structure of the XML 
data, in the context of a user query. A novel node categorization 
model is proposed that identifies certain XML node types as Least 
Common Entity nodes or LCE nodes (cf. Section 2.2). LCE nodes 
are central to our methodology to discover DI. A subset of XML 

nodes )(sRE QQ  in GKS response for query Q can be Least 

Common Entity (LCE) nodes; 0≤|EQ|≤|RQ(s)|. For an XML node u 
containing a sub-set of query keywords (of size ≥ s) in its sub-tree, 
its corresponding LCE node will be either u itself or its ancestor.  

In Example 2, <ip> node is an LCE node. GKS exposes the 
semantics of the DI keywords, i.e., 2001 is a <year> with the aid of 
XML elements on the path from the root of LCE node <ip> till the 
keyword “2001”. Semantics are important as in a different context, 
2001 could be a street number. Query keywords, either XML 
element names or text keywords, may carry different meaning in 
different context [9]. Exposing the relevant keywords and their 
semantic meaning helps users refine their queries in the absence of 
knowledge about the schema and the data.  

GKS returns meaningful response: The meaningfulness of the 
results of a search query is defined by their recall and precision. In 
LCA based search, a keyword query typically targets XML nodes 
belonging to specific schema elements E in the associated XML 
schema [19].  <E>E is an XML schema element. The target 
nodes are the LCA nodes of the query keywords. If the returned 
LCA nodes are of targeted schema element type(s), it constitutes a 
meaningful response. For the query Qd in Example 2, the 
meaningful LCA nodes for this query are all of type <ip> in the 
corresponding XML schema. 

However, due to imperfect data with missing XML elements or due 
to imperfect query, LCA based techniques often return LCA nodes 
other than the target XML elements type [19]. For instance, for 
query Qd, LCA based techniques will return the DBLP root. A more 
meaningful response is a ranked list of articles, jointly written by a 
sub-set of authors in the query, i.e., returning nodes of same type, 
which were targeted. For GKS system, all the XML nodes that 
contain any subset of keywords in a query (of size ≥ s) are returned. 
Therefore, recall of GKS is likely to be high since GKS query 
response is likely to have XML nodes which are instances of target 
XML schema element in E for a user query Q (any XML node 
containing s ≤|Q| keywords in its sub-tree is returned).  

In the context of a keyword query, the relevance of a XML node is 
high if it contains a large fraction of query keywords. The precision 
of the GKS system will be high if the most relevant XML nodes in 
the GKS query response are ranked higher. We present a novel 
ranking methodology (Section 4) to ensure high precision.  

1.3 Research Challenges and Contributions 
Similar to a web search engine, Generic Keyword Search has the 
twin objectives of: a) locating the most relevant XML nodes for the 
given keyword query efficiently; and b) ordering the search results 
to rank more meaningful results higher. 

GKS has three primary challenges; 1) Efficiency –GKS has much 
larger search space as opposed to LCA based techniques (Lemma 
3). Therefore, a major challenge for GKS is to be able to retrieve 
the relevant nodes efficiently (Section 4); 2) Ranking – Number of 
XML nodes retrieved by GKS could be large and the structure of 
the different XML nodes in the search results could be different. 
Therefore, it is imperative to rank the nodes such that more 
meaningful and relevant nodes are ranked higher (Section 5); 3) 
Analysis - GKS aims to enable the users to refine their queries 
without needing them to be familiar with schema and data. GKS 

meets this challenge by exposing relevant keywords in the data and 
their semantics in the context of the user query (Section 6). 

In this paper, we make the following contributions:  

1. Existing XML Keyword Search techniques work within LCA 
framework. We introduce Generic Keyword Search (GKS) 
that enables XML search beyond LCA framework. 

2. We propose a XML node categorization model. With the aid 
of this model, we expose most relevant XML elements and 
data keywords, called DI, in the context of a given keyword 
query. Users can refine their query with the aid of DI. DI is 
discovered because GKS does not impose the LCA constraint. 

3. We introduce a ranking methodology to rank more meaningful 
XML nodes, retrieved by GKS, higher. Node ranking is 
further exploited for DI discovery. 

4. We present an evaluation of GKS system on real data sets. Our 
results show that GKS is able to return highly relevant 
response for the given keyword queries efficiently. We further 
show that our system is able to find highly relevant DI that 
enables the users to navigate the XML data seamlessly. 

The organization of the paper is as follows. Section 2 introduces 
the GKS node categorization model along with the definitions of 
LCE nodes, DI and the GKS indexing structure. Related work is 
presented in Section 3. Our methodology to identify the relevant 
XML nodes efficiently is the subject of Section 4. In Section 5, we 
present a novel XML node ranking methodology. In Section 6, we 
discuss our mechanism to discover DI. In Section 7, we present 
experimental results followed by conclusion in Section 8. 

2. XML NODE CATEGORIZATION AND 
DEFINITIONS 
In this section, we first present a novel XML node categorization 
model. The XML node categorization helps us exploit the XML 
schema, embedded in the XML data, to identify relevant data 
keywords and XML schema elements in the context of a user query. 
We also present the definitions of LCE nodes and DI, GKS system 
architecture and the indexes maintained by GKS. 

2.1 Preliminaries  
An XML document is a rooted tree T as shown in Figure 2(a). 
Nodes in the tree are labeled with Dewey id [1]. Dewey id is a 
unique id assigned to a node that describes its position in the tree 
T. A node with Dewey id 0.2.3 is the fourth child of its parent node 

0.2. nid represents an XML node with Dewey id id. uv a denotes 

that node v is an ancestor of node u. uv a denote that uv a  or 

v=u. U represent a set of XML nodes (or keywords) in XML tree 
T. Uv lca denotes that v is the lowest common ancestor of nodes 

in set U. For a text keyword or XML node k, k v denotes that k 
occurs in the sub-tree rooted at XML node v and k v denotes that 
k does not occur in v’s sub-tree. u* denote that one or more siblings 
of node u exist in tree T with same XML element label. uv e

denotes that v is an entity node w.r.t. u (Def. 2.1.3) and u v or 
v=u. uv lce denotes that XML node v is the lowest common entity 

node (LCE) w.r.t. node u (Def. 2.2.1) and u v or v=u. 

2.2 Node Definitions 
We divide the XML nodes in the following categories, based on the 
structure of their sub-trees in T. 

2.1.1. Attribute Node (AN): A node which contains only one child 
that is its value. For instance, in Figure 2(a) node <Name> (n0.1.0) 
is an attribute node. Attribute nodes are also represented as ‘text 
nodes’ in XML data. The parent node of an attribute node is 
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considered the lowest ancestor for keyword(s) in its value (and not 
the attribute node itself). Thus, ancestor of ‘Databases’ is node n0.1. 

2.1.2. Repeating Node (RN): Let *uv lca , i.e., v is the lowest 

common ancestor of multiple instances of node u. u is called the 
repeating node w.r.t. node v. For instance, in Figure 2(a), nodes 
with label <Student> are repeating nodes w.r.t. <Students>. The 
repeating nodes most likely correspond to a physical world object 
which could be a concrete or an abstract object [3]. A node that 
directly contains its value and also has siblings with the same XML 
tag is considered a repeating node (and not an attribute node), i.e., 
<Student> nodes in Figure 2(a). 

2.1.3. Entity Node (EN): Let v be an XML node in XML tree T 

such that ** ,|),( uaAaAuv lca  . v is an entity node. A is a 

set of attribute nodes. An attribute node a A does not occur in any 
repeating node u, i.e., a does not have u in its XPath from root.  

An entity node v is a lowest common ancestor of repeating nodes u 
and one or more attribute nodes (|A|≥1). In Figure 2(a) <Area> (n0.1) 
is an entity node; it is the lowest common ancestor of attribute node 
<Name> (n0.1.0) and repeating nodes <Course> (n0.1.1.x). <Course> 
nodes are not the direct children of n0.1 (Attribute nodes and 
Repeating nodes can be indirect children of entity node). Similarly, 
<Course> nodes (n0.1.1.0, n0.1.1.1, n0.1.1.2, ..) are the entity nodes.  

2.1.4. Connecting Node (CN): Nodes which are in none of the 

above categories. In Figure 2(a), <Courses> (n0.1.1) is a connecting 
node.  

Table 2: Notation 

XML documents follow pre-order arrival of nodes. Hence, different 
node types are identified in a single pass over the data. GKS does 
not need the XML schema in order to categorize nodes. XML nodes 
are categorized at the instance level. This information is stored in 
an index (Section 2.4). Hence, each node is categorized based on 
the structure of its sub-tree. For example, all the instances of 
<Course> node in Figure 2(a) are entity nodes (Def. 2.1.3). 
However, if a <Course> node had just one student in its sub-tree, 
that instance would have been stored as ‘Connecting node’ in the 
index. GKS can be easily extended to take into account the XML 
schema to categorize the nodes. This is part of our future work.  

The node categories described above extend the node 
categorization model in [3]. It is argued in [3] that in the 
hierarchical structure of XML data, repeating nodes (Def. 2.1.2) 
capture the concept of physical world object. The physical object 
could be a concrete or an abstract object. In normalized XML data, 
attributes of an XML node that contains repeating nodes in its sub-
tree, represent the information that is common to these repeating 
nodes [14]. The fundamental design principle underlying the 
normalized XML schema is, the attribute nodes of an XML node 
define the context of the repeating nodes in its sub-tree through 
their values. In GKS node categorization model, such XML nodes 
are termed entity nodes (Def. 2.1.3). As shown in the experiment in 
Section 7.2, we count the total number of XML nodes and XML 

nodes that were labeled as entity nodes, attribute nodes and 
repeating nodes, respectively by GKS for many standard XML data 
repositories. The result shows that the real world data repositories 
are normalized. The note categories described above naturally 
capture the normalized XML data. 

A node can be an entity node and at the same time a repeating node 
for another entity node higher up in the hierarchy. For instance, in 
Figure 2(a), <Course> nodes are both entity nodes as well as 
repeating node within the sub-tree of node <Area> (n0.1). Let Q be 

a keyword query, |Q|>s, and QQ ' ; |Q’|≥s. Let LCA node u for 

Q’ is not an entity node and v is the lowest ancestor of node u such 
that uv e . Hence, node u can either be a connecting node or a 

repeating node w.r.t. v. Since u does not have the attribute nodes, 
as it is not an entity node, the context of the node u is most 
specifically defined by the attribute nodes of node v. In Figure 2(a), 
attribute <Course: Name: Data Mining> defines the context that 
<student> nodes in its sub-tree are registered in this course. 

For a given keyword query, the closer the entity node is to the query 
keywords in its sub-tree, the more specific the context would be for 
those keywords. As we move up in the hierarchy, the context of the 
corresponding sub-tree becomes more general. In Figure 2(a), 
<Dept> node and <Course> node both are entity nodes and both 
contain the query keywords for a query Q= {‘Karen, ‘Mike’}. 
However, the context of entity node <Dept> is much more general 
compared to more specific context of the node <Course>. Hence, 
to find the more meaningful response for a given query, we 
discover the entity node closest to the query keywords or Least 
Common Entity (LCE). LCE is formally defined below. 

Let Sc be a set of all the entity nodes in the sub-tree rooted at an 

entity node ec, i.e., cac Seee ; . Let Q be a keyword query, 

Q={k1,..kn}.  

Def 2.2.1 LCE Nodes: An entity node ec is an LCE node for query 

Q if ekSeekQk cc  ,| .  

Hence, for an entity node ec to be LCE node for a given query Q, 
there exists at least one keyword k Q in the sub-tree of ec, which 

is not contained in any other entity node e such that ee ac  .  

Keyword k is called an independent witness for LCE node ec. 
Similar to an SLCA node, an LCE node also needs at least one 
independent witness. 
 

 

Lemma 1: Let uv a denote a relationship that uv a or v=u. Let 

u be an XML node that is an LCA node for a set of keywords 

QQs  , |Qs|≥|s. Let v be an LCE node for keywords in Qs. uv a  

Proof: Obvious.            □ 

s Minimum number of keywords from a query that must 
appear in the sub-tree of a XML node. 

RQ(s) Set of XML nodes for a given s, returned by GKS in 
response of query Q 

R(e) For an LCE node eRQ(s), R(e) is a subset of text 
keywords, extracted from attribute nodes of e.  

Sw
Q Weighted set of text keywords, identified from the LCE 

nodes in set RQ(s). 

r
QR  Set of XML nodes, after recursively applying the GKS 

algorithm r times over the query results RQ(s).  
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For a given user query Q, GKS returns a set of XML nodes RQ (s) 
such that for each node u RQ (s), u contains at least s keywords 
from query Q. 

Lemma 2: For a keyword query Q and integers s1 and s2, |Q|≥s1>s2, 
|RQ (s1)| ≤ |RQ (s2)|. 

Proof: Since s1>s2, uvsRusRv aQQ |)(),( 21  . However, 

)( 2sRu Q there can be at most one )( 1sRv Q | .uv lce Thus, 

for )(, 1sRvv Q there exist a corresponding node in RQ (s2) but 

vice versa is not true. Thus, |RQ (s1)| ≤ |RQ (s2)|.                             □ 

Example 3: Let there be a user query Q4={student, karen, mike, 
john, harry}, s=2. The intent of the query is to find the information 
about these students. For the data shown in Figure 2(a), 3 courses 
contain the names of at least one of these students. The GKS 
response constitutes the XML nodes as shown in Figure 2 (b). The 
XML nodes are LCE nodes since they are the lowest entity nodes, 
w.r.t. query keywords. Attribute nodes of respective entity nodes 
exposes the context, i.e., name of the respective courses students 
are enrolled in. The XML nodes are ranked (cf. Section 5).  

As one can see, the user query in Example 3 is ‘imperfect’. To 
construct a ‘perfect’ query, for a LCA based technique, user needs 
to be aware which students are enrolled in same courses. User still 
has to run multiple queries to get the complete response. GKS 
returns the relevant and meaningful information in the context of 
this ‘imperfect’ query. We further enhance a user’s capability to 
refine an ‘imperfect’ query by exposing the deeper analytical 
insights in the query response as explained in the next section.  

2.3 Deeper Analytical Insights (DI) 
For the query in Example 3, let’s say user runs a ‘perfect’ query 
Q5={student, karen, mike, john}. The response of a LCA based 
technique [2][5] will be XML sub-tree rooted at node n0.1.1.0.1 
<Students> node. Even though the query is perfect, the response 
still does not yield any meaningful information. On the other hand, 
GKS response is node n0.1.1.0 for s=|Q| (n0.1.1.0 is an LCE node for 
Q5) with the aid of its node categorization model. Thus, GKS 
response exposes the information that the students are registered in 
‘Data Mining’ course. This information, <Couse: Name: ‘Data 
Mining’>, is called deeper analytical insights or DI. DI enables 
users to navigate the XML data by exposing relevant schema and 
the data elements that help users not only understand the query 
response but also help refine their queries. 

 

 

 

 

 

 

Figure 2(b). Response of the GKS System for Q4 
To discover DI, for a user query Q and s, GKS prepares a set of 
keywords Sw

Q from nodes in set RQ (s) as follows: For each node u 
  RQ(s), if u is an LCE node, GKS extracts the text keywords from 
its attribute nodes and put them in set Sw

Q. For instance, for the 
query in Example 3, entity nodes n0.1.1.0, n0.1.1.1 and n0.1.1.2 are the 
LCE nodes in the set RQ (s) (Figure 2(b)). Each of the entity nodes 
has an attribute node <Name: Data Mining>, <Name: AI> and 
<Name: Algorithms>. The set Sw

Q will contain keywords {“Data 
Mining”, “AI”, “Algorithm”}. R(e) represents the set of attribute 

nodes in the sub-tree of entity node e (see Table 2). Given a query 
response RQ(s), we prepare a set of keywords Sw

Q ={k1…kn} 
containing the text keywords embedded in the attribute nodes for 
each of the entity nodes in RQ(s).   

Def 2.3.1 DI: Let EQ RQ(s) be the set of all LCE nodes in GKS 

response for keyword query Q and let Sw
Q = QEeeR |)( .

w
QSDI  | QkDIk  ; .   

For a keyword k in DI, let e be its corresponding LCE node. For the 
keyword k, we also associate the XML elements in the path from 
node e till keyword k. The keywords and the associated XML 
elements with each keyword together form the DI.  

DI can also be discovered recursively for a user query as described 
below. We use only set RQ(s) and not EQ since context is clear. 

i) GKS parses the LCE nodes in set RQ(s), for a given keyword 
query Q and prepares a weighted set of keywords Sw

Q by identifying 
a subset of text keywords in each of the LCE nodes (Section 6.2).  

ii) Top-m most weighted keywords in the set Sw
Q  are fed to GKS as 

a query. GKS identifies a set of XML nodes w.r.t. these keywords 

from set Sw
Q. This set of XML nodes is denoted as )(1 sRQ . Set 

0 QR (0
w
QS )  is denoted by just RQ (s) (Sw

Q). 

The above steps can be applied recursively -- )(sRr Q represents 

the set of LCE nodes after rth recursion.  

iii) GKS prepares the set of keywordsr
w
QS from the nodes in

)(sRr Q . DIr  is extracted fromr
w
QS ; r ≥ 0.  

DI can be discovered recursively for a user query Q by extracting a 
ranked list of most relevant keywords and their semantics from 

i
w
QS at each step i of recursion.  In summary, DI is discovered 1) 

with the aid of GKS node categorization model; and 2) because 
GKS does not impose the LCA constraints and thus retrieves all the 
relevant XML nodes in the query context. These XML nodes help 
discover meaningful DI.  

2.4 GKS Architecture and Indexes  
In Figure 3, we depict the architecture of GKS. The GKS takes as 
input XML data and prepares an index on it. The XML data could 
be spread over multiple files. For a user query Q, GKS produces a) 
ranked search results on the data; b) deeper analytical insights (DI) 
by analyzing search results. GKS contains three modules; i) 
Indexing Engine; ii) Search Engine; iii) Search Analysis Engine. 

 

Figure 3. Architectural of the GKS System 

For a given XML data repository, we first prepare an index on it. 
This is a onetime activity. We keep the following indexes: 

Inverted Index for text keywords: For each unique text keyword 
that appears in the XML document repository, we keep an inverted 
index list. If text appearing under a ‘text node’ comprises multiple 
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keywords, a separate index entry is created for each of the 
keywords after stop words removal and stemming. A partial 
inverted index for document in Figure 2(a) is shown in Table 3. The 
inverted index list for a keyword ki contains the Dewey id of all the 
nodes which contain that keyword. Dewey id for each node has 
been appended with the document id ‘did’. Thus, GKS search is 
seamlessly expanded over multiple documents by prefixing Dewey 
ids with corresponding document id. For a keyword ki present in 
the XML document repository, Si denotes its inverted index list. 

Hash tables: We keep two hash tables corresponding to XML 
elements. Hash table 1, called ‘entityHash’, keeps the Dewey id of 
entity nodes. Hash table 2, called ‘elementHash’, keeps the Dewey 
ids of repeating nodes and connecting nodes. Both hash tables also 
store the number of direct children each node has. This information 
is used while computing the rank of a node (Section 5). If a XML 
element is both a ‘repeating node’ and an ‘entity node’, its entry is 
present in both the hash tables.  

Since XML nodes arrive pre-order (an ancestor of an XML node 
always appears before it), the hash tables and the inverted index are 
created in a single pass over XML data. 

Table 3. Partial inverted index for XML document in Fig 2(a). 

 We provide two functions: i) isEntity (Deweyid); ii) isElement 
(DeweyId). Both the functions return the number of direct children 
the given node has if true, null otherwise. 

3. EXISTING WORK in the GKS CONTEXT 
A large body of work exists to understand the user's intent for a 
keyword query over XML data. The work related to GKS can be 
divided into 3 categories: 1) Identifying meaningful return nodes 
for a keyword query, 2) Result type deduction techniques and 3) 
Ranking the XML nodes retrieved in response to a user query.  

Identifying meaningful return nodes: Users present their 
keyword query and the underlying algorithm interprets the user’s 
intent and tries to identify the return nodes accordingly [2][3] 
[5][6]. The existing approaches for identifying most relevant return 
nodes are based on first discovering SLCA nodes [13]. Different 
heuristics are applied on the set of SLCA nodes to identify 
meaningful return nodes. In XSeek [3], authors propose a technique 
that first finds the SLCA nodes for a given keyword query. The 
keywords in the query are understood as the 'where' clause whereas 
'return' nodes are inferred based on the semantics of ‘query 
keywords'. MaxMatch [11] and RTF [12] are SLCA based 
approaches to identify meaningful return nodes. In [11], irrelevant’ 
match results are filtered from each SLCA node. In [12], authors 
propose an improved algorithm to address redundancy and false 
positive problems of [11]. In all the approaches above, a set of 
SLCA nodes is identified for given keyword query. In [10] authors 
address the problem due to imprecise XPath queries. 

Deducing result types: Deducing return node types is also an 
important goal for GKS since for most keyword queries, users 
target certain node types. However, due to lack of knowledge about 
the distribution of keywords in the document, different semantic 
meaning of same keywords or due to lack of familiarity with the 
document schema, the query may not by semantically ‘perfect’. In 
[15][19], it is assumed that the keyword query is semantically 
correct and certain node types are the target nodes for a given query. 
XReal [9] and XBridge [4] address the problem of deducing the 
return nodes types. In [9] the authors count the confidence level to 
deduce the result node types. In [4] authors highlight the fact that 
keywords may exist in different context. XBridge automatically 

predicts the intended result types for XML keyword queries by 
considering the value and structural distributions of the data. The 
more generic solution to this problem is to enable users to further 
refine their queries. GKS approach is a step in that direction.  

Ranking the XML nodes: The XML ranking techniques are 
divided into IR [9][8] based methods and relevance score based 
[15][7] methods. XRank [7], XSEarch [8] are techniques to rank 
the keyword query search results based on LCA nodes. XRank 
takes into account the keyword proximity in the XML nodes 
whereas XSEarch computes the node rank based on TF-IDF based 
method. The basic differences between these methods and GKS 
technique is: In existing XML ranking methods, each of the XML 
nodes that is ranked contain a fixed set of all query keywords. XML 
nodes in GKS response contain varying number of query keywords. 
We have outlined the issue arising due to this difference in Section 
5 when we present GKS ranking methodology.  

4. SEARCHING GKS NODES 
The basic difference between the LCA based search and GKS- 
Search is: GKS has exponential search space compared to LCA 

based techniques. For query Q (|Q|=n), a total of ( 
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sub-sets, of size at least s, can be formed; s ≤ n. To identify GKS 
nodes, a naïve approach would be to create all the keyword subsets 
(of size ≥ s) for query Q, and for each of these keyword subsets, 
identify the LCA nodes. Together, all the LCA nodes thus 
discovered can be used to produce the GKS response. However, 
this approach results in an exponential number of sub-queries. 

Lemma 3: For a given query Q, |Q|=n,  2/ns  ; GKS has 
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leads to one keyword query for an LCA based techniques.           □ 

Lemma 3 shows GKS has exponential search space w..r.t. LCA 
based techniques.  Further, the naïve approach does not discover 
the LCE nodes, in absence of GKS node categorization model, 
which allow GKS to expose DI in the context of the user query. 
Hence, LCA techniques cannot be applied as is for GKS-Search. In 
this section, we present an efficient method to find relevant XML 
nodes for GKS-Search. We call them GKS nodes. A subset of GKS 
nodes can be LCE nodes. We also present the correctness analysis 
and time complexity analysis of our method.   

4.1 Efficient Method to Search GKS nodes 
For the query keywords Qki  , we first merge their respective 

inverted index lists such that in the merged list, keywords follow 
their arrival order in the XML document. Since the Dewey ids of 
the XML nodes follow pre-order traversal, if the merged list is 
sorted on Dewey ids, we achieve such ordering. Let d be the depth 
of the XML tree T being queried.  Depth of the tree T is defined as 

Karen did.0.1.1.0.1.0 did.0.1.1.2.1.0 …… 

Mike did.0.1.1.0.2.0 did.0.1.1.2.2.0 ….. 
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the number of edges from the root of the tree to its deepest leaf. Let 
|Q|=n, i.e., n lists are merged. Let |Si| be the inverted index length 

for keyword Qki  . Let SL be the merged and sorted list. |SL| ≤ 




n

i

iS

1

|| . The time complexity to merge k sorted lists, of total 

length l, into a single sorted list in O(l.logk). Since the inverted 
index list for each keyword is sorted on its Dewey id, therefore the 
n lists are merged in a single sorted list SL in O(d|SL|log n).     

 
Figure 4. List of longest common prefixes for Dewey id blocks 

of size s=2 

Generating list of candidate GKS Nodes: Our next objective is 
to generate the list of candidate GKS nodes that have Qs Q 

keywords appearing in their subtree such that |Qs|≥s. Towards that 
end, in the merged list SL, longest common prefix is identified for a 
continuous block of s entries, as shown in Figure 4 (in Figure 4, 
s=2). We traverse the list SL from left to right. Since the list SL is 
sorted, the Dewey ids of the nodes in a common sub-tree occur next 
to each other, with an ancestor node preceding its descendent. 
Therefore, in SL, the longest common prefix of a block of s nodes 
will be the Dewey id of the common ancestor for the nodes in this 
block. There will be at most (|SL| – s) such prefixes. 

The prefixes are put in Longest Common Prefix (LCP) list as shown 
in Figure 4. With each prefix entry in LCP list, we associate a 
counter which is initialized to 1. If a prefix exists in the LCP list 
(i.e., more than s query keywords exist in its sub-tree), its counter 
is increased by 1. Since the block of s entries in the list SL slides to 
the right by 1 at a time, the counter can increase by only 1 at a time. 

 

Figure 5. Traversal of list SL 

The objective of GKS is to collect s unique keywords from query 
Q in the sub-tree of a GKS node. However, it is possible that not all 
s keywords in the continuous block of length s are unique. 
Therefore, we first collect a block such that there exist s unique 
keywords in it, as shown in Figure 5. For a block of length s, let l 
and r represent the left and right end of the block respectively. 
Function sU (l, r, s) returns true if there are s unique keywords in 
the range of l to r (with the aid of hash tables, Section 2.4). Until 
sU(.) is true, we just move r to the right, keeping l fixed. When 
sU(.) is true, range l and r represent a block containing s unique 
keywords. Once the correct block is found, the longest common 
prefix of the block is added to the LCP list.  

We generate the list of LCE nodes from LCP list. For each of the 
entries in LCP list, we check the entityHash, prepared at the time 
of parsing XML document repository. For each entry in the LCP 
list, we check if it is an entity node or any of its ancestors is an 
entity node (using Dewey id we can get the Dewey ids of all if its 
ancestors). If the node (or any of its ancestors) is found to be entity 
node, we add the corresponding Dewey id into a LCE node list. We 
also maintain a ‘Ranking array’ which has an entry corresponding 
to each GKS node. Each entry in the ranking array maintains two 
scores as shown in Figure 4. One is the number of keywords kiQ 
appearing in GKS node sub-tree and the other is its ranking score 
(computation of the ranking score is described in Section 5). The 
number of query keywords in the GKS sub-tree is (s+counter-1). 

Algorithm GKSNodes (Set Q) //Q contains query keywords 

      Merge the sorted inverted index list Si  for kiQ into list SL 
      //Find Longest Common Prefix (LCP) list 
      l=0; r=s-1; 
     Traverse SL from left to right 
           while (!sU (l, r, s)) r++; //Identify block of s unique entries 
           Find longest common prefix (LCP) of s unique entries; 
           Add LCP to LCP list; 
           if (sU (l, r, s)) r++; l++; 
      for each entry en in LCP list //Find LCE node list from LCP list 
           ec = null; 
           if ( isEntity (en) > 0)  
                Add en to LCE node list; ec = en; Remove en from LCP list; 

           else if (any ancestor na ee   & isEntity(e) & e LCE node list) 

                Add e to LCE node list; ec=e; Remove en from LCP list; 
           if (ec != null) 

                for ( ca ee  ) 

                     if (isEntity(e) > 0 & e  LCE node list) 
         Update LCE node (e); 
      Rank nodes in LCE/LCP node lists;  
      return ranked LCE/LCP lists; 

 

Figure 6: GKS algorithm for finding XML nodes 

Example 4: In Figure 4, did.0.1 is the longest common prefix (LCP) 
of block of first s nodes. Its entry is created in the LCP list with 
counter set to 1. In Figure 4, node did.0.1 is found to be entity node. 
An entry for it is created in LCE node list with keyword counter set 
to (s+counter-1=2). Similarly, the next entry in LCP list did.0.1.1.0 
is initiated with counter set to 1. While checking its ancestors, node 
did.0.1 is found to be an entity node. Since did.0.1 already exist in 
the LCE node list, its entry (i.e., number of keywords in its sub-
tree) is updated to 3 (since node did.0.1.1.0 appears in its sub-tree). 
Finally, the keyword count of node did.0.1 is incremented to 4 and 
for node did.0.1.1.0 to 3 (due to next keyword with Dewey id 
did.0.1.1.0.4). Once the LCE nodes list is computed along with the 
number of keywords in its sub-tree, we compute a ranking score ri 
for each LCE node, as explained in Section 5. It is also possible that 
for some node in LCP list, no corresponding LCE node is found.  

4.2 Correctness and Time Complexity 
In this section, we present the analysis of our method and prove the 
correctness of our methodology to discover the LCE nodes.  

For LCE node e, there must exist at least one keyword kQ that is 
not contained in any other entity node within its sub-tree (Def. 
2.2.1). k is called the independent witness of node e. Correctness is 
defined as discovering LCE nodes according to Def. 2.2.1. We now 
prove the correctness of our methodology to discover LCE nodes. 
To discover LCE nodes, LCP list is traversed from left to right. Let 
left and right pointers l and r of the current block under 
consideration are at position p1 and p2 respectively in list SL when 
entity node e is first time being added to the LCE list. 

Counter 

did, 1 
did.0.1.1.0, 2 

did.0.1.1.0.3, did.0.1.1.0.4, did.1.0.1, 

Ranking  Array 
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while (!sU (l, r, s)), shift r to right by 1  
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Lemma 4: For entity node e, just being added to the LCE list, only 
Dewey id of the keyword at position p1 or at position p2 can be the 
smallest Dewey id which is independent witness for node e.  

Proof: Omitted.            □ 

Let k be the independent witness for node e with smallest Dewey 
id. We associate the Deweyid of keyword, k, with node e. Let en be 
the LCE node added immediately after node e in the LCE list. If

na ee   and ke an  , the entity node e is removed from the LCE 

list. The reason is: k is the earliest keyword in document order 
which was an independent witness for node e at the time of its 
addition to LCE list. Since k itself appears in the sub-tree of its 
descendent entity node en, e is left with no independent witness and 
hence removed from the LCE list. Note, e can come back in LCE 
list if any other keyword is found to be an independent witness for 
it later in list SL. Any entity node e that survives has at least one 
independent witness. In Figure 4, entry did.0.1 survives in LCE 
node list at the time of addition of did.0.1.1.0 since it has an 

independent witness. If any entity node e, na ee  , of a newly added 

entity node en remained in the LCE list, we update its ranking array.  

Lemma 5: For each LCE node e that survives in LCE node list, 
there exists a keyword k that is an independent witness of e. 

Claim 1: Let e be a lowest common entity node for a block of s 
keywords. We claim that at least one of the keywords in the block 
is an independent witness for node e.  

Proof: Proof is by contradiction. Suppose no keyword in the block 
of s keywords is an independent witness for LCE node e. Hence 
there must exist another LCE node in the sub-tree of e, which 
contains all the keywords from the block.  Hence node e is not the 
lowest common entity node, contradicting the initial assumption. □ 

Claim 2: Any ancestor entity node e, of entity node en, which is not 
already present in the LCE node list at the time of addition of node 
en in the LCE list, is not the LCE node. 

Proof: As entity node e, na ee   , is not in LCE list, therefore it 

has no independent witness keyword at the time of addition of en. 
Since en is the lowest entity node for the current block of keywords, 
e cannot be an LCE node.               □ 

Thus, LCE node e that survives in LCE node list, there exists a 
keyword that is an independent witness. When the traversal of LCP 
list is complete, LCE list contains only true LCE nodes (Def. 2.2.1).  

Time complexity to generate the longest common prefix list is 
O(d.|SL|) due to Lemma 6 below (the worst case time complexity 
could be s.d.|SL| where s is a small constant). Since the Dewey ids 
are sorted, we just need to find the longest common prefix of first 
and last Dewey id in the block of s Dewey ids. There are O(|SL|) 
entries in longest common prefix list and depth of the document is 
d. Hence, time complexity to generate LCE nodes list is O(d.|SL|). 

Lemma 6: For lexically sorted block of s strings, the common 
prefix of first and last string is the longest common prefix for the 
strings in the block.             □ 

As the time complexity to generate merged Dewey id list is 
O(d.|SL|.log n), total time complexity to generate LCE node list, 
along with its ranking score list is O(d.|SL|.(log n)). Therefore, we 
efficiently identify LCE nodes in a single pass.  

For the LCA based search, the time complexity of the state of the 
art algorithm to find LCA nodes for query Q, |Q|=n, is 
O(d.n.|Smin|.log|Smax|) where |Smin|(|Smax|) is the length of the 
shortest (longest) inverted index list consisting the DeweyId of the 
keyword in query Q [6][16]. We see that the time complexity of our 
algorithm to find the GKS nodes is only marginally worse than the 

time complexity to find LCA nodes, even though the search space 
for GKS is exponential compared to LCA nodes.  

Nodes in Longest Common Prefix (LCP) list contain at least s 
keywords in their sub-tree. For each node u in LCP list we keep a 

mapping with its associated LCE node v in LCE list, uv a .  There 

may exist some nodes in LCP list such that no corresponding entity 
node is found for them due to the structure of the XML data.  

The XML nodes in LCE list along with those nodes in LCP list for 
which no corresponding LCE node exist together constitute the 
GKS response RQ(s). These nodes are ranked with the aid of 
ranking function presented in the next section.  

5. RANKING 
Node ranks help GKS construct a more meaningful response. 
Number of GKS nodes can be large and the response may comprise 
a variety of XML node types. The relevance of these nodes varies 
in the context of a given query. For LCA based techniques, each 
LCA node is the common ancestor of all the keywords in query Q.  

Due to the basic differences between GKS and LCA based search, 
existing ranking algorithms [8][15] are insufficient for GKS. 
Existing ranking methods work by using aggregated statistical 
information for entire XML repository. For a fixed set of keywords, 
nodes are ranked based on statistical relevance of a query keyword 
in the context of a given XML node. For GKS, any node containing 
a subset of keywords belonging to query (of size ≥ s) is the node of 
our interest. Further, GKS response may contain a variety of 
differently structured XML nodes. Therefore, any statistical 
method is insufficient to compare the relevance of one XML node 
w.r.t. other due to the structural difference in their sub-trees.  

Therefore, we introduce a novel ranking function that computes the 
rank of each XML node in RQ (s) for query Q based on i) the number 
of keywords from Q appearing in its sub-tree; and ii) the structure 
of the sub-tree rooted at that node.  

5.1 Ranking Methodology 
We use a potential flow model to compute the rank of the XML 
nodes in RQ(s). Potential of a node is like the amount of water 
present in a reservoir which flows in a network of pipes coming out 
from it. The potential flow model automatically incorporates the 
structure of the sub-tree rooted at an XML node. 

We assign an initial potential, P|e to each node e )(sRQ . P|e, for 

node e is equal to the number of unique query keywords kQs,

QQs  , present in its sub-tree.  

P|e=|Qs|; QQs  ; Q={k1,…,kn} 

P|e just accounts for the presence of a keyword kQ in the sub-
tree of node e. If the keyword k is present multiple times in node e, 
only its highest occurrence in its sub-tree is considered. This 
highest occurrence of a query keyword in the sub-tree is termed 
terminal point. If a keyword k is present multiple times at the 
highest level, each of its occurrences is considered a terminal point. 
For example, if a keyword kQ  is a repeating XML element name 
in the sub-tree of an LCE node, each of its occurrence will be 
considered as a terminal point (assuming that is the highest level at 
which keyword k occurs). Hence, for a user query Q={k1… kn}, each 
candidate XML node has a starting potential. As shown in Figure 
7, for node e1, the highest occurrence of keywords k1, k2, k3 are 
terminal points.  

The rank of a node e QR  is computed as follows: The potential of 

a node e is equally divided into each of its child nodes. For a node 
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e with potential (P|e), with m children, each of its child nodes will 
receive (P|e)/m potential, where m is the number of direct child the 
node e has. The rank of the node is sum of the total potential 
received by each of the terminal points.  

Let i→k denotes the relationship that node i is parent of node k. The 
rank of an entity node e is computed as follows: 

ki
m

p
Rank

Qk i

i
e 



|  

where k is a terminal point in the sub-tree of node e, pi is the 
potential received by its parent node i and mi is the total number of 
direct children node i has. The potential received at terminal points 
depends on the structure of the sub-tree rooted at the XML nodes. 

Intuitively, it implies that the number of distinct query keywords in 
its sub-tree and the structure of its sub-tree determine the rank of 
an XML node. Each LCE node is ranked independently, 
irrespective of its relative depth w.r.t. document root. 

 

Figure 7. LCE nodes containing keywords in set RQ(s) 

Example 5: We illustrate the computation of XML nodes rank with 
the example XML document shown in Figure 1. For query Q3= {a, 
b, c, d}, GKS returned 3 XML nodes x2, x3 and x4. The initial 
potential of node x2 is P|x2=3. The rank of node x2 is the potential 
received by the terminal nodes in its sub-tree, i.e., nodes a2, b1, c1. 

The rank of node x2 = 
Qk

n
xP 2|

= 3
3

33  . Similarly, for 

node x3, the initial potential P|x3 is 3. The three terminal nodes are 
nodes a3, b3, d3. Each of the three children of node x3 received 1/3rd 
of the initial potential. The potential received by x4 is further 
divided equally into its two children. Therefore, the total potential 
received by the terminal nodes, i.e., the rank of node x3 is, 

5.2
2

1
3

3
3

32  . Similarly, the rank of node x4 is 2. Hence, 

GKS ranking methodology ranks the nodes as x2> x3>x4.  

6. SEARCH RESULTS ANALYSIS 
GKS enables the users to refine their queries. The user query Q can 
be refined by either removing or adding the most relevant keywords 
to Q, in the context of the query. We now describe how GKS aids 
the users to refine their query by analyzing the search response.  

6.1 Query Refinement  
Let us consider the Example 1. For query Q3 = {a, b, c, d}, the 
response of GKS comprised nodes, x2, x3 and x4. GKS ranks the 
nodes such that most relevant nodes are ranked higher. The two top 
ranked nodes are x2 containing keywords {a, b, c} followed by x3 
containing keywords {a, b, d}. With this information, the user is 
exposed to the fact that there is no XML node that contains all the 
query keywords and that the distribution of the query keywords in 
the document is as shown in the query results. With this insight, 
users can refine their queries. In the example above, user can refine 
the query Q3 to {a. b, c} or {a, b, d} given the GKS response. 

Therefore, for a user query Q, the query can be refined seamlessly 
to one or more sub-queries Qrs with the aid of the GKS results. As 
one can see, for LCA based techniques [2][5][17], such refinement 
of the query Q is non-trivial as multiple sub-queries of Q needs to 
be run to collect the complete response.   

6.2 DI-Discovery from the LCE Nodes 
GKS enables the discovery of DI from the XML data in the context 
of the user query which can be used to refine the user query.  For a 
given query, the attribute nodes of a LCE node expose the context 
for the keywords appearing in its sub-tree and are regarded as the 
relevant DI (Def 2.3.1).  

A natural way to discover DI is by identifying top-m most popular 
attribute keywords in the LCE nodes present in the query response, 
i.e., identifying keywords that appear in maximum number of 
attribute nodes (m is tunable). At the same time, the DI must be 
relevant for most of the query keywords. However, these two goals 
may translate into two different set of top DI keywords. In response 
of the query in Example 2 (Section 1.2), the most popular keyword 
is found to be <booktitle: ICPP>. However, the keyword became 
most popular due to presence of keyword ‘Prithviraj Banerjee’. He 
is the only author who had published articles in this journal but total 
number of articles by him alone in this journal made it the most 
popular keyword in the query response. However, this keyword is 
not relevant for majority of the other query keywords. The keyword 
<journal: SIGMOD Record> is relevant for the largest sub-set of 
the query keywords (for remaining three authors) but it is not the 
most popular. Therefore, to identify most relevant keywords in the 
context of a query, we adopt the following approach.  

Rank of a LCE node is the function of number of query keywords 
present in its sub-tree. Each attribute node is assigned a weight 
equal to the rank of its LCE node. Therefore, each keyword in set 
Sw

Q is assigned its attribute weight and we prepare a weighted set 

Sw
Q. Let )(sRE QQ  be a set of all the entity nodes in RQ (s). 

})(;|:{ )( QkeattrkEeRankwwkS QeRk e
w
Q     

Each element of set Sw
Q is a tuple k: w, where k is the attribute 

keyword. k is assigned a weight that is sum of the rank of all the 
LCE nodes in set EQ that contain k. The top-m most weighted 
keywords constitute DI. If a keyword in the attribute node is part of 
the user query Q, it is not included in the set Sw

Q. We identify top-
m elements in set Sw

Q, total time complexity to identify DI is O(|Sw
Q 

|+ m.log| Sw
Q|) = O(|Sw

Q |) as |Sw
Q|>>m. Since |Sw

Q|=O(|RQ (s)|) and 
|RQ (s)|≤SL, the time complexity to identify DI is better by a factor 
of O(log|Q|) compared to the time complexity to identify LCE 
nodes and DI discovery does not constraint the system. In Example 
2, DI contained <year: 2001>, <booktitle: ICPP>, <author: Alok N 
Choudhary>, etc., as top DI keywords. Recursive DI can be 
discovered by preparing a keyword query using the text keywords 
identified from Sw

Q. The recursive DI may reveal deeper insights. 

Therefore, a user query Q can be refined seamlessly to Qr with the 
aid of DI. We see that with the aid of response produced by GKS 
and with the aid of DI, user queries can be refined by adding or 
removing the keywords from the initial keyword query.   

7. EXPERIMENTS 
We have built a prototype of GKS [20]. Observations in this section 
are based on experiments using this prototype over the XML data 
sets shown in Table 4 [21]. Shakespeare’s plays are distributed over 
multiple files. The experiments were carried out on a Core2 Duo 
2.1GHz, 4GB RAM machine running Windows 7 and Java. These 
data sets are used in many prior works [3][11][13][19]. The size of 

k2 

|Q|=n 
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Protein Sequence dataset is comparable to the biggest dataset used 
in a recent work [19]. Our DBLP dataset size is 100% bigger.  

Our experiments are designed to assess 1) Performance of GKS; 2) 
Appropriateness of the node categorization model given the real 
world XML repositories; 3) Effectiveness of GKS in finding the 
relevant results for keyword queries and to rank them; 4) Ability of 
GKS in finding the relevant DI; 5) User feedback. 

7.1 Performance of GKS 

7.1.1 Size of Index 
Creating the index is a onetime activity.  The size of index and the 
time taken to prepare them are presented in Table 4. Our technique 
is highly scalable as index preparation time increases linearly with 
the data size. The number of entity nodes for different datasets 
varied from 535 for Mondial to 2.62M for DBLP.  

Table 4. Index Size and Index Preparation Time 

Data Set Data Set 
Size 

Index 
Size 

XML 
Depth 

Index 
Preparation Time 

SIGMOD Records 483KB 416KB 6 0.15s 

Mondial 1.7MB 1.45MB 5 0.28s 

Plays 1.8MB 1.6MB 5 0.29s 

TreeBank 82MB 79MB 36 19.3s 

SwissProt 112MB 101MB 8 21.3s 

Protein Sequence 683MB 612MB 7 108s 

DBLP 1.45GB 1.13GB 6 238s 

7.1.2 Response Time 
In this experiment, we assess the response time (RT) of GKS for 
given user queries. We also validate GKS time complexity analysis 
to discover the XML nodes for the given queries. We give RT 
results for two datasets: i) NASA dataset containing astronomy  
data  (24MB)  and  ii)  SwissProt  dataset containing protein 
sequence data (112MB). In our first experiment, the number of 
keywords for each query (n) was fixed at 8. However, the size of 
the merged Dewey id list (SL) varied for each query. The average 
keyword depth d for the NASA dataset varied from 6.7-6.9 and 
from 3.1–3.5 for SwissProt dataset. Results are presented in Figure 
8. As shown in Section 4.2, for given d and n, the RT increases 
linearly with SL. Response time varies from 21.5ms to 139ms for 
different queries. Hence, the RT of GKS is only a few tens of ms, 
similar to LCA based algorithms on similar data. 

 
 Figure 8. Response Time Vs. Merged List Size 

In Figure 9, we plot the RT for queries by varying the number of 
query response keywords n from 2 to 16. The query response time 
validates our analysis (cf. Section 4.2). The list size |SL| for query 
on SwissProt dataset with n=16 was 102,233. In Figure 9, for the 
NASA dataset, when n is increased from 8 to 16 for a query, the 
increase in RT was less than twice, as the length of the list |SL| 
increased only marginally and the change in RT is logarithmic in n. 

For a query run on the DBLP dataset, the RT was found to be 2ms 
for |SL|= 213. Hence, RT depends on the query, i.e., depth d, n and 
SL (O(d. |SL|.log n) ), and not on the size of the data being queried. 

 
Figure 9. Response time vs. keywords in query response (n) 

7.1.3 Scalability 

 
Figure 10. Response time for different dataset sizes 

To assess the scalability of GKS, we replicated the Swiss Prot 
dataset to create three datasets of size 112MB, 225 MB and 336 
MB. For same query, the number of LCE nodes scales linearly. In 
Figure 10, we plot our results. We can see that query processing 
time is scaling linearly with data size, as expected. 

7.2 Validation of Node Categorization Model 
In this experiment, we analyze the structure of the real world data 
repositories. XML nodes are placed in different categories as 
described in Section 2.2. In Table 5, we show the number of 
different XML element types belonging to different node categories 
for various XML repositories. As we see, the fraction of nodes 
labeled as Connecting Nodes (CN) varies from around 15% for 
InterPro to less than 3% for DBLP dataset. In DBLP/Sigmod 
Records some nodes with similar schema as that of entity nodes 
(EN) are marked as CN because of the presence of just a single 
author. We compared the results of our analysis with the ground 
truth, i.e., with XML schema. For Sigmod Records, two XML 
elements, <articles> and <authors>, were the connecting nodes as 
per the XML schema. The count of <authors> node, was 1504, and 
count of <articles> node was 67 (remaining 447 XML nodes were 
marked CN due to presence of <article> nodes with a single 
author). The results show our node categorization model captures 
the structure of the real world data repositories very well. 

Table 5. Distribution of XML element  

Data Sets Count 
of AN 

Count 
of EN 

Count 
of RN 

Count 
of CN 

Total 
Nodes 

Sigmod 
Record 

10574 1022 3766 2018 15263 

DBLP 27.58M 2.62M 10.56M 972367 39.52M 
Mondial-3.0 7467 535 15074 663 22423 

InterPro 515316 32614 1472021 303079 2088766 

SwissProt 4044884 176128 1776676 187300 5166890 

7.3 Finding and ranking the XML nodes  
The purpose of this experiment is to assess the quality of GKS 
results. Therefore, some queries are designed for which SLCA 
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response is obviously inadequate (the response of an SLCA 
technique is either null or document root for these queries). For a 
few queries, SLCA returns meaningful response (QM1, QI1, QI2). 
Queries for different datasets are shown in Table 6. The number of 
keywords for the queries was varied from 2 to 8. We present the 
number of XML nodes retrieved by GKS and SLCA. We vary s, 
the minimum number of query keywords in the XML node sub-
tree. s is set to be 1 and |Q|/2 respectively.  

Table 6. Keyword queries run on different datasets 

 |Q| SIGMOD Records 
QS1 2 "Anthony I. Wasserman" "Lawrence A. Rowe" 
QS2 4 "S. Jerrold Kaplan" "Robert P. Trueblood" "David J. 

DeWitt" "Randy H. Katz" 
QS3 6 "Sakti P. Ghosh" "C. C. Lin" "Timos K. Sellis" "David 

A. Patterson" "Garth A. Gibson" "Randy H. Katz" 
QS4 8 "Barbara T. Blaustein" "Umeshwar Dayal" "Alejandro 

P. Buchmann" "Upen S. Chakravarthy" "M. Hsu" "R. 
Ledin" "Dennis R. McCarthy" "Arnon Rosenthal" 

 |Q| DBLP 
QD1 2 "Dimitrios Georgakopoulos" "Joe D. Morrison" 
QD2 4 "Peter Buneman" "Wenfei Fan" "Scott Weinstein" 

"Prithviraj Banerjee" 
QD3 6 "E. F. Codd" "Mark F. Hornick" "Frank Manola" 

"Alejandro P. Buchmann" "Dimitrios 
Georgakopoulos" "Joe D. Morrison" 

QD4 8 "E. F. Codd" "Kenneth L. Deckert" "Irving L. Traiger" 
"Vera Watson" "Jim Gray" "Chin-Liang Chang" "Nick 
Roussopoulos" "Jean-Marc Cadiou" 

 |Q| Mondial 
QM1 2 country Muslim 
QM2 3 Laos country name 
QM3 6 Polish Spanish German Luxembourg Bruges Catholic 
QM4 8 Chinese Thai Muslim Buddhism Christianity 

Hinduism Orthodox Catholic 
 |Q| InterPro 
QI1 2 Kringle Domain 
QI2 3 Publication 2002 Science 

Results for different queries are shown in Table 7. We see a large 
number of XML nodes returned for the queries by GKS (s=1) 
compared to SLCA response. Thus, a lot of information that could 
be of the interest to the user for the given keyword query is not 
returned by LCA based techniques. Further, the number of XML 
nodes for (s=|Q|/2), is non-zero for all the queries. When we 
compared GKS with FSLCA [19], the top XML node for both QI1 
and QI2 for GKS was present in FSLCA result set. For QM1, many 
XML nodes of FSLCA were among the top 10 nodes of GKS 
results. For QM2, no FSLCA node exists but GKS was able to find 
the XML nodes having subset of query keywords. There are no 
entity nodes which were relevant, i.e., contained at least s query 
keywords, but not identified by GKS. Therefore, GKS is able to 
find valid response for the given user queries, without binding them 
to LCA framework, enhancing the users’ ability to search the data. 

We next assess the ability of GKS to rank the discovered XML 
nodes. Since, the schema for DBLP and Sigmod Records is not very 
deep, the structure of all the XML nodes is similar for these two 
datasets. Hence, we adopt the measure that the higher the number 
of query keywords in an XML node sub-tree, the more relevant it 
is. Given this measure, we determine where GKS places the XML 
nodes with the highest number of query keywords in its ranking list.  

Let L be a ranked list of XML nodes, in set RQ(s), returned by GKS 
for a query Q and for a given s, |L| = p = | RQ(s)|. The nodes are 
numbered 1 to p according to their ranks. The XML nodes that 
contain the highest number of keywords from query Q in their sub-
tree are called the true XML nodes. Let L' (L'  L) be a set of true 

XML nodes. Let w be the lowest rank of a true XML node in the 
list of XML nodes L. To each true XML node, we assign a weight 
of (w+1-i) where i is the rank of the true XML node in the list L. 
We compute the aggregated weight of true XML nodes as 




;
)1(

wi
a iww for all the true XML nodes in the list L. The 

total score is computed as wt = w(w+1)/2. Finally, we compute a 
rank score as wa/wt. We penalize the rank score if a true XML node 
occurs lower in the list L. Score of 1 means that no true XML node 
is ranked lower than a XML node which is not in set L'. In Table 7, 
we show our results. The ranking score is computed for GKS 
response when s=1. We see that the aggregate weight, i.e., rank 
score is very high for all the queries. For every query, except QM3, 
the top-most result is always a true XML node. For QM3, it 
appeared at 3rd position. 

Table 7. Comparison with SLCA and Rank Score 

Query #GKS,
s=1 

#GKS,
s=|Q|/2 

SLCA Max keywords 
in a GKS node 

Rank 
Score 

QS1 8 NA 0 1 1 

QS2 43 13 0 2 1 

QS3 28 4 0 3 1 

QS4 36 2 1 8 1 

QD1 30 NA 1 2 1 

QD2 234 10 0 3 0.72 

QD3 190 7 0 5 1 

QD4 267 4 0 6 1 

QM1 230 NA 98 2 1 

QM2 234 NA 1 2 1 

QM3 37 4 0 3 0.17 

QM4 116 3 0 6 1 

QI1 8170 NA 8 2 0.893 

QI2 2517 2517 281 3 1 

In summary, we see that GKS is able to retrieve and appropriately 
rank the relevant XML nodes, in the context of the user queries.  

7.4 Quality of DI Discovered by GKS  
One of the most important attractions of GKS is its ability to 
discover DI in the data. In Table 8, we show the DI discovered for 
the queries in Table 6 for different values of s. This experiment 
highlights that the DI discovered by GKS is highly relevant for the 
given queries. For instance, for QD3, DI exposes the most relevant 
year (1999) and the most relevant ‘booktitle’ (ICCD). The 
keywords exposed as DI also help users understand GKS response 
since the DI keywords also represent the summary of the query 
response. For some queries, DI varies for different values of s.    

Table 8. DI discovered for different queries 

Query DI, s=1 DI, s=|Q|/2 

QS1 <title: Third-Generation 
Database System Manifesto > 

<title: Cache Consistency 
and Concurrency Control> 

QS2 <title: Chair’s Message> <title: Database Research 
Activities at the University of 
Wisconsin > 

QS3 <title: article title> <title: Implementation of a 
Prolog-INGRES Interface> 

QS4 <title: article title> NA 

QD1 NA <year:2000>,<journal:TCS> 

QD2 <year: 2001>, <journal: 
SigmodRecords> 

<year:1998>, <volume:2> 

QD3 <year: 1999>, <booktitle: 
ICCD> 

<journal: TCS>, <year: 
2001>, <number: 1> 

QD4 <year: 2001>, <journal: 
JACM> 

<journal:IBM Research 
Report>, <year: 2001> 
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QM1 <country:f0_475>, <Year : 
90> 

NA 

QM2 <Name : Zimbabwe>, 
<population_growth : 1.41> 

<Name:Zimbabwe>, 
<percentage : 100> 

QM3 <country:f0_337>,<year: 90> <country:f0_337>,<year:90> 

QM4 <country:f0_663>, 
<percentage:100> 

<country:f0_663>,<name:Br
unei> 

QI1 <author_list:Patthy L>, 
<taxon_data_name:Eukryot> 

NA 

QI2 <taxon_data_name:"Bacteria
>, <proteins_count : "1"> 

NA 

We now show, with the aid of query QD1, how DI helps refine 
queries. For QD1, GKS returned a total of 30 XML nodes (s=1). 
The DI was <author: Marek Rusinkiewicz>. After analyzing the 
query response, QD1 is refined to ("Dimitrios Georgakopoulos", 
“Marek Rusinkiewicz”). Interestingly, for the refined query we 
found that there were 10 articles jointly written by these two authors 
as opposed to just 1 joint article by authors in original query. This 
is an example of how GKS helps users refine their queries and 
guides them to navigate the data by recursive application of GKS. 

7.5 Crowd-Sourced Feedback: GKS & SLCA 
We asked 40 users to compare the 
GKS response with SLCA response 
on a scale of 1-4; 1 being ‘GKS Very 
Useful’ and 4 being ‘SLCA Very 
Useful’. Results are shown in the 
table below. For almost all the 
queries, GKS response is found to be 
either very useful (1) or better than 
SLCA (2). If we categorize the 
response as ‘GKS-better’ (rating 1 
or 2) and ‘SLCA-better’ (rating 3 or 
4), 430 out of 480 responses found 
the GKS response better (89.6%).   

7.6 GKS Performance for Hybrid Queries 
We further studied how well GKS behaves in the presence of 
clearly separable keywords in the query, i.e., subsets of the 
keywords in a query indeed refer to different entity type nodes. We 
call such queries ‘hybrid queries’. To study GKS performance for 
hybrid queries, we merged DBLP and Sigmod Record datasets into 
a single dataset (with a ‘common root’). We also increased the 
depth of Sigmod Record elements by introducing two connecting 
nodes between the ‘common root’ and the root of Sigmod Record 
data. We ran the query “Jean-Marc Meynadier" "Patrick 

Behm" "Lawrence A. Rowe" "Michael Stonebraker”, s=2. 
First two authors appeared together only in <inproceedings> 
entity node type in DBLP dataset and last two in <article> entity 
node type in Sigmod Record. Clearly, the keywords in the query 
target two different XML node types. GKS was able to return all 8 
corresponding XML nodes present in our dataset, 3 
<inproceedings> nodes in DBLP data by first 2 authors and 5 
<article> nodes in Sigmod Record data by last 2 authors. Thus, 
GKS returned correct response even when multiple XML node 
types were targeted by a single query. Note, only these 8 nodes 
were returned by GKS.  

Further, two <article> nodes, by last two authors, were ranked 
higher (as they were the only authors in all the three articles) despite 
higher relative depth w.r.t. root (articles by first 2 authors had 
multiple other authors). Hence, the entity nodes are ranked based 
on only the number of query keywords present in their sub-tree and 
the distribution of these keywords, and not according to their 
absolute depth in the XML tree, as analyzed in Section 5.  

Summary: In summary, experiments show that GKS is scalable, 
imposes low overhead and retrieves the XML nodes efficiently. 
The experiments validate our node categorization model and show 
that XML nodes and DI discovered by GKS are highly relevant 

8. CONCLUSION 
We presented a novel system GKS that enables generic keyword 
search over XML data and yields highly meaningful response 
without imposing the AND-Semantics of LCA based techniques. 
We show that our system exposes deeper analytical insights (DI) in 
the data in the context of user queries. GKS exploits the XML 
schema, embedded in the XML data, in the context of the query to 
find the most relevant data keywords and schema elements with the 
aid of a novel node categorization model. In conjunction with a 
novel XML node ranking method, GKS is able to expose the DI 
elegantly. One of our future research direction is to extend GKS to 
enable analytics over raw XML data.  

9. REFERENCES 
[1] I. Tatarinov, et al., “Storing and querying ordered XML using a 

relational database system”, in SIGMOD, 2002.  

[2] Y. Xu, Y. Papakonstantinou, “Efficient Keyword Search for 
Smallest LCAs in XML Databases”, in EDBT 2008. 

[3] Z. Liu, Y. Chen, “Identifying Meaningful Return Information for 
XML Keyword Search”, in SIGMOD 2007. 

[4] J. Li, C. Liu, R. Zhou, W. Wang, “Suggestion of promising result 
types for xml keyword search”, in EDBT, 2010. 

[5] R. Zhou, C. Liu, J. Li, “Fast ELCA Computation for Keyword 
Queries on XML Data”, in EDBT 2010. 

[6] L. Chen, Y. Papakonstantinou, “Supporting Top-K Keyword 
Search in XML Databases”, in ICDE 2010. 

[7] L. Guo, et al., “XRANK: Ranked Keyword Search over XML 
Documents”, in SIGMOD 2003. 

[8] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, “XSEarch: A Semantic 
Search Engine for XML”, in VLDB 2003. 

[9] Z. Bao, J. Lu, T. W. Ling, B. Chen, “Towards an effective xml 
keyword search”, in IEEE TKDE, 22(8):1077–1092, 2010. 

[10] H. Cao, et al., “Feedback-driven Result Ranking and Query 
Refinement for Exploring Semi-structured Data Collections”, in 
EDBT 2010. 

[11] Z. Liu and Y. Chen. “Reasoning and identifying relevant matches 
for xml keyword search”, in PVLDB, 1(1), 2008. 

[12] L. Kong, R. Gilleron, A. Lemay. “Retrieving meaningful relaxed 
tightest fragments for xml keyword search”, in EDBT, 2009. 

[13] Y. Xu, Y. Papakonstantinou. “Efficient keyword search for 
smallest lcas in xml databases”, in SIGMOD, 2005, pp 537-38. 

[14] M. Arenas, “Normalization Theory for XML”, in SIGMOD 
Record, Vol. 35, No. 4, December 2006. 

[15] Z. Bao, T. Ling, B. Chen, J. Lu, “Effective XML Keyword Search 
with Relevance Oriented Ranking”, in ICDE 2009. 

[16] J. Zhou et al., "Efficient query processing for XML keyword 
queries based on the IDList index", The VLDB Journal, February 
2014, Volume 23, Issue 1, pp 25-50. 

[17] J. Zhou et al., “Fast SLCA and ELCA Computation for XML 
Keyword Queries based on Set Intersection”, in ICDE 2012 

[18] Manish Bhide, Manoj K. Agarwal, et. al., “XPEDIA: XML 
Processing for Data Integration”, in VLDB 2009. .  

[19] B. Truong, et al., “MESSIAH: Missing Element Conscious SLCA 
Nodes Search in XML Data”, in SIGMOD 2013. 

[20] Manoj K Agarwal, Krithi Ramamritham, “Enabling Generic 
Keyword Search over Raw XML Data”, ICDE, 2015, pp 1496-99.  

[21] http://www.cs.washington.edu/research/xmldatasets/www/reposi
tory.htm 

Query 1  2 3 4 
QS1 24 16 0 0 
QS2 17 22 1 0 
QS3 17 14 5 4 
QS4 12 22 3 4 
QD1 24 15 1 0 
QD2 18 17 3 2 
QD3 20 18 1 1 
QD4 24 13 3 0 
QM1 16 20 3 1 
QM2 15 18 5 2 
QM3 14 18 5 3 
QM4 16 21 3 0 
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