
Generic Keyword Search over XML Data
Manoj K Agarwal

Search Technology Center
Microsoft India

agarwalm@microsoft.com

 Krithi Ramamritham
Dept. of Computer Sc. and Eng.

IIT Bombay – India

krithi@cse.iitb.ac.in

Prashant Agarwal
Dept. of Computer Sc. and Eng.

NIT Allahabad - India

agprashant.mnnit@gmail.com

ABSTRACT
XML and JSON have become the default formats to exchange the
information for web application or within enterprises. Keyword
Search over XML data has been motivated by the need to relieve
users from writing difficult XQueries since otherwise users are
required to know the complex XML schema. In existing XML
keyword search techniques the XML nodes returned for a keyword
query are the Lowest Common Ancestor (LCA) nodes for the query
keywords. In this paper, we argue that the LCA based techniques
still require users to be well versed with the XML schema and also
the data to be able to obtain meaningful query results.

To address these shortcomings, we present a novel system, Generic
Keyword Search (GKS), - for a given keyword query Q, instead of
identifying (and returning information) only from LCA nodes,
GKS returns ‘meaningful’ information from any XML node, which
contains a subset of keywords in the search query Q. GKS response
includes LCA nodes, if any, that would have been returned by LCA
based techniques.

GKS is also able to find highly relevant keywords and XML
schema elements, deeper analytical insights - called DI - in the
XML data in the context of the user query. DI enables users to
navigate the XML data and to refine their queries even if they are
not familiar with the data and the schema. Our experiments on real
data sets show that GKS is able to return highly relevant responses
to keyword queries efficiently.

1. INTRODUCTION
Semi-structured data, e.g. XML and JSON, are default formats to
represent and exchange data within and across enterprises and web
[18]. XML data is represented as a labeled, ordered tree T as shown
in Figure 1(i). The nodes in T are either XML schema elements or
text nodes. In response to a given keyword query, XML keyword
search systems return one or more nodes in T, each of which is a
Lowest Common Ancestor (LCA) node for all the query keywords
in the XML data tree T [2][5][6][16][17][4]. For instance, in Figure
1, node x2 is the LCA node for query Q1. We refer to XML keyword
search technique that return LCA nodes in the XML tree, in
response to a given keyword query, as LCA based techniques. LCA
based techniques follow the AND-semantics, i.e., each LCA node
contains at least one instance of each query keyword [4].

1.1 Motivation
For a given keyword query Q={k1,..kn} (|Q|=n), instead of
identifying LCA nodes and returning information only from these
nodes, Generic Keyword Search (GKS) returns any node in the
labeled tree T, if it contains s or more keywords in the search query
Q (s≤n). More formally, the GKS problem is defined as follows:
For a keyword query Q, an integer s ≥ 1, search returns all the XML
nodes which contain at least min(s, |Q|), keywords from Q. The set
of XML nodes returned by GKS in response to query Q is denoted
by RQ (s). |RQ (s1)| ≤ |RQ (s2)| if s1 > s2 (cf. Section 2.2).

There are many notions of LCA nodes in the literature but SLCA
(Smallest LCA) [13] and ELCA (Exclusive LCA) [17], are most
widely used. An SLCA node contains all the query keywords in its
sub-tree and there is no node in its sub-tree which contains all the
keywords. An ELCA set of nodes is a superset of the SLCA nodes.
In Figure 1, for query Q1, node x1 is an ELCA node but not an
SLCA node due to the presence of x2 in its sub-tree. In the figure,
ki is an instance of keyword k (e.g. ais are instances of a). For
different notions of LCA nodes, progressively faster algorithms
have been proposed to retrieve them [16]. The nodes in GKS
response set follow the semantics of SLCA.

As pointed out by the authors of [19] “LCA based techniques work
poorly for documents having irregular schema that have missing
elements” because the schema allows certain XML nodes to be
optional. Further noting that if a document is not complete, the
resulting output could be different from the intended output.
Authors of [19] develop an alternate approach whose basic premise
is: for a given keyword search query, specific XML node types are
targeted [15][19]. However, if the document has “missing XML
elements”, nodes other than targeted nodes could also be returned
due to the constraint on LCA based techniques (only LCA nodes
are returned for the keyword query). Clearly, the motivation for
[19] highlights that for LCA based techniques a) users need to be
aware of the schema (i.e., users need to be aware which XML nodes
to target); b) query keywords must be chosen by taking into account
the semantic relationship between them (query must be formed
such that the target nodes could be returned); and c) users need to
be aware of the keywords in the XML document(s) and their
distribution in XML tree T (otherwise nodes other than targeted
nodes could become LCA nodes). In other words, in order to be
able to effectively search the data using LCA based techniques,
users have to be well acquainted with the data and the schema.

AND-semantics constraints underlying LCA based techniques are
further highlighted by the following example:

Example 1: Consider keyword queries Q1, Q2, Q3, on the XML
document in Figure 1(i). Each leaf node in the XML document is a
text node (text node is an XML element directly containing its
value). We have represented the document as shown in Figure 1(i)
for brevity. Response of SLCA and ELCA based algorithms are

© 2016, Copyright is with the authors. Published in Proc. 19th
International Conference on Extending Database Technology (EDBT),
March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Series ISSN: 2367-2005 149 10.5441/002/edbt.2016.16

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.16

shown in Table 1. For query Q3, even though the user is able to
select all the keywords present in the document, the response of
LCA algorithms is root {r}. ‘r’ is not a meaningful response as it is
available to the user even in the absence of any query.

Figure 1. Labeled XML data tree and a set of queries.

Table 1. Nodes returned for different queries on labeled XML
tree by different keyword search algorithms

Queries GKS (ranked) ELCA SLCA
Q1,s=|Q1| {x2} {x1, x2} {x2}

Q2, s=2 {x2}, {x3} NULL NULL

Q3, s=2 {x2,}, {x3}, {x4} {r} {r}

Therefore, to construct meaningful queries, users need to know the
keywords distribution in the document. To know the keyword
distribution, it is imperative to know the semantic relationship
between query keywords. In order to be aware of the semantic
relationship between the query keywords, users must know the
schema of the XML repository. Users must also know the schema
to form the query such that targeted XML nodes are returned.

MESSIAH [19] addresses the issues arising due to the AND-
semantics of LCA based techniques. Its authors propose an efficient
FSLCA algorithm to identify intended nodes, in case of missing
XML elements in the data. MESSIAH addresses the missing
element problem, if the data is ‘imperfect’. However, the issues of
‘missing data elements’ is still not handled in [19] if the user query
is ‘imperfect’. For instance, if a query keyword occurs in the wrong
sub-tree, it is difficult to determine the intended return nodes.
Hence, for a keyword query, possibly containing semantically
uncorrelated keywords, nodes other than targeted nodes will be
returned by [19] even if the missing XML elements are identified.

Consider the following scenario: User starts with query Q2 and Q3
(shown in Figure 1). GKS returns a set of XML nodes to the user,
as shown in Table 1, which contain a significant fraction of the
query keywords but not necessarily all the query keywords (s=2).
Besides returning these nodes, let us say, GKS system also suggests
to the user that query Q2 can be morphed to {a, b, c} or {a, b, d}
from {a, b, e} The user may not be aware of the existence of the
keywords {‘c’, ‘d’} or their relevance in the context of the query.
Similarly, for Q3, the system suggests that query be partitioned into
{a, b, c} and {a, b, d}. Such refinements of the user queries are
non-trivial. Overall, we are motivated by the following goals 1) to
relax the need for users to know the XML data precisely; this
enables them to browse the XML data in a manner similar to web
search; 2) to relax the need for users to know the XML schema as
user queries can be refined progressively (as for query Q3).

1.2 Generic Keyword Search
In this paper, we introduce a novel concept of Generic Keyword
Search (GKS) over XML data to address the shortcomings listed
above. It enables the users to navigate XML data with ease, as
demonstrated with the help of an example on real data below run
on the implemented GKS system [20]:

Example 2: We have a DBLP dataset with more than 2.5 million
articles. A query Qd = {"Peter Buneman" "Wenfei Fan"

"Scott Weinstein" "Prithviraj Banerjee"} is run on this
dataset. The user is most likely interested in articles jointly written
by these authors. In its response, a total of 234 articles (for s=1) are
found by GKS, i.e., GKS return all the articles by any of the authors
in the keyword query since s=1.

Since the response of GKS contains a large number of XML nodes
(i.e., <inproceedings>), with different XML nodes in the response
containing different number of authors, the results are ranked such
that the more relevant XML nodes are ranked higher (cf. Section
5). For query Qd, the <inproceedings> nodes with higher number
of query keywords (i.e., author names) in their sub-tree are likely
to be ranked higher. We use just <ip> for <inproceedings> later on.

In the DBLP dataset, there is no article jointly written by
Prithviraj Banerjee with any of the remaining authors. Of the
five articles jointly written by the remaining three authors in DBLP
dataset, 4 were returned as top 4 results in the ranked list of XML
nodes by GKS. The remaining article was also in top 10 (it was
ranked lower due to many co-authors, details Section 5). In the
context of this example, we now explain how GKS overcomes the
shortcomings of the LCA based techniques:

GKS relaxes the need for users’ familiarity with the contents:
For the given query, an LCA based technique would have returned
{DBLP root}, containing millions of articles as the response due
to the presence of one “wrong” keyword ‘Prithviraj
Banerjee’ in the query. On the other hand, GKS produced a more
“meaningful” response in the presence of “wrong” query
keyword(s). This helps the users as follows;

 a) With GKS, users can navigate the XML data without complete
awareness with underlying data (for LCA based techniques, users
need to know, which authors have published articles together).
GKS returns a ranked list of most relevant XML nodes, in the
context of the query, considerably enhancing the users’ ability to
search the data with high precision and recall.

 b) More importantly, even when users are able to formulate the
query precisely, there is a lot of information which could be of their
interest, which are not returned by LCA based techniques due to
the constraint that only LCA nodes must be returned. For instance,
in Example 2, the articles by a large enough subset of authors in the
query Qd could also be of interest to the user in the context of the
query. Exposing such results in the data helps users navigate the
data as well as to refine their queries (cf. Section 6.1).

GKS relaxes the need for users’ familiarity with the schema:
GKS identifies the XML nodes, which are not necessarily LCA
nodes but that could be of interest to the user in the context of the
query. This ability of GKS can be exploited to discover most
relevant keywords and their semantics in the underlying XML data,
in the context of the user query. This information is called deeper
analytical insights or DI. For the query in Example 2, GKS exposes
<ip: journal: SIGMOD Record>, <ip: year: 2001>, <ip: author: Alok
N Choudhary> and <ip: booktitle: ICPP>, etc., as DI from the
XML data in the context of the query (GKS returns a well-
constructed XML chunk. Truncated representation is due to lack of
space). DI exposes the most relevant journals, year and authors in
the query response. The user may not be aware of these keywords
or their relevance in the context of the query.

DI is defined formally in Section 2.3 (Def. 2.3.1). Discovery of DI
(Section 6) enhances the users’ ability to navigate the data even if
they are unaware of the schema details and the semantic
relationship between the various data keywords. To discover DI,

f1

a3 c2 a1

x1

b1

x2 x4

r

x3

d2

a2 d1 b3

Q1 = {a, b, c}

Q2 = {a, b, e}

Q3 = {a, b, c, d}

c1

b2

 (i) (ii)

150

we exploit the XML schema, embedded in the structure of the XML
data, in the context of a user query. A novel node categorization
model is proposed that identifies certain XML node types as Least
Common Entity nodes or LCE nodes (cf. Section 2.2). LCE nodes
are central to our methodology to discover DI. A subset of XML

nodes)(sRE QQ  in GKS response for query Q can be Least

Common Entity (LCE) nodes; 0≤|EQ|≤|RQ(s)|. For an XML node u
containing a sub-set of query keywords (of size ≥ s) in its sub-tree,
its corresponding LCE node will be either u itself or its ancestor.

In Example 2, <ip> node is an LCE node. GKS exposes the
semantics of the DI keywords, i.e., 2001 is a <year> with the aid of
XML elements on the path from the root of LCE node <ip> till the
keyword “2001”. Semantics are important as in a different context,
2001 could be a street number. Query keywords, either XML
element names or text keywords, may carry different meaning in
different context [9]. Exposing the relevant keywords and their
semantic meaning helps users refine their queries in the absence of
knowledge about the schema and the data.

GKS returns meaningful response: The meaningfulness of the
results of a search query is defined by their recall and precision. In
LCA based search, a keyword query typically targets XML nodes
belonging to specific schema elements E in the associated XML
schema [19]. <E>E is an XML schema element. The target
nodes are the LCA nodes of the query keywords. If the returned
LCA nodes are of targeted schema element type(s), it constitutes a
meaningful response. For the query Qd in Example 2, the
meaningful LCA nodes for this query are all of type <ip> in the
corresponding XML schema.

However, due to imperfect data with missing XML elements or due
to imperfect query, LCA based techniques often return LCA nodes
other than the target XML elements type [19]. For instance, for
query Qd, LCA based techniques will return the DBLP root. A more
meaningful response is a ranked list of articles, jointly written by a
sub-set of authors in the query, i.e., returning nodes of same type,
which were targeted. For GKS system, all the XML nodes that
contain any subset of keywords in a query (of size ≥ s) are returned.
Therefore, recall of GKS is likely to be high since GKS query
response is likely to have XML nodes which are instances of target
XML schema element in E for a user query Q (any XML node
containing s ≤|Q| keywords in its sub-tree is returned).

In the context of a keyword query, the relevance of a XML node is
high if it contains a large fraction of query keywords. The precision
of the GKS system will be high if the most relevant XML nodes in
the GKS query response are ranked higher. We present a novel
ranking methodology (Section 4) to ensure high precision.

1.3 Research Challenges and Contributions
Similar to a web search engine, Generic Keyword Search has the
twin objectives of: a) locating the most relevant XML nodes for the
given keyword query efficiently; and b) ordering the search results
to rank more meaningful results higher.

GKS has three primary challenges; 1) Efficiency –GKS has much
larger search space as opposed to LCA based techniques (Lemma
3). Therefore, a major challenge for GKS is to be able to retrieve
the relevant nodes efficiently (Section 4); 2) Ranking – Number of
XML nodes retrieved by GKS could be large and the structure of
the different XML nodes in the search results could be different.
Therefore, it is imperative to rank the nodes such that more
meaningful and relevant nodes are ranked higher (Section 5); 3)
Analysis - GKS aims to enable the users to refine their queries
without needing them to be familiar with schema and data. GKS

meets this challenge by exposing relevant keywords in the data and
their semantics in the context of the user query (Section 6).

In this paper, we make the following contributions:

1. Existing XML Keyword Search techniques work within LCA
framework. We introduce Generic Keyword Search (GKS)
that enables XML search beyond LCA framework.

2. We propose a XML node categorization model. With the aid
of this model, we expose most relevant XML elements and
data keywords, called DI, in the context of a given keyword
query. Users can refine their query with the aid of DI. DI is
discovered because GKS does not impose the LCA constraint.

3. We introduce a ranking methodology to rank more meaningful
XML nodes, retrieved by GKS, higher. Node ranking is
further exploited for DI discovery.

4. We present an evaluation of GKS system on real data sets. Our
results show that GKS is able to return highly relevant
response for the given keyword queries efficiently. We further
show that our system is able to find highly relevant DI that
enables the users to navigate the XML data seamlessly.

The organization of the paper is as follows. Section 2 introduces
the GKS node categorization model along with the definitions of
LCE nodes, DI and the GKS indexing structure. Related work is
presented in Section 3. Our methodology to identify the relevant
XML nodes efficiently is the subject of Section 4. In Section 5, we
present a novel XML node ranking methodology. In Section 6, we
discuss our mechanism to discover DI. In Section 7, we present
experimental results followed by conclusion in Section 8.

2. XML NODE CATEGORIZATION AND
DEFINITIONS
In this section, we first present a novel XML node categorization
model. The XML node categorization helps us exploit the XML
schema, embedded in the XML data, to identify relevant data
keywords and XML schema elements in the context of a user query.
We also present the definitions of LCE nodes and DI, GKS system
architecture and the indexes maintained by GKS.

2.1 Preliminaries
An XML document is a rooted tree T as shown in Figure 2(a).
Nodes in the tree are labeled with Dewey id [1]. Dewey id is a
unique id assigned to a node that describes its position in the tree
T. A node with Dewey id 0.2.3 is the fourth child of its parent node

0.2. nid represents an XML node with Dewey id id. uv a denotes

that node v is an ancestor of node u. uv a denote that uv a or

v=u. U represent a set of XML nodes (or keywords) in XML tree
T. Uv lca denotes that v is the lowest common ancestor of nodes

in set U. For a text keyword or XML node k, k v denotes that k
occurs in the sub-tree rooted at XML node v and k v denotes that
k does not occur in v’s sub-tree. u* denote that one or more siblings
of node u exist in tree T with same XML element label. uv e

denotes that v is an entity node w.r.t. u (Def. 2.1.3) and u v or
v=u. uv lce denotes that XML node v is the lowest common entity

node (LCE) w.r.t. node u (Def. 2.2.1) and u v or v=u.

2.2 Node Definitions
We divide the XML nodes in the following categories, based on the
structure of their sub-trees in T.

2.1.1. Attribute Node (AN): A node which contains only one child
that is its value. For instance, in Figure 2(a) node <Name> (n0.1.0)
is an attribute node. Attribute nodes are also represented as ‘text
nodes’ in XML data. The parent node of an attribute node is

151

considered the lowest ancestor for keyword(s) in its value (and not
the attribute node itself). Thus, ancestor of ‘Databases’ is node n0.1.

2.1.2. Repeating Node (RN): Let *uv lca , i.e., v is the lowest

common ancestor of multiple instances of node u. u is called the
repeating node w.r.t. node v. For instance, in Figure 2(a), nodes
with label <Student> are repeating nodes w.r.t. <Students>. The
repeating nodes most likely correspond to a physical world object
which could be a concrete or an abstract object [3]. A node that
directly contains its value and also has siblings with the same XML
tag is considered a repeating node (and not an attribute node), i.e.,
<Student> nodes in Figure 2(a).

2.1.3. Entity Node (EN): Let v be an XML node in XML tree T

such that ** ,|),(uaAaAuv lca  . v is an entity node. A is a

set of attribute nodes. An attribute node a A does not occur in any
repeating node u, i.e., a does not have u in its XPath from root.

An entity node v is a lowest common ancestor of repeating nodes u
and one or more attribute nodes (|A|≥1). In Figure 2(a) <Area> (n0.1)
is an entity node; it is the lowest common ancestor of attribute node
<Name> (n0.1.0) and repeating nodes <Course> (n0.1.1.x). <Course>
nodes are not the direct children of n0.1 (Attribute nodes and
Repeating nodes can be indirect children of entity node). Similarly,
<Course> nodes (n0.1.1.0, n0.1.1.1, n0.1.1.2, ..) are the entity nodes.

2.1.4. Connecting Node (CN): Nodes which are in none of the

above categories. In Figure 2(a), <Courses> (n0.1.1) is a connecting
node.

Table 2: Notation

XML documents follow pre-order arrival of nodes. Hence, different
node types are identified in a single pass over the data. GKS does
not need the XML schema in order to categorize nodes. XML nodes
are categorized at the instance level. This information is stored in
an index (Section 2.4). Hence, each node is categorized based on
the structure of its sub-tree. For example, all the instances of
<Course> node in Figure 2(a) are entity nodes (Def. 2.1.3).
However, if a <Course> node had just one student in its sub-tree,
that instance would have been stored as ‘Connecting node’ in the
index. GKS can be easily extended to take into account the XML
schema to categorize the nodes. This is part of our future work.

The node categories described above extend the node
categorization model in [3]. It is argued in [3] that in the
hierarchical structure of XML data, repeating nodes (Def. 2.1.2)
capture the concept of physical world object. The physical object
could be a concrete or an abstract object. In normalized XML data,
attributes of an XML node that contains repeating nodes in its sub-
tree, represent the information that is common to these repeating
nodes [14]. The fundamental design principle underlying the
normalized XML schema is, the attribute nodes of an XML node
define the context of the repeating nodes in its sub-tree through
their values. In GKS node categorization model, such XML nodes
are termed entity nodes (Def. 2.1.3). As shown in the experiment in
Section 7.2, we count the total number of XML nodes and XML

nodes that were labeled as entity nodes, attribute nodes and
repeating nodes, respectively by GKS for many standard XML data
repositories. The result shows that the real world data repositories
are normalized. The note categories described above naturally
capture the normalized XML data.

A node can be an entity node and at the same time a repeating node
for another entity node higher up in the hierarchy. For instance, in
Figure 2(a), <Course> nodes are both entity nodes as well as
repeating node within the sub-tree of node <Area> (n0.1). Let Q be

a keyword query, |Q|>s, and QQ ' ; |Q’|≥s. Let LCA node u for

Q’ is not an entity node and v is the lowest ancestor of node u such
that uv e . Hence, node u can either be a connecting node or a

repeating node w.r.t. v. Since u does not have the attribute nodes,
as it is not an entity node, the context of the node u is most
specifically defined by the attribute nodes of node v. In Figure 2(a),
attribute <Course: Name: Data Mining> defines the context that
<student> nodes in its sub-tree are registered in this course.

For a given keyword query, the closer the entity node is to the query
keywords in its sub-tree, the more specific the context would be for
those keywords. As we move up in the hierarchy, the context of the
corresponding sub-tree becomes more general. In Figure 2(a),
<Dept> node and <Course> node both are entity nodes and both
contain the query keywords for a query Q= {‘Karen, ‘Mike’}.
However, the context of entity node <Dept> is much more general
compared to more specific context of the node <Course>. Hence,
to find the more meaningful response for a given query, we
discover the entity node closest to the query keywords or Least
Common Entity (LCE). LCE is formally defined below.

Let Sc be a set of all the entity nodes in the sub-tree rooted at an

entity node ec, i.e., cac Seee ; . Let Q be a keyword query,

Q={k1,..kn}.

Def 2.2.1 LCE Nodes: An entity node ec is an LCE node for query

Q if ekSeekQk cc  ,| .

Hence, for an entity node ec to be LCE node for a given query Q,
there exists at least one keyword k Q in the sub-tree of ec, which

is not contained in any other entity node e such that ee ac  .

Keyword k is called an independent witness for LCE node ec.
Similar to an SLCA node, an LCE node also needs at least one
independent witness.

Lemma 1: Let uv a denote a relationship that uv a or v=u. Let

u be an XML node that is an LCA node for a set of keywords

QQs  , |Qs|≥|s. Let v be an LCE node for keywords in Qs. uv a

Proof: Obvious. □

s Minimum number of keywords from a query that must
appear in the sub-tree of a XML node.

RQ(s) Set of XML nodes for a given s, returned by GKS in
response of query Q

R(e) For an LCE node eRQ(s), R(e) is a subset of text
keywords, extracted from attribute nodes of e.

Sw
Q Weighted set of text keywords, identified from the LCE

nodes in set RQ(s).

r
QR Set of XML nodes, after recursively applying the GKS

algorithm r times over the query results RQ(s).

Dept_Name
0.0

Dept
0

Students

Students

Name

‘Databases’

Name
0.1.0

Course
0.1.1.0

Courses
0.1.1

Area
0.1

‘Karen’

Student

Student

‘Mike’

Name

Course
0.1.1.1

Student

Student

‘Karen’

‘Algorithms’

‘Julie’

Student

‘John

‘CS’

Area
0.2

…………

…………

‘Data
Mining’

Figure 2(a). An XML Document

Student

‘Peter’

Students

‘Karen’

Student
 ‘AI’

Student

Course
0.1.1.2

Name

‘Mike’

Student

‘Serena’

152

For a given user query Q, GKS returns a set of XML nodes RQ (s)
such that for each node u RQ (s), u contains at least s keywords
from query Q.

Lemma 2: For a keyword query Q and integers s1 and s2, |Q|≥s1>s2,
|RQ (s1)| ≤ |RQ (s2)|.

Proof: Since s1>s2, uvsRusRv aQQ |)(),(21  . However,

)(2sRu Q there can be at most one)(1sRv Q | .uv lce Thus,

for)(, 1sRvv Q there exist a corresponding node in RQ (s2) but

vice versa is not true. Thus, |RQ (s1)| ≤ |RQ (s2)|. □

Example 3: Let there be a user query Q4={student, karen, mike,
john, harry}, s=2. The intent of the query is to find the information
about these students. For the data shown in Figure 2(a), 3 courses
contain the names of at least one of these students. The GKS
response constitutes the XML nodes as shown in Figure 2 (b). The
XML nodes are LCE nodes since they are the lowest entity nodes,
w.r.t. query keywords. Attribute nodes of respective entity nodes
exposes the context, i.e., name of the respective courses students
are enrolled in. The XML nodes are ranked (cf. Section 5).

As one can see, the user query in Example 3 is ‘imperfect’. To
construct a ‘perfect’ query, for a LCA based technique, user needs
to be aware which students are enrolled in same courses. User still
has to run multiple queries to get the complete response. GKS
returns the relevant and meaningful information in the context of
this ‘imperfect’ query. We further enhance a user’s capability to
refine an ‘imperfect’ query by exposing the deeper analytical
insights in the query response as explained in the next section.

2.3 Deeper Analytical Insights (DI)
For the query in Example 3, let’s say user runs a ‘perfect’ query
Q5={student, karen, mike, john}. The response of a LCA based
technique [2][5] will be XML sub-tree rooted at node n0.1.1.0.1
<Students> node. Even though the query is perfect, the response
still does not yield any meaningful information. On the other hand,
GKS response is node n0.1.1.0 for s=|Q| (n0.1.1.0 is an LCE node for
Q5) with the aid of its node categorization model. Thus, GKS
response exposes the information that the students are registered in
‘Data Mining’ course. This information, <Couse: Name: ‘Data
Mining’>, is called deeper analytical insights or DI. DI enables
users to navigate the XML data by exposing relevant schema and
the data elements that help users not only understand the query
response but also help refine their queries.

Figure 2(b). Response of the GKS System for Q4
To discover DI, for a user query Q and s, GKS prepares a set of
keywords Sw

Q from nodes in set RQ (s) as follows: For each node u
 RQ(s), if u is an LCE node, GKS extracts the text keywords from
its attribute nodes and put them in set Sw

Q. For instance, for the
query in Example 3, entity nodes n0.1.1.0, n0.1.1.1 and n0.1.1.2 are the
LCE nodes in the set RQ (s) (Figure 2(b)). Each of the entity nodes
has an attribute node <Name: Data Mining>, <Name: AI> and
<Name: Algorithms>. The set Sw

Q will contain keywords {“Data
Mining”, “AI”, “Algorithm”}. R(e) represents the set of attribute

nodes in the sub-tree of entity node e (see Table 2). Given a query
response RQ(s), we prepare a set of keywords Sw

Q ={k1…kn}
containing the text keywords embedded in the attribute nodes for
each of the entity nodes in RQ(s).

Def 2.3.1 DI: Let EQ RQ(s) be the set of all LCE nodes in GKS

response for keyword query Q and let Sw
Q = QEeeR |)( .

w
QSDI  | QkDIk  ; .

For a keyword k in DI, let e be its corresponding LCE node. For the
keyword k, we also associate the XML elements in the path from
node e till keyword k. The keywords and the associated XML
elements with each keyword together form the DI.

DI can also be discovered recursively for a user query as described
below. We use only set RQ(s) and not EQ since context is clear.

i) GKS parses the LCE nodes in set RQ(s), for a given keyword
query Q and prepares a weighted set of keywords Sw

Q by identifying
a subset of text keywords in each of the LCE nodes (Section 6.2).

ii) Top-m most weighted keywords in the set Sw
Q are fed to GKS as

a query. GKS identifies a set of XML nodes w.r.t. these keywords

from set Sw
Q. This set of XML nodes is denoted as)(1 sRQ . Set

0 QR (0
w
QS) is denoted by just RQ (s) (Sw

Q).

The above steps can be applied recursively --)(sRr Q represents

the set of LCE nodes after rth recursion.

iii) GKS prepares the set of keywordsr
w
QS from the nodes in

)(sRr Q . DIr is extracted fromr
w
QS ; r ≥ 0.

DI can be discovered recursively for a user query Q by extracting a
ranked list of most relevant keywords and their semantics from

i
w
QS at each step i of recursion. In summary, DI is discovered 1)

with the aid of GKS node categorization model; and 2) because
GKS does not impose the LCA constraints and thus retrieves all the
relevant XML nodes in the query context. These XML nodes help
discover meaningful DI.

2.4 GKS Architecture and Indexes
In Figure 3, we depict the architecture of GKS. The GKS takes as
input XML data and prepares an index on it. The XML data could
be spread over multiple files. For a user query Q, GKS produces a)
ranked search results on the data; b) deeper analytical insights (DI)
by analyzing search results. GKS contains three modules; i)
Indexing Engine; ii) Search Engine; iii) Search Analysis Engine.

Figure 3. Architectural of the GKS System

For a given XML data repository, we first prepare an index on it.
This is a onetime activity. We keep the following indexes:

Inverted Index for text keywords: For each unique text keyword
that appears in the XML document repository, we keep an inverted
index list. If text appearing under a ‘text node’ comprises multiple

Indexing
Engine

 Search
 Engine

Search
Query

Ranked
Search
Results

Search
Analysis
Engine

Analysis
Results

User Input

GKS
Output

‘John

Nam
e

‘Karen’

‘Algorithms’

Students

Course
0.1.1.1

Student

Students
0.1.1.0.1

Name
0.1.1.0.1

Course
0.1.1.0

‘Karen’

Student

Student

‘Mike’

Student
 ‘Data

Mining’

Students

‘Karen’

Student
 ‘AI’

Student

Course
0.1.1.2

Name

‘Mike’

(i)

(ii)

(iii)

153

keywords, a separate index entry is created for each of the
keywords after stop words removal and stemming. A partial
inverted index for document in Figure 2(a) is shown in Table 3. The
inverted index list for a keyword ki contains the Dewey id of all the
nodes which contain that keyword. Dewey id for each node has
been appended with the document id ‘did’. Thus, GKS search is
seamlessly expanded over multiple documents by prefixing Dewey
ids with corresponding document id. For a keyword ki present in
the XML document repository, Si denotes its inverted index list.

Hash tables: We keep two hash tables corresponding to XML
elements. Hash table 1, called ‘entityHash’, keeps the Dewey id of
entity nodes. Hash table 2, called ‘elementHash’, keeps the Dewey
ids of repeating nodes and connecting nodes. Both hash tables also
store the number of direct children each node has. This information
is used while computing the rank of a node (Section 5). If a XML
element is both a ‘repeating node’ and an ‘entity node’, its entry is
present in both the hash tables.

Since XML nodes arrive pre-order (an ancestor of an XML node
always appears before it), the hash tables and the inverted index are
created in a single pass over XML data.

Table 3. Partial inverted index for XML document in Fig 2(a).

 We provide two functions: i) isEntity (Deweyid); ii) isElement
(DeweyId). Both the functions return the number of direct children
the given node has if true, null otherwise.

3. EXISTING WORK in the GKS CONTEXT
A large body of work exists to understand the user's intent for a
keyword query over XML data. The work related to GKS can be
divided into 3 categories: 1) Identifying meaningful return nodes
for a keyword query, 2) Result type deduction techniques and 3)
Ranking the XML nodes retrieved in response to a user query.

Identifying meaningful return nodes: Users present their
keyword query and the underlying algorithm interprets the user’s
intent and tries to identify the return nodes accordingly [2][3]
[5][6]. The existing approaches for identifying most relevant return
nodes are based on first discovering SLCA nodes [13]. Different
heuristics are applied on the set of SLCA nodes to identify
meaningful return nodes. In XSeek [3], authors propose a technique
that first finds the SLCA nodes for a given keyword query. The
keywords in the query are understood as the 'where' clause whereas
'return' nodes are inferred based on the semantics of ‘query
keywords'. MaxMatch [11] and RTF [12] are SLCA based
approaches to identify meaningful return nodes. In [11], irrelevant’
match results are filtered from each SLCA node. In [12], authors
propose an improved algorithm to address redundancy and false
positive problems of [11]. In all the approaches above, a set of
SLCA nodes is identified for given keyword query. In [10] authors
address the problem due to imprecise XPath queries.

Deducing result types: Deducing return node types is also an
important goal for GKS since for most keyword queries, users
target certain node types. However, due to lack of knowledge about
the distribution of keywords in the document, different semantic
meaning of same keywords or due to lack of familiarity with the
document schema, the query may not by semantically ‘perfect’. In
[15][19], it is assumed that the keyword query is semantically
correct and certain node types are the target nodes for a given query.
XReal [9] and XBridge [4] address the problem of deducing the
return nodes types. In [9] the authors count the confidence level to
deduce the result node types. In [4] authors highlight the fact that
keywords may exist in different context. XBridge automatically

predicts the intended result types for XML keyword queries by
considering the value and structural distributions of the data. The
more generic solution to this problem is to enable users to further
refine their queries. GKS approach is a step in that direction.

Ranking the XML nodes: The XML ranking techniques are
divided into IR [9][8] based methods and relevance score based
[15][7] methods. XRank [7], XSEarch [8] are techniques to rank
the keyword query search results based on LCA nodes. XRank
takes into account the keyword proximity in the XML nodes
whereas XSEarch computes the node rank based on TF-IDF based
method. The basic differences between these methods and GKS
technique is: In existing XML ranking methods, each of the XML
nodes that is ranked contain a fixed set of all query keywords. XML
nodes in GKS response contain varying number of query keywords.
We have outlined the issue arising due to this difference in Section
5 when we present GKS ranking methodology.

4. SEARCHING GKS NODES
The basic difference between the LCA based search and GKS-
Search is: GKS has exponential search space compared to LCA

based techniques. For query Q (|Q|=n), a total of (














s

i

n

i

n

1 1
2)

sub-sets, of size at least s, can be formed; s ≤ n. To identify GKS
nodes, a naïve approach would be to create all the keyword subsets
(of size ≥ s) for query Q, and for each of these keyword subsets,
identify the LCA nodes. Together, all the LCA nodes thus
discovered can be used to produce the GKS response. However,
this approach results in an exponential number of sub-queries.

Lemma 3: For a given query Q, |Q|=n,  2/ns  ; GKS has

exponential search space w.r.t. an LCA based techniques.

Proof: For a given query Q, |Q|=n, a total of U = 














s

i

n

i

n

1 1
2 sub-

sets can be formed such that each set is of size at least s. Now,

12
11














n
n

i i

n n
n

i i

n
2

11











 



since 



















in

n

i

n
. Hence,

 
2/2

1

2/

1

n
n

i i

n














; Therefore  .2/;2/2
11

ns
i

n n
s

i














Since, U= 














s

i

n

i

n

1 1
2 U 12  n . Therefore, an exponential

number of sub-sets are formed when  2/ns  with each sub-set

leads to one keyword query for an LCA based techniques. □

Lemma 3 shows GKS has exponential search space w..r.t. LCA
based techniques. Further, the naïve approach does not discover
the LCE nodes, in absence of GKS node categorization model,
which allow GKS to expose DI in the context of the user query.
Hence, LCA techniques cannot be applied as is for GKS-Search. In
this section, we present an efficient method to find relevant XML
nodes for GKS-Search. We call them GKS nodes. A subset of GKS
nodes can be LCE nodes. We also present the correctness analysis
and time complexity analysis of our method.

4.1 Efficient Method to Search GKS nodes
For the query keywords Qki  , we first merge their respective

inverted index lists such that in the merged list, keywords follow
their arrival order in the XML document. Since the Dewey ids of
the XML nodes follow pre-order traversal, if the merged list is
sorted on Dewey ids, we achieve such ordering. Let d be the depth
of the XML tree T being queried. Depth of the tree T is defined as

Karen did.0.1.1.0.1.0 did.0.1.1.2.1.0 ……

Mike did.0.1.1.0.2.0 did.0.1.1.2.2.0 …..

154

the number of edges from the root of the tree to its deepest leaf. Let
|Q|=n, i.e., n lists are merged. Let |Si| be the inverted index length

for keyword Qki  . Let SL be the merged and sorted list. |SL| ≤




n

i

iS

1

|| . The time complexity to merge k sorted lists, of total

length l, into a single sorted list in O(l.logk). Since the inverted
index list for each keyword is sorted on its Dewey id, therefore the
n lists are merged in a single sorted list SL in O(d|SL|log n).

Figure 4. List of longest common prefixes for Dewey id blocks

of size s=2

Generating list of candidate GKS Nodes: Our next objective is
to generate the list of candidate GKS nodes that have Qs Q

keywords appearing in their subtree such that |Qs|≥s. Towards that
end, in the merged list SL, longest common prefix is identified for a
continuous block of s entries, as shown in Figure 4 (in Figure 4,
s=2). We traverse the list SL from left to right. Since the list SL is
sorted, the Dewey ids of the nodes in a common sub-tree occur next
to each other, with an ancestor node preceding its descendent.
Therefore, in SL, the longest common prefix of a block of s nodes
will be the Dewey id of the common ancestor for the nodes in this
block. There will be at most (|SL| – s) such prefixes.

The prefixes are put in Longest Common Prefix (LCP) list as shown
in Figure 4. With each prefix entry in LCP list, we associate a
counter which is initialized to 1. If a prefix exists in the LCP list
(i.e., more than s query keywords exist in its sub-tree), its counter
is increased by 1. Since the block of s entries in the list SL slides to
the right by 1 at a time, the counter can increase by only 1 at a time.

Figure 5. Traversal of list SL

The objective of GKS is to collect s unique keywords from query
Q in the sub-tree of a GKS node. However, it is possible that not all
s keywords in the continuous block of length s are unique.
Therefore, we first collect a block such that there exist s unique
keywords in it, as shown in Figure 5. For a block of length s, let l
and r represent the left and right end of the block respectively.
Function sU (l, r, s) returns true if there are s unique keywords in
the range of l to r (with the aid of hash tables, Section 2.4). Until
sU(.) is true, we just move r to the right, keeping l fixed. When
sU(.) is true, range l and r represent a block containing s unique
keywords. Once the correct block is found, the longest common
prefix of the block is added to the LCP list.

We generate the list of LCE nodes from LCP list. For each of the
entries in LCP list, we check the entityHash, prepared at the time
of parsing XML document repository. For each entry in the LCP
list, we check if it is an entity node or any of its ancestors is an
entity node (using Dewey id we can get the Dewey ids of all if its
ancestors). If the node (or any of its ancestors) is found to be entity
node, we add the corresponding Dewey id into a LCE node list. We
also maintain a ‘Ranking array’ which has an entry corresponding
to each GKS node. Each entry in the ranking array maintains two
scores as shown in Figure 4. One is the number of keywords kiQ
appearing in GKS node sub-tree and the other is its ranking score
(computation of the ranking score is described in Section 5). The
number of query keywords in the GKS sub-tree is (s+counter-1).

Algorithm GKSNodes (Set Q) //Q contains query keywords

 Merge the sorted inverted index list Si for kiQ into list SL
 //Find Longest Common Prefix (LCP) list
 l=0; r=s-1;
 Traverse SL from left to right
 while (!sU (l, r, s)) r++; //Identify block of s unique entries
 Find longest common prefix (LCP) of s unique entries;
 Add LCP to LCP list;
 if (sU (l, r, s)) r++; l++;
 for each entry en in LCP list //Find LCE node list from LCP list
 ec = null;
 if (isEntity (en) > 0)
 Add en to LCE node list; ec = en; Remove en from LCP list;

 else if (any ancestor na ee  & isEntity(e) & e LCE node list)

 Add e to LCE node list; ec=e; Remove en from LCP list;
 if (ec != null)

 for ( ca ee )

 if (isEntity(e) > 0 & e  LCE node list)
 Update LCE node (e);
 Rank nodes in LCE/LCP node lists;
 return ranked LCE/LCP lists;

Figure 6: GKS algorithm for finding XML nodes

Example 4: In Figure 4, did.0.1 is the longest common prefix (LCP)
of block of first s nodes. Its entry is created in the LCP list with
counter set to 1. In Figure 4, node did.0.1 is found to be entity node.
An entry for it is created in LCE node list with keyword counter set
to (s+counter-1=2). Similarly, the next entry in LCP list did.0.1.1.0
is initiated with counter set to 1. While checking its ancestors, node
did.0.1 is found to be an entity node. Since did.0.1 already exist in
the LCE node list, its entry (i.e., number of keywords in its sub-
tree) is updated to 3 (since node did.0.1.1.0 appears in its sub-tree).
Finally, the keyword count of node did.0.1 is incremented to 4 and
for node did.0.1.1.0 to 3 (due to next keyword with Dewey id
did.0.1.1.0.4). Once the LCE nodes list is computed along with the
number of keywords in its sub-tree, we compute a ranking score ri
for each LCE node, as explained in Section 5. It is also possible that
for some node in LCP list, no corresponding LCE node is found.

4.2 Correctness and Time Complexity
In this section, we present the analysis of our method and prove the
correctness of our methodology to discover the LCE nodes.

For LCE node e, there must exist at least one keyword kQ that is
not contained in any other entity node within its sub-tree (Def.
2.2.1). k is called the independent witness of node e. Correctness is
defined as discovering LCE nodes according to Def. 2.2.1. We now
prove the correctness of our methodology to discover LCE nodes.
To discover LCE nodes, LCP list is traversed from left to right. Let
left and right pointers l and r of the current block under
consideration are at position p1 and p2 respectively in list SL when
entity node e is first time being added to the LCE list.

Counter

did, 1
did.0.1.1.0, 2

did.0.1.1.0.3, did.0.1.1.0.4, did.1.0.1,

Ranking Array

Merged Dewey id list: SL

LCE nodes List

did.0.1.0.0,

did.0.1, 1

Longest Common Prefix (LCP) list

did.0.1 did.0.1.1.0 did.1.0

4, r1 2, r3 3, r2

did.0.1.1.0.2,

did.1.0, 1

s

s l r
while (!sU (l, r, s)), shift r to right by 1

if (sU (l, r, s)), shift l, r to right by 1
l r

List SL

did.1.0.2

155

Lemma 4: For entity node e, just being added to the LCE list, only
Dewey id of the keyword at position p1 or at position p2 can be the
smallest Dewey id which is independent witness for node e.

Proof: Omitted. □

Let k be the independent witness for node e with smallest Dewey
id. We associate the Deweyid of keyword, k, with node e. Let en be
the LCE node added immediately after node e in the LCE list. If

na ee  and ke an  , the entity node e is removed from the LCE

list. The reason is: k is the earliest keyword in document order
which was an independent witness for node e at the time of its
addition to LCE list. Since k itself appears in the sub-tree of its
descendent entity node en, e is left with no independent witness and
hence removed from the LCE list. Note, e can come back in LCE
list if any other keyword is found to be an independent witness for
it later in list SL. Any entity node e that survives has at least one
independent witness. In Figure 4, entry did.0.1 survives in LCE
node list at the time of addition of did.0.1.1.0 since it has an

independent witness. If any entity node e, na ee  , of a newly added

entity node en remained in the LCE list, we update its ranking array.

Lemma 5: For each LCE node e that survives in LCE node list,
there exists a keyword k that is an independent witness of e.

Claim 1: Let e be a lowest common entity node for a block of s
keywords. We claim that at least one of the keywords in the block
is an independent witness for node e.

Proof: Proof is by contradiction. Suppose no keyword in the block
of s keywords is an independent witness for LCE node e. Hence
there must exist another LCE node in the sub-tree of e, which
contains all the keywords from the block. Hence node e is not the
lowest common entity node, contradicting the initial assumption. □

Claim 2: Any ancestor entity node e, of entity node en, which is not
already present in the LCE node list at the time of addition of node
en in the LCE list, is not the LCE node.

Proof: As entity node e, na ee  , is not in LCE list, therefore it

has no independent witness keyword at the time of addition of en.
Since en is the lowest entity node for the current block of keywords,
e cannot be an LCE node. □

Thus, LCE node e that survives in LCE node list, there exists a
keyword that is an independent witness. When the traversal of LCP
list is complete, LCE list contains only true LCE nodes (Def. 2.2.1).

Time complexity to generate the longest common prefix list is
O(d.|SL|) due to Lemma 6 below (the worst case time complexity
could be s.d.|SL| where s is a small constant). Since the Dewey ids
are sorted, we just need to find the longest common prefix of first
and last Dewey id in the block of s Dewey ids. There are O(|SL|)
entries in longest common prefix list and depth of the document is
d. Hence, time complexity to generate LCE nodes list is O(d.|SL|).

Lemma 6: For lexically sorted block of s strings, the common
prefix of first and last string is the longest common prefix for the
strings in the block. □

As the time complexity to generate merged Dewey id list is
O(d.|SL|.log n), total time complexity to generate LCE node list,
along with its ranking score list is O(d.|SL|.(log n)). Therefore, we
efficiently identify LCE nodes in a single pass.

For the LCA based search, the time complexity of the state of the
art algorithm to find LCA nodes for query Q, |Q|=n, is
O(d.n.|Smin|.log|Smax|) where |Smin|(|Smax|) is the length of the
shortest (longest) inverted index list consisting the DeweyId of the
keyword in query Q [6][16]. We see that the time complexity of our
algorithm to find the GKS nodes is only marginally worse than the

time complexity to find LCA nodes, even though the search space
for GKS is exponential compared to LCA nodes.

Nodes in Longest Common Prefix (LCP) list contain at least s
keywords in their sub-tree. For each node u in LCP list we keep a

mapping with its associated LCE node v in LCE list, uv a . There

may exist some nodes in LCP list such that no corresponding entity
node is found for them due to the structure of the XML data.

The XML nodes in LCE list along with those nodes in LCP list for
which no corresponding LCE node exist together constitute the
GKS response RQ(s). These nodes are ranked with the aid of
ranking function presented in the next section.

5. RANKING
Node ranks help GKS construct a more meaningful response.
Number of GKS nodes can be large and the response may comprise
a variety of XML node types. The relevance of these nodes varies
in the context of a given query. For LCA based techniques, each
LCA node is the common ancestor of all the keywords in query Q.

Due to the basic differences between GKS and LCA based search,
existing ranking algorithms [8][15] are insufficient for GKS.
Existing ranking methods work by using aggregated statistical
information for entire XML repository. For a fixed set of keywords,
nodes are ranked based on statistical relevance of a query keyword
in the context of a given XML node. For GKS, any node containing
a subset of keywords belonging to query (of size ≥ s) is the node of
our interest. Further, GKS response may contain a variety of
differently structured XML nodes. Therefore, any statistical
method is insufficient to compare the relevance of one XML node
w.r.t. other due to the structural difference in their sub-trees.

Therefore, we introduce a novel ranking function that computes the
rank of each XML node in RQ (s) for query Q based on i) the number
of keywords from Q appearing in its sub-tree; and ii) the structure
of the sub-tree rooted at that node.

5.1 Ranking Methodology
We use a potential flow model to compute the rank of the XML
nodes in RQ(s). Potential of a node is like the amount of water
present in a reservoir which flows in a network of pipes coming out
from it. The potential flow model automatically incorporates the
structure of the sub-tree rooted at an XML node.

We assign an initial potential, P|e to each node e)(sRQ . P|e, for

node e is equal to the number of unique query keywords kQs,

QQs  , present in its sub-tree.

P|e=|Qs|; QQs  ; Q={k1,…,kn}

P|e just accounts for the presence of a keyword kQ in the sub-
tree of node e. If the keyword k is present multiple times in node e,
only its highest occurrence in its sub-tree is considered. This
highest occurrence of a query keyword in the sub-tree is termed
terminal point. If a keyword k is present multiple times at the
highest level, each of its occurrences is considered a terminal point.
For example, if a keyword kQ is a repeating XML element name
in the sub-tree of an LCE node, each of its occurrence will be
considered as a terminal point (assuming that is the highest level at
which keyword k occurs). Hence, for a user query Q={k1… kn}, each
candidate XML node has a starting potential. As shown in Figure
7, for node e1, the highest occurrence of keywords k1, k2, k3 are
terminal points.

The rank of a node e QR is computed as follows: The potential of

a node e is equally divided into each of its child nodes. For a node

156

e with potential (P|e), with m children, each of its child nodes will
receive (P|e)/m potential, where m is the number of direct child the
node e has. The rank of the node is sum of the total potential
received by each of the terminal points.

Let i→k denotes the relationship that node i is parent of node k. The
rank of an entity node e is computed as follows:

ki
m

p
Rank

Qk i

i
e 



|

where k is a terminal point in the sub-tree of node e, pi is the
potential received by its parent node i and mi is the total number of
direct children node i has. The potential received at terminal points
depends on the structure of the sub-tree rooted at the XML nodes.

Intuitively, it implies that the number of distinct query keywords in
its sub-tree and the structure of its sub-tree determine the rank of
an XML node. Each LCE node is ranked independently,
irrespective of its relative depth w.r.t. document root.

Figure 7. LCE nodes containing keywords in set RQ(s)

Example 5: We illustrate the computation of XML nodes rank with
the example XML document shown in Figure 1. For query Q3= {a,
b, c, d}, GKS returned 3 XML nodes x2, x3 and x4. The initial
potential of node x2 is P|x2=3. The rank of node x2 is the potential
received by the terminal nodes in its sub-tree, i.e., nodes a2, b1, c1.

The rank of node x2 = 
Qk

n
xP 2|

= 3
3

33  . Similarly, for

node x3, the initial potential P|x3 is 3. The three terminal nodes are
nodes a3, b3, d3. Each of the three children of node x3 received 1/3rd
of the initial potential. The potential received by x4 is further
divided equally into its two children. Therefore, the total potential
received by the terminal nodes, i.e., the rank of node x3 is,

5.2
2

1
3

3
3

32  . Similarly, the rank of node x4 is 2. Hence,

GKS ranking methodology ranks the nodes as x2> x3>x4.

6. SEARCH RESULTS ANALYSIS
GKS enables the users to refine their queries. The user query Q can
be refined by either removing or adding the most relevant keywords
to Q, in the context of the query. We now describe how GKS aids
the users to refine their query by analyzing the search response.

6.1 Query Refinement
Let us consider the Example 1. For query Q3 = {a, b, c, d}, the
response of GKS comprised nodes, x2, x3 and x4. GKS ranks the
nodes such that most relevant nodes are ranked higher. The two top
ranked nodes are x2 containing keywords {a, b, c} followed by x3
containing keywords {a, b, d}. With this information, the user is
exposed to the fact that there is no XML node that contains all the
query keywords and that the distribution of the query keywords in
the document is as shown in the query results. With this insight,
users can refine their queries. In the example above, user can refine
the query Q3 to {a. b, c} or {a, b, d} given the GKS response.

Therefore, for a user query Q, the query can be refined seamlessly
to one or more sub-queries Qrs with the aid of the GKS results. As
one can see, for LCA based techniques [2][5][17], such refinement
of the query Q is non-trivial as multiple sub-queries of Q needs to
be run to collect the complete response.

6.2 DI-Discovery from the LCE Nodes
GKS enables the discovery of DI from the XML data in the context
of the user query which can be used to refine the user query. For a
given query, the attribute nodes of a LCE node expose the context
for the keywords appearing in its sub-tree and are regarded as the
relevant DI (Def 2.3.1).

A natural way to discover DI is by identifying top-m most popular
attribute keywords in the LCE nodes present in the query response,
i.e., identifying keywords that appear in maximum number of
attribute nodes (m is tunable). At the same time, the DI must be
relevant for most of the query keywords. However, these two goals
may translate into two different set of top DI keywords. In response
of the query in Example 2 (Section 1.2), the most popular keyword
is found to be <booktitle: ICPP>. However, the keyword became
most popular due to presence of keyword ‘Prithviraj Banerjee’. He
is the only author who had published articles in this journal but total
number of articles by him alone in this journal made it the most
popular keyword in the query response. However, this keyword is
not relevant for majority of the other query keywords. The keyword
<journal: SIGMOD Record> is relevant for the largest sub-set of
the query keywords (for remaining three authors) but it is not the
most popular. Therefore, to identify most relevant keywords in the
context of a query, we adopt the following approach.

Rank of a LCE node is the function of number of query keywords
present in its sub-tree. Each attribute node is assigned a weight
equal to the rank of its LCE node. Therefore, each keyword in set
Sw

Q is assigned its attribute weight and we prepare a weighted set

Sw
Q. Let)(sRE QQ  be a set of all the entity nodes in RQ (s).

})(;|:{)(QkeattrkEeRankwwkS QeRk e
w
Q   

Each element of set Sw
Q is a tuple k: w, where k is the attribute

keyword. k is assigned a weight that is sum of the rank of all the
LCE nodes in set EQ that contain k. The top-m most weighted
keywords constitute DI. If a keyword in the attribute node is part of
the user query Q, it is not included in the set Sw

Q. We identify top-
m elements in set Sw

Q, total time complexity to identify DI is O(|Sw
Q

|+ m.log| Sw
Q|) = O(|Sw

Q |) as |Sw
Q|>>m. Since |Sw

Q|=O(|RQ (s)|) and
|RQ (s)|≤SL, the time complexity to identify DI is better by a factor
of O(log|Q|) compared to the time complexity to identify LCE
nodes and DI discovery does not constraint the system. In Example
2, DI contained <year: 2001>, <booktitle: ICPP>, <author: Alok N
Choudhary>, etc., as top DI keywords. Recursive DI can be
discovered by preparing a keyword query using the text keywords
identified from Sw

Q. The recursive DI may reveal deeper insights.

Therefore, a user query Q can be refined seamlessly to Qr with the
aid of DI. We see that with the aid of response produced by GKS
and with the aid of DI, user queries can be refined by adding or
removing the keywords from the initial keyword query.

7. EXPERIMENTS
We have built a prototype of GKS [20]. Observations in this section
are based on experiments using this prototype over the XML data
sets shown in Table 4 [21]. Shakespeare’s plays are distributed over
multiple files. The experiments were carried out on a Core2 Duo
2.1GHz, 4GB RAM machine running Windows 7 and Java. These
data sets are used in many prior works [3][11][13][19]. The size of

k2

|Q|=n

Q is the set of query
keywords

P|e1=3

P|e2=6

P|en=5

Candidate entity nodes with their
initial potential

C Sibling
nodes
 of C

…….

e1

k1

k2

k3

Terminal
Points

157

Protein Sequence dataset is comparable to the biggest dataset used
in a recent work [19]. Our DBLP dataset size is 100% bigger.

Our experiments are designed to assess 1) Performance of GKS; 2)
Appropriateness of the node categorization model given the real
world XML repositories; 3) Effectiveness of GKS in finding the
relevant results for keyword queries and to rank them; 4) Ability of
GKS in finding the relevant DI; 5) User feedback.

7.1 Performance of GKS

7.1.1 Size of Index
Creating the index is a onetime activity. The size of index and the
time taken to prepare them are presented in Table 4. Our technique
is highly scalable as index preparation time increases linearly with
the data size. The number of entity nodes for different datasets
varied from 535 for Mondial to 2.62M for DBLP.

Table 4. Index Size and Index Preparation Time

Data Set Data Set
Size

Index
Size

XML
Depth

Index
Preparation Time

SIGMOD Records 483KB 416KB 6 0.15s

Mondial 1.7MB 1.45MB 5 0.28s

Plays 1.8MB 1.6MB 5 0.29s

TreeBank 82MB 79MB 36 19.3s

SwissProt 112MB 101MB 8 21.3s

Protein Sequence 683MB 612MB 7 108s

DBLP 1.45GB 1.13GB 6 238s

7.1.2 Response Time
In this experiment, we assess the response time (RT) of GKS for
given user queries. We also validate GKS time complexity analysis
to discover the XML nodes for the given queries. We give RT
results for two datasets: i) NASA dataset containing astronomy
data (24MB) and ii) SwissProt dataset containing protein
sequence data (112MB). In our first experiment, the number of
keywords for each query (n) was fixed at 8. However, the size of
the merged Dewey id list (SL) varied for each query. The average
keyword depth d for the NASA dataset varied from 6.7-6.9 and
from 3.1–3.5 for SwissProt dataset. Results are presented in Figure
8. As shown in Section 4.2, for given d and n, the RT increases
linearly with SL. Response time varies from 21.5ms to 139ms for
different queries. Hence, the RT of GKS is only a few tens of ms,
similar to LCA based algorithms on similar data.

 Figure 8. Response Time Vs. Merged List Size

In Figure 9, we plot the RT for queries by varying the number of
query response keywords n from 2 to 16. The query response time
validates our analysis (cf. Section 4.2). The list size |SL| for query
on SwissProt dataset with n=16 was 102,233. In Figure 9, for the
NASA dataset, when n is increased from 8 to 16 for a query, the
increase in RT was less than twice, as the length of the list |SL|
increased only marginally and the change in RT is logarithmic in n.

For a query run on the DBLP dataset, the RT was found to be 2ms
for |SL|= 213. Hence, RT depends on the query, i.e., depth d, n and
SL (O(d. |SL|.log n)), and not on the size of the data being queried.

Figure 9. Response time vs. keywords in query response (n)

7.1.3 Scalability

Figure 10. Response time for different dataset sizes

To assess the scalability of GKS, we replicated the Swiss Prot
dataset to create three datasets of size 112MB, 225 MB and 336
MB. For same query, the number of LCE nodes scales linearly. In
Figure 10, we plot our results. We can see that query processing
time is scaling linearly with data size, as expected.

7.2 Validation of Node Categorization Model
In this experiment, we analyze the structure of the real world data
repositories. XML nodes are placed in different categories as
described in Section 2.2. In Table 5, we show the number of
different XML element types belonging to different node categories
for various XML repositories. As we see, the fraction of nodes
labeled as Connecting Nodes (CN) varies from around 15% for
InterPro to less than 3% for DBLP dataset. In DBLP/Sigmod
Records some nodes with similar schema as that of entity nodes
(EN) are marked as CN because of the presence of just a single
author. We compared the results of our analysis with the ground
truth, i.e., with XML schema. For Sigmod Records, two XML
elements, <articles> and <authors>, were the connecting nodes as
per the XML schema. The count of <authors> node, was 1504, and
count of <articles> node was 67 (remaining 447 XML nodes were
marked CN due to presence of <article> nodes with a single
author). The results show our node categorization model captures
the structure of the real world data repositories very well.

Table 5. Distribution of XML element

Data Sets Count
of AN

Count
of EN

Count
of RN

Count
of CN

Total
Nodes

Sigmod
Record

10574 1022 3766 2018 15263

DBLP 27.58M 2.62M 10.56M 972367 39.52M
Mondial-3.0 7467 535 15074 663 22423

InterPro 515316 32614 1472021 303079 2088766

SwissProt 4044884 176128 1776676 187300 5166890

7.3 Finding and ranking the XML nodes
The purpose of this experiment is to assess the quality of GKS
results. Therefore, some queries are designed for which SLCA

158

response is obviously inadequate (the response of an SLCA
technique is either null or document root for these queries). For a
few queries, SLCA returns meaningful response (QM1, QI1, QI2).
Queries for different datasets are shown in Table 6. The number of
keywords for the queries was varied from 2 to 8. We present the
number of XML nodes retrieved by GKS and SLCA. We vary s,
the minimum number of query keywords in the XML node sub-
tree. s is set to be 1 and |Q|/2 respectively.

Table 6. Keyword queries run on different datasets

 |Q| SIGMOD Records
QS1 2 "Anthony I. Wasserman" "Lawrence A. Rowe"
QS2 4 "S. Jerrold Kaplan" "Robert P. Trueblood" "David J.

DeWitt" "Randy H. Katz"
QS3 6 "Sakti P. Ghosh" "C. C. Lin" "Timos K. Sellis" "David

A. Patterson" "Garth A. Gibson" "Randy H. Katz"
QS4 8 "Barbara T. Blaustein" "Umeshwar Dayal" "Alejandro

P. Buchmann" "Upen S. Chakravarthy" "M. Hsu" "R.
Ledin" "Dennis R. McCarthy" "Arnon Rosenthal"

 |Q| DBLP
QD1 2 "Dimitrios Georgakopoulos" "Joe D. Morrison"
QD2 4 "Peter Buneman" "Wenfei Fan" "Scott Weinstein"

"Prithviraj Banerjee"
QD3 6 "E. F. Codd" "Mark F. Hornick" "Frank Manola"

"Alejandro P. Buchmann" "Dimitrios
Georgakopoulos" "Joe D. Morrison"

QD4 8 "E. F. Codd" "Kenneth L. Deckert" "Irving L. Traiger"
"Vera Watson" "Jim Gray" "Chin-Liang Chang" "Nick
Roussopoulos" "Jean-Marc Cadiou"

 |Q| Mondial
QM1 2 country Muslim
QM2 3 Laos country name
QM3 6 Polish Spanish German Luxembourg Bruges Catholic
QM4 8 Chinese Thai Muslim Buddhism Christianity

Hinduism Orthodox Catholic
 |Q| InterPro
QI1 2 Kringle Domain
QI2 3 Publication 2002 Science

Results for different queries are shown in Table 7. We see a large
number of XML nodes returned for the queries by GKS (s=1)
compared to SLCA response. Thus, a lot of information that could
be of the interest to the user for the given keyword query is not
returned by LCA based techniques. Further, the number of XML
nodes for (s=|Q|/2), is non-zero for all the queries. When we
compared GKS with FSLCA [19], the top XML node for both QI1
and QI2 for GKS was present in FSLCA result set. For QM1, many
XML nodes of FSLCA were among the top 10 nodes of GKS
results. For QM2, no FSLCA node exists but GKS was able to find
the XML nodes having subset of query keywords. There are no
entity nodes which were relevant, i.e., contained at least s query
keywords, but not identified by GKS. Therefore, GKS is able to
find valid response for the given user queries, without binding them
to LCA framework, enhancing the users’ ability to search the data.

We next assess the ability of GKS to rank the discovered XML
nodes. Since, the schema for DBLP and Sigmod Records is not very
deep, the structure of all the XML nodes is similar for these two
datasets. Hence, we adopt the measure that the higher the number
of query keywords in an XML node sub-tree, the more relevant it
is. Given this measure, we determine where GKS places the XML
nodes with the highest number of query keywords in its ranking list.

Let L be a ranked list of XML nodes, in set RQ(s), returned by GKS
for a query Q and for a given s, |L| = p = | RQ(s)|. The nodes are
numbered 1 to p according to their ranks. The XML nodes that
contain the highest number of keywords from query Q in their sub-
tree are called the true XML nodes. Let L' (L' L) be a set of true

XML nodes. Let w be the lowest rank of a true XML node in the
list of XML nodes L. To each true XML node, we assign a weight
of (w+1-i) where i is the rank of the true XML node in the list L.
We compute the aggregated weight of true XML nodes as




;
)1(

wi
a iww for all the true XML nodes in the list L. The

total score is computed as wt = w(w+1)/2. Finally, we compute a
rank score as wa/wt. We penalize the rank score if a true XML node
occurs lower in the list L. Score of 1 means that no true XML node
is ranked lower than a XML node which is not in set L'. In Table 7,
we show our results. The ranking score is computed for GKS
response when s=1. We see that the aggregate weight, i.e., rank
score is very high for all the queries. For every query, except QM3,
the top-most result is always a true XML node. For QM3, it
appeared at 3rd position.

Table 7. Comparison with SLCA and Rank Score

Query #GKS,
s=1

#GKS,
s=|Q|/2

SLCA Max keywords
in a GKS node

Rank
Score

QS1 8 NA 0 1 1

QS2 43 13 0 2 1

QS3 28 4 0 3 1

QS4 36 2 1 8 1

QD1 30 NA 1 2 1

QD2 234 10 0 3 0.72

QD3 190 7 0 5 1

QD4 267 4 0 6 1

QM1 230 NA 98 2 1

QM2 234 NA 1 2 1

QM3 37 4 0 3 0.17

QM4 116 3 0 6 1

QI1 8170 NA 8 2 0.893

QI2 2517 2517 281 3 1

In summary, we see that GKS is able to retrieve and appropriately
rank the relevant XML nodes, in the context of the user queries.

7.4 Quality of DI Discovered by GKS
One of the most important attractions of GKS is its ability to
discover DI in the data. In Table 8, we show the DI discovered for
the queries in Table 6 for different values of s. This experiment
highlights that the DI discovered by GKS is highly relevant for the
given queries. For instance, for QD3, DI exposes the most relevant
year (1999) and the most relevant ‘booktitle’ (ICCD). The
keywords exposed as DI also help users understand GKS response
since the DI keywords also represent the summary of the query
response. For some queries, DI varies for different values of s.

Table 8. DI discovered for different queries

Query DI, s=1 DI, s=|Q|/2

QS1 <title: Third-Generation
Database System Manifesto >

<title: Cache Consistency
and Concurrency Control>

QS2 <title: Chair’s Message> <title: Database Research
Activities at the University of
Wisconsin >

QS3 <title: article title> <title: Implementation of a
Prolog-INGRES Interface>

QS4 <title: article title> NA

QD1 NA <year:2000>,<journal:TCS>

QD2 <year: 2001>, <journal:
SigmodRecords>

<year:1998>, <volume:2>

QD3 <year: 1999>, <booktitle:
ICCD>

<journal: TCS>, <year:
2001>, <number: 1>

QD4 <year: 2001>, <journal:
JACM>

<journal:IBM Research
Report>, <year: 2001>

159

QM1 <country:f0_475>, <Year :
90>

NA

QM2 <Name : Zimbabwe>,
<population_growth : 1.41>

<Name:Zimbabwe>,
<percentage : 100>

QM3 <country:f0_337>,<year: 90> <country:f0_337>,<year:90>

QM4 <country:f0_663>,
<percentage:100>

<country:f0_663>,<name:Br
unei>

QI1 <author_list:Patthy L>,
<taxon_data_name:Eukryot>

NA

QI2 <taxon_data_name:"Bacteria
>, <proteins_count : "1">

NA

We now show, with the aid of query QD1, how DI helps refine
queries. For QD1, GKS returned a total of 30 XML nodes (s=1).
The DI was <author: Marek Rusinkiewicz>. After analyzing the
query response, QD1 is refined to ("Dimitrios Georgakopoulos",
“Marek Rusinkiewicz”). Interestingly, for the refined query we
found that there were 10 articles jointly written by these two authors
as opposed to just 1 joint article by authors in original query. This
is an example of how GKS helps users refine their queries and
guides them to navigate the data by recursive application of GKS.

7.5 Crowd-Sourced Feedback: GKS & SLCA
We asked 40 users to compare the
GKS response with SLCA response
on a scale of 1-4; 1 being ‘GKS Very
Useful’ and 4 being ‘SLCA Very
Useful’. Results are shown in the
table below. For almost all the
queries, GKS response is found to be
either very useful (1) or better than
SLCA (2). If we categorize the
response as ‘GKS-better’ (rating 1
or 2) and ‘SLCA-better’ (rating 3 or
4), 430 out of 480 responses found
the GKS response better (89.6%).

7.6 GKS Performance for Hybrid Queries
We further studied how well GKS behaves in the presence of
clearly separable keywords in the query, i.e., subsets of the
keywords in a query indeed refer to different entity type nodes. We
call such queries ‘hybrid queries’. To study GKS performance for
hybrid queries, we merged DBLP and Sigmod Record datasets into
a single dataset (with a ‘common root’). We also increased the
depth of Sigmod Record elements by introducing two connecting
nodes between the ‘common root’ and the root of Sigmod Record
data. We ran the query “Jean-Marc Meynadier" "Patrick

Behm" "Lawrence A. Rowe" "Michael Stonebraker”, s=2.
First two authors appeared together only in <inproceedings>
entity node type in DBLP dataset and last two in <article> entity
node type in Sigmod Record. Clearly, the keywords in the query
target two different XML node types. GKS was able to return all 8
corresponding XML nodes present in our dataset, 3
<inproceedings> nodes in DBLP data by first 2 authors and 5
<article> nodes in Sigmod Record data by last 2 authors. Thus,
GKS returned correct response even when multiple XML node
types were targeted by a single query. Note, only these 8 nodes
were returned by GKS.

Further, two <article> nodes, by last two authors, were ranked
higher (as they were the only authors in all the three articles) despite
higher relative depth w.r.t. root (articles by first 2 authors had
multiple other authors). Hence, the entity nodes are ranked based
on only the number of query keywords present in their sub-tree and
the distribution of these keywords, and not according to their
absolute depth in the XML tree, as analyzed in Section 5.

Summary: In summary, experiments show that GKS is scalable,
imposes low overhead and retrieves the XML nodes efficiently.
The experiments validate our node categorization model and show
that XML nodes and DI discovered by GKS are highly relevant

8. CONCLUSION
We presented a novel system GKS that enables generic keyword
search over XML data and yields highly meaningful response
without imposing the AND-Semantics of LCA based techniques.
We show that our system exposes deeper analytical insights (DI) in
the data in the context of user queries. GKS exploits the XML
schema, embedded in the XML data, in the context of the query to
find the most relevant data keywords and schema elements with the
aid of a novel node categorization model. In conjunction with a
novel XML node ranking method, GKS is able to expose the DI
elegantly. One of our future research direction is to extend GKS to
enable analytics over raw XML data.

9. REFERENCES
[1] I. Tatarinov, et al., “Storing and querying ordered XML using a

relational database system”, in SIGMOD, 2002.

[2] Y. Xu, Y. Papakonstantinou, “Efficient Keyword Search for
Smallest LCAs in XML Databases”, in EDBT 2008.

[3] Z. Liu, Y. Chen, “Identifying Meaningful Return Information for
XML Keyword Search”, in SIGMOD 2007.

[4] J. Li, C. Liu, R. Zhou, W. Wang, “Suggestion of promising result
types for xml keyword search”, in EDBT, 2010.

[5] R. Zhou, C. Liu, J. Li, “Fast ELCA Computation for Keyword
Queries on XML Data”, in EDBT 2010.

[6] L. Chen, Y. Papakonstantinou, “Supporting Top-K Keyword
Search in XML Databases”, in ICDE 2010.

[7] L. Guo, et al., “XRANK: Ranked Keyword Search over XML
Documents”, in SIGMOD 2003.

[8] S. Cohen, J. Mamou, Y. Kanza, Y. Sagiv, “XSEarch: A Semantic
Search Engine for XML”, in VLDB 2003.

[9] Z. Bao, J. Lu, T. W. Ling, B. Chen, “Towards an effective xml
keyword search”, in IEEE TKDE, 22(8):1077–1092, 2010.

[10] H. Cao, et al., “Feedback-driven Result Ranking and Query
Refinement for Exploring Semi-structured Data Collections”, in
EDBT 2010.

[11] Z. Liu and Y. Chen. “Reasoning and identifying relevant matches
for xml keyword search”, in PVLDB, 1(1), 2008.

[12] L. Kong, R. Gilleron, A. Lemay. “Retrieving meaningful relaxed
tightest fragments for xml keyword search”, in EDBT, 2009.

[13] Y. Xu, Y. Papakonstantinou. “Efficient keyword search for
smallest lcas in xml databases”, in SIGMOD, 2005, pp 537-38.

[14] M. Arenas, “Normalization Theory for XML”, in SIGMOD
Record, Vol. 35, No. 4, December 2006.

[15] Z. Bao, T. Ling, B. Chen, J. Lu, “Effective XML Keyword Search
with Relevance Oriented Ranking”, in ICDE 2009.

[16] J. Zhou et al., "Efficient query processing for XML keyword
queries based on the IDList index", The VLDB Journal, February
2014, Volume 23, Issue 1, pp 25-50.

[17] J. Zhou et al., “Fast SLCA and ELCA Computation for XML
Keyword Queries based on Set Intersection”, in ICDE 2012

[18] Manish Bhide, Manoj K. Agarwal, et. al., “XPEDIA: XML
Processing for Data Integration”, in VLDB 2009. .

[19] B. Truong, et al., “MESSIAH: Missing Element Conscious SLCA
Nodes Search in XML Data”, in SIGMOD 2013.

[20] Manoj K Agarwal, Krithi Ramamritham, “Enabling Generic
Keyword Search over Raw XML Data”, ICDE, 2015, pp 1496-99.

[21] http://www.cs.washington.edu/research/xmldatasets/www/reposi
tory.htm

Query 1 2 3 4
QS1 24 16 0 0
QS2 17 22 1 0
QS3 17 14 5 4
QS4 12 22 3 4
QD1 24 15 1 0
QD2 18 17 3 2
QD3 20 18 1 1
QD4 24 13 3 0
QM1 16 20 3 1
QM2 15 18 5 2
QM3 14 18 5 3
QM4 16 21 3 0

160

	Generic Keyword Search over XML DataManoj Agarwal, Krithi Ramamritham, Prashant Agarwal

