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ABSTRACT
In this paper, we study a novel type of spatial queries, namely Near-
est Window Cluster (NWC) queries. For a given query location q,
NWC (q, l,w,n) retrieves n objects within a window of length l
and width w, where the distance between the query location q to
these n objects is the shortest. To facilitate efficient NWC query
processing, we identify several properties and accordingly develop
an NWC algorithm. Moreover, we propose several optimization
techniques to further reduce the search cost. To validate our ideas,
we conduct a comprehensive performance evaluation using both
real and synthetic datasets. Experimental results show that the pro-
posed NWC algorithm, along with the optimization techniques, is
very efficient under various datasets and parameter settings.

Keywords: Nearest window cluster query, spatial query process-
ing, location-based service, spatial database.

1. INTRODUCTION
Spatial queries have received tremendous attention from the re-

search community in past decades. In the past several years, owing
to the emerging location-based services, a number of new spatial
queries have been proposed to meet various application needs [16]
[11][7][13][22][9]. However, many interesting/important applica-
tions still are not well supported by existing spatial queries. The
following is an example.

• Suppose Bob is attending a business meeting in a foreign
city. He wishes to buy some souvenirs for his family. With
only a rough idea of what to buy (e.g., some local-brand
clothes), he would like to search for some, say n, nearby
clothes shops which are close to each other in a small area
so he can walk around these clothes shops to find the sou-
venirs.

In this example, Bob aims to find the nearest area with sufficient
choices (i.e., n clothes shops) clustered in the area so he can go
around to compare products and prices and even have fun doing
some bargaining. Figure 1 illustrates the example above where each
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Figure 1: Example of a nearest window cluster query.

bubble indicates a clothes shop. Ideally, a location-based service
would be able to suggest the clothes shops within the window back
to Bob. Unfortunately, existing spatial queries such as kNN, trip-
planning queries [15] and collective spatial keyword queries [2] do
not meet Bob’s need effectively and efficiently. To the best of our
knowledge, no previous work on spatial queries address the query
problem arising in the example scenario.

In this paper, we propose a novel type of spatial queries, namely
Nearest Window Cluster (NWC) queries that finds a clustered of
objects located in a spatial window nearest to a query point, e.g.,
the query issuer’s location. Given a query point q, window length
l and window width w, and the number of objects to find n, NWC
(q, l,w,n) returns n objects located within a window of length l
and width w, where the distance from these n objects to q is the
shortest.1

Two main challenges arise in processing the NWC queries. First,
while the locations of data objects are given, the locations of qual-
ified windows are unknown in advance.2 Second, the number of
qualified windows may be huge. To address these challenges, we
identify several properties that allow us to find qualified windows
quickly. Accordingly, we develop an NWC algorithm that itera-
tively finds the nearest qualified window to return the objects within
the qualified window. To facilitate efficient visits of data objects,
we adopt R-tree to index the data objects.

Observing that the bottleneck of the NWC algorithm lies in find-
ing the nearest qualified window, we propose four optimization
techniques, namely search region reduction (SRR), distance-based
pruning (DIP), density-based pruning (DEP) and incremental win-
dow query processing (IWP) to accelerate searching the nearest

1We will discuss distance measures in Section 2.
2A window is considered as qualified if it contains n objects.
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qualified window, thereby improving the efficiency of the NWC
algorithm. The SRR technique takes advantage of the distance of
the best objects found so far to shrink the search regions of quali-
fied windows and prune some objects from further processing. The
DIP technique uses the distance of the best objects found so far
to safely prune the index nodes distant from the query location q,
thereby reducing the I/O cost. Inspired by the clustering effect of
spatial objects [1] (e.g., certain objects such as clothes shops are
usually clustered in some hot areas), the DEP technique maintains
a density grid of the whole object space that records the number
of objects in each grid cell. With the density grid, the DEP tech-
nique is able to prune the index nodes with insufficient objects and
to avoid redundant window queries incurred during query process-
ing. Finally, to alleviate the cost of window queries generated by
the NWC algorithm, the IWP technique inserts backward and over-
lapping pointers into the leaf nodes and some intermediate nodes
of the R-tree. With these pointers, fewer index nodes are involved
for window queries, thereby achieving better performance.

The rest of this paper is organized as follows. In Section 2, we re-
view related work and present the problem definition. In Section 3,
we elaborate the properties of NWC queries and develop the NWC
algorithm based on these properties. In addition, four optimiza-
tion techniques are proposed to accelerate NWC query processing.
The performance of the NWC algorithm is analyzed in Section 4,
while the experimental results of the NWC algorithm are reported
in Section 5. Finally, we conclude this paper in Section 6.

2. PRELIMINARIES

2.1 Problem Formulation and Transformation
Based on the application scenario discussed earlier, we consider

a set of static data objects, denoted as P, in two-dimensional Eu-
clidean space.3 The nearest window cluster query is formally de-
fined as below.

Definition 1 (Nearest Window Cluster (NWC) Query) Given a query
point q, a spatial window area specified by length l and width w,
and the number of data objects n, a nearest window cluster query
NWC(q, l,w,n) aims to retrieve n objects satisfying the following
criteria:

1. these n objects are clustered within a spatial window of length
l and width w, and

2. the distance from the window with these n objects reside to
q is the shortest among all other windows with n objects sat-
isfying (1).

To facilitate our discussion, we define the notion of qualified
window with respect to an NWC query as follows.

Definition 2 (Qualified Window) Given an NWC query (q, l,w,n),
a qualified window, denoted as qwin, is a window of length l and
width w that contains data objects Sqwin = {p1, p2, . . . , p|Sqwin|}⊆P,
where |Sqwin| ≥ n.

Let MINDIST (q,qwin) be the distance from q to the closest
point in the qualified window qwin covering {p1, p2, . . . , pn}. As
the distance measure mentioned above aims to measure the dis-
tance between q and these n objects, denoted as {p1, p2, . . . , pn},
we consider the following in our algorithm.
3We focus on 2D data objects in accordance with real-world appli-
cations. The proposed algorithms could be easily adjusted to three
dimensional space.

• Minimum distance:

distmin(q,{p1, p2, . . . , pn}) = min
i=1,2,...,n

dist(q, pi) (1)

• Maximum distance:

distmax(q,{p1, p2, . . . , pn}) = max
i=1,2,...,n

dist(q, pi) (2)

• Average distance:

distavg(q,{p1, p2, . . . , pn}) =
1
n

n

∑
i=1

dist(q, pi) (3)

• Nearest window distance:

distnearest(q,{p1, p2, . . . , pn}) =

min
∀qwin∈qwins

(
MINDIST (q,qwin)

)
, (4)

where qwins is a set of all qualified windows containing {p1,
p2, . . . , pn}.

With the above definitions, we can transform the problem of
NWC query processing as below.

Problem Transformation. When MINDIST (q,qwin) is always
smaller than or equal to dist(q,{p1, p2, . . . , pn}), the processing of
an NWC query can be performed by incrementally finding the next
nearest qualified window to q and using the distance of the best
objects found so far, denoted as distbest , to prune the search space
until no better qualified window is found.

Specifically, we can solve the NWC query by the following steps.

Step 1: Set distbest to ∞ and set ob js to /0.

Step 2: Find the nearest qualified window qwin.

Step 3: If qwin is found and MINDIST (q,qwin) < distbest , per-
form Steps 4-6. Otherwise, go to Step 7.

Step 4: Let {p1, p2, . . . , pn} be the n objects in qwin of the shortest
distance to q.

Step 5: If dist(q,{p1, p2, . . . , pn})< distbest , set ob js to {p1, p2, . . . , pn}
and distbest to dist(q,{p1, p2, . . . , pn}).

Step 6: Find the next nearest qualified window qwin and go to Step
3.

Step 7: Return ob js.

Clearly, MINDIST (q,qwin) is always smaller than or equal to min-
imum, maximum, average and nearest window distances between
q and {p1, p2, . . . , pn} (see Equations (1), (2), (3) and (4), respec-
tively). As the bottleneck of the above procedure is in finding the
nearest qualified window, we will focus on nearest qualified win-
dow search for the rest of this paper. The advantages of using near-
est qualified window search to process an NWC query are twofold.
First, the above procedure can be used for other distance measures
as long as MINDIST (q,qwin) can be used as the lower bound of
the employed distance measures. Second, the properties of nearest
qualified window search can be used to efficiently process NWC
queries.
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Table 1: List of used symbols
Symbol Description
P Data object set
TP R-tree on P
q query location
n the desired number of data objects
SRp search region of object p
qwinp best qualified window of p
Sqwinp the set of the data objects inside qwinp
|Sqwinp | the cardinality of Sqwinp

dist(q,{p1, p2, . . . , pn}) the distance between q and {p1, p2, . . . , pn}
ob js the best objects found so far
distbest the distance of the best objects found so far

2.2 Related Work
In the past two decades, a large number of spatial queries have

been proposed and studied by researchers in the database commu-
nity. Here we focus on the variants of NN queries due to their
relevance to our work. Constrained NN [8] queries find the near-
est neighbor(s) constrained to a specific region instead of the entire
data space. Nearest surround (NS) queries [13] consider the ob-
ject orientation and retrieve the nearest neighbors at different an-
gles with respect to the query location q. A reverse NN (RNN)
query [12][21] finds all the data objects with q as their nearest
neighbor. RkNN queries [19][3] search for all the data objects
that have q as one of their k nearest neighbors. The ranked RNN
(RRNN) query [14] allows to identify and rank the t data objects
most influenced by q. Different from typical RNN queries, RFN [22]
queries find the objects that have q as their furthest neighbor. With
RFN queries, a plant producing hazardous gas could be constructed
at a point with fewest residents being affected.

Group NN (GNN) queries [16] (also known as aggregate NN [17]
queries) retrieve the data object(s) with the smallest sum of dis-
tance to Q where Q is the set of query points. GNN queries are
useful when a group of friends intend to find a meeting restaurant
with the minimum distances to them. Group nearest group (GNS)
queries [6], a generic version of GNN queries, return more objects
for gathering to reduce the traveling costs of users. With data ob-
ject set P and target object set Q, optimal-location-selection (OLS)
queries [9] find q ∈Q outside a specific region R with maximal op-
timality where the optimality metric is determined by to the number
of data objects in R and the accumulated distances to q. OLS query
is useful for applications like optimal lifeguard station selection.
Range NN (RangeNN) queries [11][5] search for the NNs for ev-
ery point in a rectangle. It could be used to offer location privacy
and computation saving. Given a specified window size, the maxi-
mizing range sum (MaxRS) problem [4] is to find the window win
with the largest sum of weights of all objects within win among all
candidate windows of the specified window size. Although bearing
similarity to the proposed NWC queries, the MaxRS problem does
not consider any query location and thus is naturally different from
the proposed NWC query.

3. PROCESSING NEAREST WINDOW CLUS-
TER QUERIES

In this section, we elaborate the NWC query processing based
on the procedure of nearest qualified window search mentioned in
Section 2.1. First, we identify some unique properties of the near-
est qualified windows in Section 3.1. Based on these properties, we
develop an NWC algorithm to find the nearest qualified window of

the NWC query in Section 3.2. To improve the efficiency of NWC
search, in Section 3.3, we further propose four optimization tech-
niques, including (i) search region reduction, (ii) distance-based
pruning, (iii) density-based pruning and (iv) incremental window
query processing to reduce the search cost. To facilitate better read-
ability, the symbols used throughout this paper are listed in Table 1.

3.1 Properties of the Nearest Qualified Win-
dows

In this section, we introduce the following properties regarding
the nearest qualified window to facilitate efficient NWC search.

Lemma 1 The nearest qualified window of an NWC query, or one
of its equivalent qualified windows, has at least one object on one
vertical edge and at least one object on one horizontal edge.

PROOF. The proof is omitted for the interest of space.

A qualified window qwin is said to be generated by a data object
p when p is on at least one edge of qwin. Therefore, we use data ob-
jects as the basis to generate qualified windows and consider only
those qualified windows generated by some data objects for NWC
query processing. In other words, we consider only those qualified
windows generated by data objects on one vertical or horizontal
edge based on the relative position of q and object p. Furthermore,
based on Lemma 1, we can utilize the lying quadrant of p (with
q as the origin) to determine that we merely need to evaluate the
qualified windows with p on the right or left edge (top or bottom
edge) by the following two observations.

1. Consider a qualified window, say qwin, generated by data
object p on one of the vertical edges (denoted by eR or eL).
When p is in the first or fourth quadrant with respect to the
origin q, p must be on the right edge eR of qwin; when p is
in the second or third quadrant, p must be on the left edge eL
of qwin.

2. Consider a qualified window, say qwin, generated by data
object p on one of the horizontal edges (denoted by eT or
eB). When p is in the first or second quadrant with respect to
the origin q, p must be on the top edge eT of qwin; when p is
in the third or fourth quadrant, p must be on the bottom edge
eB of qwin.

3.2 NWC Algorithm
With the above properties and the steps discussed in Section 2.1,

we present the NWC algorithm which incrementally finds the next
qualified window to q and uses the distance of the best object found
so far (distbest ) to prune the search space until no better qualified
window is found. Since the bottleneck of the NWC algorithm lies
in finding the nearest qualified window, we focus on nearest quali-
fied window search. The idea of the NWC algorithm is as follows.
The NWC algorithm visits all data objects based on their distance
to the query location q in ascending order. To facilitate efficient
visits of data objects, we adopt R-tree to index the data objects.
When visiting an object p, the NWC algorithm creates the search
region for object p (denoted as SRp) to cover all qualified windows
generated by p, and then find all qualified windows generated by p
(i.e., qualified windows within SRp). When a qualified window, say
qwinp, is discovered and MINDIST (q,qwinp)< distbest , the NWC
algorithm retrieves the n objects, say {p1, p2, · · · , pn}, in qwinp
of the shortest distance to q and checks whether dist(q,{p1, p2,
· · · , pn})< distbest . If so, the NWC algorithm sets ob js and distbest
to {p1, p2, · · · , pn} and dist(q,{p1, p2, · · · , pn}), respectively. The
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NWC algorithm repeats the above steps until no better qualified
window is found.

We now discuss how to build SRp covering all qualified windows
generated by p. According to the observations in Section 3.1, p has
to be on the vertical and horizontal edges in order to guarantee all
potential qualified windows generated by p are contained in SRp.
In fact, we consider p only on either the vertical or the horizontal
edge for building SRp because the other case is handled naturally
while processing other objects. Specifically, if SRp is built on the
condition that p is on the vertical edge, the other potential quali-
fied windows on the condition that p is on the horizontal edge will
be contained within the search region of another object p′ on the
vertical edge (i.e., SRp′ ). To avoid redundant computation, when
visiting data object p, we consider p only on the vertical edge for
SRp construction. Due to space limitation, we mainly explain the
case where p is in the first quadrant with respect to the origin q (i.e.,
p is on the right edge) since the other cases are able to be addressed
similarly.

With p on the right edge, the four vertexes v1, v2, v3 and v4 of
SRp are defined below, where xp and yp are the x and y coordinates
of p, respectively.

xv1 = xp− l yv1 = yp−w xv2 = xp yv2 = yp−w

xv3 = xp yv3 = yp +w xv4 = xp− l yv4 = yp +w

It is obvious that all windows generated by p are inside SRp.
Therefore, the NWC algorithm is able to evaluate only data objects
inside SRp for identifying the qualified windows generated by p. To
do so, the NWC algorithm retrieves all the objects within SRp by is-
suing a window query with SRp as the query window. To efficiently
obtain the qualified windows generated by p, the NWC algorithm
first reorders the objects in SSRp based on their y coordinates in as-
cending order and then skips the objects with y coordinates lower
than p. The data objects below p are skipped because their asso-
ciated qualified windows would not contain p. Finally, the NWC
algorithm sequentially visits each object remaining in SSRp , say p′,
to consider the window, say qwinp, with p on the right edge and p′

on the top edge for each p′.
When a window qwinp is considered, the NWC algorithm evalu-

ates whether qwinp is qualified. If the number of objects within
qwinp is smaller than n (i.e., |Sqwinp | < n), qwinp is not quali-
fied and the NWC algorithm skips qwinp. When qwinp is qual-
ified, (i.e., |Sqwinp | ≥ n), the NWC algorithm retrieves the n ob-
jects, say {p1, p2, · · · , pn}, in qwinp of the shortest distance to q. If
dist(q,{p1, p2, · · · , pn})< distbest , the NWC algorithm sets distbest
and ob js to dist(q,{p1, p2, · · · , pn}) and {p1, p2, · · · , pn}, respec-
tively. Otherwise, the NWC algorithm skips qwinp and considers
another window generated by p.

We use the example in Figure 2 to illustrate the process of iden-
tifying qualified windows in SRp. Let’s consider an intermediate
step, where p5 is the candidate data object under examination. To
find qwinp5 , the NWC algorithm first builds SRp5 based on the
residing quadrant of p5 to q and retrieves all data objects within
SRp5 . Since p5 is in the first quadrant, the NWC algorithm sorts
all data objects within SRp5 based on their y coordinates in ascend-
ing order. As shown, the y coordinate of p4 is smaller than that
of p5, so the NWC algorithm skips p4 and sequentially considers
p5, p6, and p7 on the top edge. Suppose that the desired number
of objects in a qualified window is three (i.e., n = 3). When p5
is considered, the window with p5 on the right and top edges is
not qualified since this window contains only two objects. When
p6 is evaluated, the window with p5 on the right edge and p6 on

q

1p
2p

3p x

y

5pSR

7p

w

l

5p
6p

4p

1v 2v

3v4v
qwinp5

Figure 2: Discover qwinp from SRp.

the top edge is set to qwinp5 since this window contains three ob-
jects. The NWC algorithm retrieves the three objects of the shortest
distance to q from qwinp5 (i.e., {p4, p5, p6}) and checks whether
dist(q,{p4, p5, p6}) < distbest . If so, distbest and ob js are set to
dist(q,{p4, p5, p6}) and {p4, p5, p6}, respectively. Then the NWC
algorithm continues to find the next window in SRp until all win-
dows in SRp have been evaluated.

3.3 Optimization Techniques
While being able to answer NWC queries, the NWC algorithm

suffers from costly and redundant evaluations of objects and index
nodes. In light of this, we design the following optimization tech-
niques to mitigate the cost of NWC search.

• Search region reduction (SRR): The search region reduction
technique exploits the distance between q and the best ob-
jects found so far (i.e., distbest ) to reduce the search regions
of the remaining data objects, thereby saving the cost of qual-
ified window discovery. Besides, with distbest , SRR tries to
exclude those objects that are unlikely to create closer qual-
ified windows to q, eliminating the redundant evaluation of
those objects.

• Distance-based pruning (DIP): The distance-based pruning
technique takes advantage of distbest to save the access to
the index nodes that are too distant to create closer qualified
windows, thereby achieving reductions in I/O cost.

• Density-based pruning (DEP): We propose to build a density
grid that maintains the number of objects residing in each
grid cell. With the density grid, we propose a density-based
pruning technique to prune the index nodes with insufficient
objects (compared with the numbers of objects requested by
NWC queries) to eliminate unnecessary I/O cost. In addition,
DEP is able to prune some redundant window queries which
do not produce any qualified window.

• Incremental window query processing (IWP): To reduce the
I/O cost to process the window queries generated by the NWC
algorithm, we propose to enhance the R-tree by inserting
backward pointers and overlapping points into the leaf nodes
and some intermediate nodes, respectively. We design the
incremental window query processing technique to use these
backward pointers and overlapping pointers to efficiently pro-
cess these window queries with less I/O costs.

The details of these optimization techniques are described in the
following subsections.

3.3.1 Search Region Reduction
To identify each qualified window qwinp generated by object p,

the NWC algorithm issues a window query with the search region
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q

1p 2p

3p 4p
5p

x

y

w

l

'w

distbest

Figure 3: Reduced SRp5 with distbest .

SRp of p as the query window. Obviously, the smaller SRp is, the
lower the I/O cost is. Thus, we propose the search region reduction
technique (abbreviated as SRR) to 1) avoid evaluations of unneces-
sary search regions or 2) reduce the sizes of the search regions by
exploiting the following two observations.

• Object p may be so distant to q that all qualified windows
generated by p having distances greater than distbest . For
such object p, building SRp is unnecessary and thus no win-
dow query is issued.

• The qualified windows in the specific portions of SRp may
never have a distance smaller than distbest . Thus, SRp can be
shrunk, leading to smaller query windows.

With distbest , when processing object p, SRR first checks whether
the creation of SRp is necessary based on xp or yp. Specifically,
let the coordinates of the bottom-left vertex of SRp, say v1, be
(xv1 ,yv1). When the distance from q to v1 is greater than distbest ,
there is no need to build SRp since no qualified window generated
by p will be closer to q than distbest . Thus, the reduced search re-
gion of p, denoted as SR′p, is set to be empty. Otherwise, the build-
ing of SRp is necessary. Then, SRR tries to utilize distbest to shrink
SRp into a smaller search region SR′p so that the distance of each
qualified window in SR′p is shorter than distbest . The coordinates of
the four vertices of SR′p are calculated below.

x′v1
= xp− l y′v1

= yp−w x′v2
= xp y′v2

= yp−w

x′v3
= xp y′v3

= yp +w′ x′v4
= xp− l y′v4

= yp +w′

It is clear that w′ is the maximal value making the following two
equations satisfied.

0≤ w′ ≤ w (5)

(xp− l− xq)
2 +(yp +w′−w− yq)

2 ≤ dist(q,qwinbest)
2 (6)

Equation (5) indicates that p should be within SR′p, while Equa-
tion (6) indicates that the minimum distance from q to each win-
dow of length l and width w in SR′p should be shorter than distbest .
According to Equations (5) and (6), the value of w′ is

w′ = min
(

w,
√

dist2
best − (xp− l− xq)2− (yp−w− yq)

)
.

In Figure 3, SSR helps to reduce SRp5 with w′ being only√
dist2

best − (xp5 − l− xq)2− (yp5 −w− yq).

3.3.2 Distance-Based Pruning

q

2N

w
l

l
x

y

1PR

2PR
3PR

AR

distbest

Figure 4: Node N2 can be safely pruned based on distbest .

In addition to reducing search regions of objects, distbest is able
to be used to safely prune some index nodes as long as all qualified
windows created by any object inside these pruned index nodes are
guaranteed to be of distances to q greater than distbest . For example,
index node N2 in Figure 4 can be safely pruned because any qual-
ified window created by any object inside N2 is unlikely to have
the distance to q smaller than distbest . Based on this observation,
we propose the distance-based pruning technique (abbreviated as
DIP) to facilitate the pruning of unvisited index nodes. DIP defines
a pruning region (denoted as PR) based on distbest , l, and w. If
an unvisited index node N is completely inside PR, N is able to be
safely pruned without being visited. With distbest , PR is defined as
below.

PR1 = {(x,y)|x≥ xq +distbest + l,yq ≤ y≤ yq +w}
PR2 = {(x,y)|xq ≤ x≤ xq + l,y≥ yq +distbest +w}
PR3 = {(x,y)|x≥ xq + l,y≥ yq +w

\(x− (xq + l))2 +(y− (yq +w))2 ≤ dist2
best}

PR = PR1∪PR2∪PR3

(7)

As defined in Equation (7), PR is composed of three subregions:
PR1, PR2, and PR3. PR1 guarantees that each qualified window
generated by each object in PR1 has the vertical distance to q greater
than distbest , while PR2 ensures that the horizontal distance be-
tween q and each qualified window generated by each object in PR2
is greater than or equal to distbest . PR3 excludes the region where
an object can be used to generate a qualified window with the dis-
tance to q smaller than distbest . Hence, if index node N is totally
contained within PR, no closer qualified window can be generated
by each object in N and thus N can be safely pruned to reduce I/O
cost.

3.3.3 Density-Based Pruning
The spatial clustering effect in practice leads objects like clothes

shops to be clustered in certain areas. Thus, an index node may
be so sparse that all windows generated by each object in the index
node are not qualified. With this observation, we devise the density-
based pruning technique (abbreviated as DEP) to save I/O cost by
avoiding visits to sparse index nodes. To facilitate DEP, the whole
object space is divided into a gd × gd density grid and each grid
cell is associated with the number of objects within the cell. When
processing an index node, DEP first extends the MBR of the index
node and checks whether the summation of the objects in the grid
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Figure 5: An illustrative example of backward pointers

cells intersecting the extended MBR is smaller than n. If so, this
index node will be pruned. We now describe the method to extend
an MBR in the first quadrant with respect to the origin q, and the
other cases can be handled in a similar manner. Suppose that the
counterclockwise order of the four vertices of the MBR is v1,v2,v3
and v4, and v1 is the bottom-left vertex of the MBR. The MBR
can be extended as follows to ensure that all windows generated by
each object within the MBR must be within the extended MBR.

x′v1
= xv1 − l y′v1

= yv1 −w x′v2
= xv2 y′v2

= yv2 −w

x′v3
= xv3 y′v3

= yv3 +w′ x′v4
= xv4 − l y′v4

= yv4 +w′

Besides, it is possible that the search region of an object does not
contain enough objects to generate any qualified window. DEP also
utilizes this observation to eliminate the window queries of such
objects with the aid of the density grid. Specifically, before issuing
a window query for the currently processing object p, DEP checks
whether the summation of the objects in the grid cells intersecting
the search region SRp is smaller than n. If so, DEP cancels the
window query since SRp never contains any qualified window.

3.3.4 Incremental Window Query Processing
As mentioned in Section 3.2, the NWC algorithm issues a win-

dow query with query window SRp (SR′p when SRR is used) to
identify the qualified windows generated by object p. With tradi-
tional window query processing, solving a window query requires
to access the R-tree from root node to some leaf nodes. However,
we observe that some index nodes in the R-tree, especially the in-
dex nodes close to the root node, are usually unnecessary to visit
when processing the window queries issued by the NWC algorithm.
In view of this, we propose to add some backward pointers into
each leaf node of the R-tree and some overlapping pointers into
the nodes pointed by backward pointers. Based on backward and
overlapping pointers, we design an incremental window query pro-
cessing technique (abbreviated as IWP) to allow window queries to
be processed from intermediate nodes instead of root node, thereby
reducing the I/O cost.

Consider an R-tree with height h. Each leaf node is with depth h.
Suppose that there are r backward pointers (denoted as (bp1,mbrb

1),

(bp2,mbrb
2), . . . ,(bpr,mbrb

r )) for each leaf node. It is obvious that
SR′p is very likely to be totally covered by the intermediate nodes

op1, mbro
1 op2, mbro

2

The overlapping pointers and MBRs of 
other intermediate nodes are omitted.

Node Ni

Figure 6: An illustrative example of overlapping pointers

close to the leaf node containing p. Thus, inspired by Exponential
Index [20], for a leaf node s, the backward pointers are set by the
following rules.

1. The first backward pointer bp1 points to s.

2. bpi, where 1 < i < r, points to the ancestor of s with depth
h−2i−2.

3. The last backward pointer bpr points to the root node.

4. mbrb
i , where 1 ≤ i ≤ r, is the MBR of the node pointed by

bpi.

According to the third rule, r is the smallest integer making the
following equation true.

h−2r−2 ≤ 0

Thus, we can obtain that r = dlog2 h+2e.
Figure 5 shows an illustrative example of backward pointers.

Only part of an R-tree with height eight is shown for better readabil-
ity. Since h = 8, each leaf node is of r = dlog2 8+2e= 5 backward
pointers (i.e., gray squares in Figure 5). bp1 points to the leaf node,
while bp2, bp3, bp4 and bp5 point to the ancestors of the leaf node
with depth 7, 6, 4 and 0, respectively.

Since most variants of R-tree do not guarantee the MBRs of in-
termediate nodes in the same depth level to be non-overlapped, us-
ing only backward pointers to incrementally process window queries
may lead to wrong query results. Therefore, some overlapping
pointers are needed for the nodes pointed by backward pointers (ex-
cept the root node) to facilitate correct incremental window query
processing. We use the example in Figure 6 to illustrate the over-
lapping pointers. Since overlapping with two other nodes with the
same depth, the node Ni is of two overlapping pointers ((op1,mbro

1),
(op2,mbro

2)) where op j is the pointer pointing to the j-th interme-
diate node with the same depth as Ni and overlapping with Ni, and
mbro

j is the MBR of the node pointed by op j.
With backward pointers and overlapping pointers, a window query

can be incrementally processed as follows. When an object p is
inserted into the priority queue PQ, the backward pointers of the
leaf node where p is stored are also inserted into PQ along with p.
When processing the window query with SR′p as the query window,
instead of searching from the root node of the R-tree, IWP retrieves
the corresponding backward pointers, finds the smallest value of i
so that SR′p is totally covered by mbrb

i , and searches from the node
pointed by bpi. In addition, for each overlapping pointer op j of the
node pointed by bpi, IWP also executes the window query from the
node pointed by op j when mbro

j overlaps with the query window.
Finally, the NWC algorithm enhanced with optimizations as well

as some companion functions are given in Algorithms 1, 2 and 3.

3.4 k Nearest Window Cluster Query Process-
ing

An NWC query is to provide the user with an area with n objects
(choices). In practice, it is possible that the user even would like
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Algorithm 1: NWC algorithm enhanced with optimizations
Data: NWC query (q, l,w,n), priority queue PQ
Result: a set of n objects

1 distbest ← ∞, ob js← /0, PR← /0 ;
2 PQ.enqueue(Root of TP) ;
3 while |PQ|> 0 do
4 p← PQ.dequeue() ;
5 if p is an index node then
6 MBRp← the MBR of p ;
7 Extend MBRp as MBR′p based on DEP ;
8 if MBRp−PR 6= /0 and isPrunedByDEP(MBR′p) is FALSE then
9 for each child c of p do

10 PQ.enqueue(c) ;

11 else
// p is an object

12 determine the lying quadrant of p with respect to q ;
13 determine whether p is on the left or right edge ;
14 build SRp and reduce SRp as SR′p by SRR ;
15 if SR′p 6= /0 and isPrunedByDEP(SR′p) is FALSE then
16 SSR′p ← IWP (SR′p) ;

17 sort SSR′p in ascending/descending order of y coordinates ;

18 remove pi from SSR′p when the y coordinate of pi is

smaller/larger than the y coordinate of p ;
19 for i = 1 to |SSR′p | do
20 build qwinp by setting p on the right/left edge and pi on the

top/bottom edge ;
21 if |Sqwinp | ≥ n and MINDIST (q,qwinp)< distbest then
22 let {p1, p2, . . . , pn} be the n objects in qwinp of the

shortest distance to q ;
23 if dist(q,{p1, p2, . . . , pn})<distbest then
24 distbest ← dist(q,{p1, p2, . . . , pn}) ;
25 ob js←{p1, p2, . . . , pn} ;
26 update PR accordingly ;

27 return ob js ;

Algorithm 2: Function isPrunedByDEP (rect, n)
Data: a rectangle rect
Result: whether rect is pruned by DEP

1 ub← 0 ;
2 for each cell cell in the density grid do
3 if cell intersects rect then
4 ub← ub+the number of objects in cell;

5 if ub < n then
6 return TRUE;

7 else
8 return FALSE;

Algorithm 3: Function IWP (rect)
Data: a rectangle rect
Result: the set of objects within rect

1 result← /0, nodes← /0 ;
2 fetch the backward pointers associated with p ;
3 for i=1 to r do
4 if rect ⊆ mbrb

i then
5 Ni← the index node pointed by bpi ;
6 insert Ni into nodes ;
7 break ;

8 for each overlapping pointer op j of Ni do
9 if mbro

j ∩ rect 6= /0 then
10 insert the index node pointed by op j into nodes ;

11 for each node N in nodes do
12 perform traditional window query processing with query window rect

starting from N ;
13 insert the resultant objects into result ;

14 return result ;

to retrieve multiple areas so that the user is able to pick a proper
area from them. To satisfy such needs, we extend NWC queries to
kNWC queries that enable users to retrieve k object groups where
each group consists of n objects located within a window of length
l and width w. It is obvious that the user is not willing to get k
object groups and each pair of groups consist of almost the same
objects. Thus, we introduce a new parameter m which allows a user
to specify the maximal number of identical objects allowed in each
pair of groups. The formal definition of a kNWC query is given
below.

Definition 3 (kNWC Query) Given a query location q, a spatial
window area specified by length l and width w, the number of data
objects n, and the maximal number of identical objects, say m, in
any two object groups, a k nearest window cluster (kNWC) query
(k,q, l,w,n,m) retrieves k object groups, ob js1,ob js2, . . . ,ob jsk,
satisfying the following criteria.

• Each object group consists of n objects within a window of
length l and width w.

• For each pair of object groups, ob js1 and ob js2, there are
at most m objects in both ob js1 and ob js2 (i.e., |ob js1 ∩
ob js2| ≤ m).

• The k object groups are ordered by their distances to q in
ascending order. That is, dist(q,ob jsi)≤ dist(q,ob js j) ∀i, j
where i < j.

• For each group of n objects, say ob j′, within a window of
length l and width w and ob j′ 6= ob ji where i = 1,2, . . . ,k, at
least one of the following conditions should be satisfied.

1. dist(q,ob jsk)≤ dist(q,ob js′).

2. There exists an integer i (1≤ i≤ k) so that dist(q,ob ji)≤
dist(q,ob j′) and |ob ji∩ob j′|> m.

It is obvious that Lemma 1 also holds for kNWC queries. To
answer kNWC queries, similar to NWC queries, we are allowed
to consider only those qualified windows with objects on their ver-
tical and horizontal edges. Based on Lemma 1, we now design
the kNWC algorithm, an extension of the NWC algorithm, to sup-
port kNWC queries as below. The kNWC algorithm maintains the
k object groups {ob js1,ob js2, . . . ,ob jsk} found so far in groups
and sorts the k object groups by their distances to query location q
in ascending order. The optimization techniques proposed in Sec-
tion 3.3 can also be used to mitigate the I/O cost of identifying the
nearest qualified windows of a given kNWC query. Specifically,
when k object groups are obtained, the distance between q and the
k-th object group (i.e., dist(q,ob jsk)) is employed in SRR to re-
duce the search regions of remaining objects and in DIP to prune
remaining index nodes. When finding a qualified window qwinp,
the kNWC algorithm performs the following steps to handle qwinp.

• Step 1: Let ob jsp = {p1, p2, . . . , pn} be the n objects in qwinp
of the shortest distance to q.

• Step 2: Scan groups in reverse order to find the first object
group, say ob jsi, which is of distance shorter than ob jsp. In
case that no such i exists, set i to 0 and go to Step 4. If i = k,
drop ob jsp and stop this procedure.

• Step 3: Check whether |ob jsp ∩ ob js j| ≤ m for each ob js j,
j = 1,2, . . . , i. If not, drop ob jsp and stop this procedure.

• Step 4: Remove ob jsk from groups and insert ob jsp into
groups at position i+1 (i.e., as ob jsi+1 = ob jsp).

347



x

y

q

level 1 rectangle

level 2 rectangle

Figure 7: Illustration of analysis

• Step 5: Check whether |ob jsp ∩ ob js j| ≤ m for each ob js j,
j = i+ 2, i+ 3, . . . ,k− 1. Remove ob js j from groups when
|ob jsp∩ob js j|> m.

4. THEORETICAL ANALYSIS

4.1 Time Complexity Analysis of NWC Algo-
rithm

In this section, we develop a cost model to analyze the I/O cost
of the NWC algorithm. To facilitate the following discussion, as
shown in Figure 7, the space is divided into multiple disjoint rect-
angles of height l and width w. Since the NWC algorithm visits the
objects according to their distances to q in ascending order [10], it
is very likely that the NWC algorithm visits the objects in all level-
i rectangles and then visits the objects in all level-i+ 1 rectangles
until the best objects are found.

We assume that the objects in an area are Poisson distributed with
mean λ . For simplicity, we also assume that the probability that a
window is not qualified is independent of the probability of any
other window. Thus, the average number of objects in a window of
length l and width w is λ × l×w and the probability that a window
is not qualified is

P = P{X ≤ n−1}= e−λ×l×w
n−1

∑
i=0

(λ × l×w)i

i!
. (8)

An object in a level-i rectangle is called a level-i object, while a
qualified window generated by a level-i object is called a level-i
qualified window. Due to the effect of DIP, we also assume that the
objects within a level-i qualified window can be verified as the best
objects only when 1) there is no level- j qualified window, where
j = 1,2, · · · , i− 1, and 2) all level-i qualified windows have been
checked.

Consider an object p. The NWC algorithm issues a window
query to retrieve all objects within the search region of p (i.e.,
SRp) and the average number of objects in the upper-half of SRp
is λ × l×w. For each object p′ on the upper-half of SRp, the NWC
algorithm then generates one window with p on the right edge and
p′ on the top edge and checks whether the window is qualified or
not. Thus, the average number of windows generated by an object
is λ × l×w, and the probability that an object cannot generate a
qualified window is Pλ×l×w.

Let N(i) be the number of level-i rectangles and it is clear that

N(i) = (2i)2− (2(i−1))2 = 8i−4. (9)

We can obtain that the average number of level-i objects is N(i)×
λ × l×w. Denote the probability that there is no level-i qualified
window (that is, all windows generated by all level-i objects are not
qualified) to be Q(i). Since there is no level-0 rectangle, Q(0) = 1.

For each positive integer i, we can derive that

Q(i) =
N(i)×λ×l×w

∏
j=1

Pλ×l×w = PN(i)×(λ×l×w)2
.

The probability that the qualified window consisting of the best
objects is a level-i qualified window is (1−Q(i))×∏

i−1
j=0 Q( j).

Consider the case that the qualified window consisting of the
best objects is a level-i qualified window. All level- j objects, where
j = 1,2, . . . i, should be retrieved. Let the average number of objects
to be retrieved in this case be O(i). We can obtain

O(i) =
i

∑
j=1

N(i)×λ × l×w = 2× i2×λ × l×w. (10)

Since these objects are retrieved in accordance with their distances
to q, the average I/O cost to retrieve them is close to the average
I/O cost of using K nearest neighbor query to retrieve O(i) objects.
For each retrieved object p, the NWC algorithm issues a window
query to get the objects within SRp, and thus, the average number
of issued window queries is O(i). Let the average I/O cost to use
K nearest neighbor query to retrieve K objects be KNN(K), and
let the average I/O cost of a window query of length l and width
w be WIN(l,w). The average I/O cost when the qualified window
consisting of the best objects is a level-i qualified window is O(i)×
WIN(l,w)+KNN(O(i)).

Suppose that the whole space contains at most level-MaxLV rect-
angles. The average I/O cost of the NWC algorithm is

MaxLV

∑
i=1

{[
(1−Q(i))×

i−1

∏
j=0

Q( j)

]
×
[
O(i)×WIN(l,w)+KNN(O(i))

]}
,

where WIN(l,w) can be obtained from [18] and KNN(K) can be
obtained from [10].

4.2 Time Complexity Analysis of kNWC Algo-
rithm

Let the probability that a window is not qualified be P where P
can be obtained by Equation (8). Let the probability that a quali-
fied window consists of at most m identical objects with each ob-
ject group in groups be Pr(m,k). Thus, the probability that the
objects within a window cannot be inserted into groups be P′ =
1− [(1−P)×Pr(m,k)]. Suppose that the object group within a
level-i qualified window will not be removed from groups due to
the insertion of any object group within a level- j qualified win-
dow where j > i. Therefore, when the object group within a level-i
qualified window becomes the k-th nearest object group, the kNWC
algorithm will terminate when all object groups within level-i qual-
ified windows have been checked.

We now derive the probability that the k-th nearest object group
is within a level-i qualified window. Due to the effect of SRR and
DIP, we assume that the k-th nearest object group is within a level-i
qualified window only when 1) the number of object groups within
level- j, where j = 1,2, . . . , i− 1, qualified windows inserted into
qwinsbest is smaller than k and 2) the number of object groups
within level- j, where j = 1,2, . . . , i, qualified windows inserted into
qwinsbest is larger than or equal to k.

As shown in Equation (10), the average number of all level- j
objects, where j = 1,2, . . . , i, is O(i). Since the average number
of windows generated by an object is λ × l ×w, the probability
that there are a object group within level- j, where j = 1,2, . . . , i,
qualified windows inserted into groups is

R(i,a) =CO(i)×λ×l×w
a × (1−P′)a×P′O(i)×λ×l×w−a.
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(a) CA Dataset (b) NY Dataset (c) Gaussian
Dataset

Figure 8: Distributions of the used datasets

Table 2: Description of datasets
Dataset Cardinality Description
CA 62,556 Real places in California
NY 255,259 Real places in New York
Gaussian 250,000 Generated by Gaussian distribution

According to Equation (9), there are N(i) level-i rectangles and the
average number of level-i objects is N(i)× λ × l×w. Therefore,
the probability that there are at least b object groups within level-i
qualified windows inserted into groups is

S(i,b) = 1−
b−1

∑
d=1

[
CN(i)×(λ×l×w)2

d × (1−P′)d ×P′N(i)×(λ×l×w)2−d
]
.

Therefore, the probability that the k-th nearest object group within
a level-i qualified window is

k−1

∑
j=0

[
R(i−1, j)×S(i,k− j)

]
.

When the k-th nearest object group is within a level-i qualified
window, the kNWC algorithm visits all objects in all level- j rectan-
gles, where j = 1,2, . . . , i. Similar to the derivations in the previous
subsection, the average I/O cost when the k-th nearest object group
is a level-i qualified window is O(i)×WIN(l,w) +KNN(O(i)).
Suppose that space contains at most level-MaxLV rectangles. The
average I/O cost of the kNWC algorithm is

MaxLV

∑
i=1

{[
k−1

∑
j=0

[
R(i−1, j)×S(i,k− j)

]]
×

[
O(i)×WIN(l,w)+KNN(O(i))

]}
.

5. PERFORMANCE EVALUATION
In this section, we conduct experiments to evaluate the perfor-

mance of the proposed NWC algorithm and the proposed optimiza-
tion techniques. All algorithms are implemented in Java. Three
datasets, two real and one synthetic, are used in the evaluation. The
CA dataset contains 62,556 places in California4, while the NY5

dataset contains 255,259 places in New York. The data space for
these two real datasets are normalized to a square of width 10,000.
The synthetic dataset is created based on Gaussian distribution with
mean 5000 and standard deviation 2000. The cardinality of the
Gaussian dataset is default at 250,000. These datasets are summa-
rized in Table 2, while Figure 8 depicts the object distributions of

4http://www.chorochronos.org/
5http://www.census.gov/geo/www/tiger

Table 3: Description of schemes
Optimization Technique(s) Used

Scheme SRR DIP DEP IWP
NWC - - - -
SRR X - - -
DIP - X - -
DEP - - X -
IWP - - - X
NWC+ X X - -
NWC* X X X X
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Figure 9: Effect of grid size
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Figure 10: Effect of object
distribution

these datasets.
All datasets are indexed by R∗-trees with the page size set to

4096 bytes. The maximum number of entries in a node is 50. The
default value of n is 8 and the window length and width are both
8. The grid cell size is set to 25. Similar to [18][10], we consider
I/O cost as the performance metric, which is the number of R∗-tree
nodes visited, since I/O cost dominates the total execution time of
the NWC algorithm. We run 25 queries for each experiment and
report the average as the experimental result. To measure the ben-
efit of each optimization technique, we separately run the exper-
iments of the NWC algorithm augmented with each optimization
technique (labelled as SRR, DIP, DEP and IWP, respectively). In
addition, we devise a scheme NWC+ by enabling only SRR and
DIP (which do not incur extra storage overhead). Finally, we de-
vise a scheme NWC* which enables all optimization techniques
proposed in this work. The schemes compared in the experiments
are summarized in Table 3. In the following, we show our experi-
mental results by varying various parameter settings, including grid
size, object distribution, number of objects and window size.

5.1 Effect of Grid Size
In this experiment, we investigate the effect of the grid size by

varying the grid size from 25 to 400. Since only scheme DEP uses
the density grid, we present only the experimental results of scheme
DEP here. Figure 9 shows that for the CA and Gaussian datasets,
the I/O cost increases along with the grid size. With the smaller
grid size, the granularity of the density grid gets finer. Thus scheme
DEP is able to obtain tighter upper bounds during query process-
ing, thus achieving better pruning effect. For the NY dataset, it is
interesting to see that the I/O cost of scheme DEP stays nearly con-
stant regardless of the grid size, as depicted in Figure 9. The reason
is that the objects in the NY dataset are highly clustered in certain
areas, resulting in less effective pruning even when the grid size is
small. This result indicates that scheme DEP could not benefit from
the density grid for extremely clustered data distributions.

5.2 Effect of Object Distribution
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Figure 11: Effect of the number of search objects
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Figure 12: Effect of window size

We study the effect of the object distribution on the performance
of all the schemes in this experiment by generating five Gaussian
datasets. We fix the same mean 5,000 but varying standard devia-
tions from 2,000 to 1,000. As shown in Figure 10, the I/O cost of
scheme NWC increases as the standard deviation decreases. When
the standard deviation gets smaller, the data objects are more clus-
tered and more objects are within search regions. Thus, scheme
NWC has to access more nodes to process these window queries is-
sued for the search regions. On the contrary, for schemes SRR, DIP,
and NWC+, their I/O costs decrease as the standard deviation gets
smaller. In our experiment, the I/O cost reduction rates of schemes
SRR, DIP and NWC+ over scheme NWC increase from 57% to
93% as the standard deviation decreases from 2000 to 1000. This is
because the more clustered object distribution leads these schemes
to be able to find locally best qualified windows (a qualified window
qwin is called locally best if MINDIST (q,qwin) < distbest when
qwin is discovered) more easily, achieving better pruning effect.
It is not surprising that scheme NWC+ outperforms schemes SRR
and DIP by using SRR and DIP together.

On the other hand, the I/O costs of schemes DEP and IWP in-
crease as the standard deviation decreases. As discussed above,
scheme DEP performs well in nearly uniformly distributed datasets,
but achieves relatively poor performance when the object distribu-
tion is highly clustered. In our experiment, the I/O cost reduction
rate of scheme DEP over scheme NWC decreases from 54.8% to
14.1% along with the decrease of the standard deviation. Regard-
ing scheme IWP, the performance downgrades owing to that the
more highly clustered data objects cause more index nodes to over-
lap together and thus increases the number of overlapping pointers.
The more overlapping pointers are, the more index nodes scheme
IWP accesses. In our experiment, the I/O cost reduction rate of
scheme IWP over scheme NWC decreases from 59.5% to 55.6%
as the standard deviation decreases from 2000 to 1000. From the

experimental result, we can observe that the proposed optimization
techniques are complementary with each other. SRR and DIP per-
form well on highly clustered datasets (i.e., with small standard de-
viations) while DEP and IWP outperform SRR and DIP on nearly
uniformly distributed datasets (i.e., with large standard deviations).
By combining the advantages of all the optimization techniques,
scheme NWC* performs the best in terms of I/O cost and signifi-
cantly reduces 98.3% I/O cost compared with scheme NWC. More-
over, the I/O cost reduction of scheme NWC* over scheme NWC+
is ranging from 73.8% to 79.7%, showing that the small storage
overhead produced by DEP and IWP really pays off especially on
the cases not suitable for SRR and DIP.

We now evaluate the storage overheads of scheme DEP and scheme
IWP. When the grid size is set to 25, the density grid is of 160000
grids. As we use short integer to store the number of object in each
cell, the storage overhead of DEP (the size of the density grid) is
about 312KB. On the other hand, it is obvious that the numbers
of backward and overlapping pointers are proportional of object
numbers. The numbers of backward and overlapping pointers for
the CA, NY and Gaussian datasets are 26473, 6236 and 29037, re-
spectively. Suppose that the size of one pointer is 4 bytes. The
storage overheads of IWP (the size of these pointers) in the CA,
NY and Gaussian datasets are about 103KB, 24KB and 113KB,
respectively. These storage overheads are acceptable.

5.3 Effect of the Number of Searched Objects
This experiment evaluates the effect of the number of searched

objects n. In the experiment, we vary the value of n from 8 to 128.
Note that we set the y axis in logarithmic scale in this and the fol-
lowing experiments due to the varied scale of I/O cost. Figure 11
shows that the I/O cost of scheme NWC almost stays constant be-
cause scheme NWC accesses all the objects in R*-tree regardless of
the value of n. The other schemes suffer from higher I/O costs with
the value of n increasing, because a larger value of n causes more
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index nodes to be accessed in order to find the locally best qualified
windows. When the value of n is too large to find any qualified win-
dow, schemes SRR, DIP and NWC+ would degenerate to scheme
NWC since no pruning is achieved. As shown in Figure 11a, the
I/O costs of scheme SRR, DIP, and NWC+ are equal to the I/O cost
of scheme NWC when the value of n is larger than or equal to 32.
Similarly, Figure 11c shows that schemes SRR, DIR, and NWC+
incur the same I/O cost as scheme NWC when the value of n is 8
or larger. These three schemes degenerate faster in the Guassian
dataset because the data objects are nearly uniformly distributed in
the Gaussian dataset. Different from the CA and Gaussian datasets,
schemes SRR, DIP, and NWC+ still outperform scheme NWC in
the NY dataset even when the value of n is 128. The reason is that
the highly clustered objects in the NY dataset allow these schemes
to find locally best qualified windows quickly even for large values
of n.

On the other hand, schemes DEP and IWP are more resilient to
the increase of the value of n. For scheme DEP, it prunes more in-
dex nodes and search regions when the value of n gets larger. Thus,
scheme DEP remains to perform well in the Gaussian dataset as
long as the value of n is large to a certain extent. As shown in
Figure 11c, when n increases from 8 to 128, the I/O cost reduction
rate of scheme DEP over scheme NWC in the Gaussian dataset in-
creases from 18% to 99.1%, showing the benefit of scheme DEP.
For scheme IWP, a larger value of n only affects the performance
slightly because IWP mainly focuses on saving the I/O cost of win-
dow query processing. As such, scheme IWP is able to reduce
the I/O cost in the case that schemes SRR, DIP and DEP per-
forms poorly (e.g., n = 8 in the Gaussian dataset). We can ob-
serve from Figure 11c that the I/O cost reduction rate of scheme
IWP over scheme NWC keeps in 59.6% when n increases from
8 to 128. Due to the complementary advantages of the optimiza-
tion techniques, scheme NWC* performs the best in all the cases,
and compared with scheme NWC, is able to reduce 95.7%∼99.4%,
97.6%∼99.9% and 88.2%∼99.1% I/O costs in the CA, NY and
Gaussian datasets, respectively.

5.4 Effect of the Window Size
In this experiment, we explore the effect of the window size

on I/O costs for all schemes by increasing the window length and
width from 8 to 128. We can see in Figure 12 that the I/O cost
of scheme NWC gets larger as the window size increases. This is
because the larger window sizes result in larger search regions and
more data objects involved in the discovery of qualified windows.
On the contrary, as the window size increases, it is easier to find
locally best qualified windows. With more locally best qualified
windows, schemes SRR and DIP achieve better performance. We
can see in Figure 12c that schemes SRR and DIP degenerate to
scheme NWC in the Gaussian dataset when window size is set to
8. Setting window size to 8 is too small to find any qualified win-
dow in the Gaussian dataset since distribution of the objects in the
Gaussian dataset is close to uniform distribution. Except for such
an extreme case, the I/O cost reduction rates of schemes SRR and
DIP over scheme NWC increase from 93.7% to 99.8% and from
95.5% to 99.9% in the CA and Gaussian datasets, respectively, as
the window size gets from 16 to 128. As depicted in Figure 12b,
the I/O cost reduction rates of schemes SRR and DIP over scheme
NWC in the NY dataset keep in 99.5%∼99.9%. The reason is that
in the NY dataset, there are a large number of data objects and these
data objects are highly clustered. Schemes SRR and DIP are still
able to get enough locally best qualified windows even window size
is set to 8. Thus, increasing the window size does not significantly
increase I/O costs of scheme SRR and DIP. Similar to previous ex-
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periments, scheme NWC+ outperforms schemes SRR and DIP in
all cases.

On the contrary, schemes DEP and IWP do not benefit from
larger window sizes. When the window size gets larger, the number
of qualified windows increases, thereby reducing the pruning effect
of DEP. As the window size is large to a certain extent, scheme DEP
could not achieve any pruning and thus will degenerate to scheme
NWC, referring to Figure 12a and Figure 12b. For scheme IWP, the
large window size results in more overlapping index nodes when
processing window queries, reducing the benefit of scheme IWP.
As such, scheme IWP is less effective for large window sizes. For-
tunately, DEP and IWP are still able to reduce some I/O costs when
SRR and DIP are used. Therefore, scheme NWC* achieves the best
performance and the I/O cost reduction rates of scheme NWC* over
scheme NWC+ are from 88.1% to 21.4%, 21% to 0.6% and 65.8%
to 11.9% in the CA, NY and Gaussian datasets, respectively, when
window size gets from 8 to 128.

5.5 Effect of k
We now evaluate the performance of these schemes for kNWC

queries. We can observe from the above experiments that scheme
NWC+ is of the best performance when extra storage except R-tree
is not available. On the other hand, scheme NWC* performs the
best when extra storage is available. Thus, we only compare the
performance of scheme kNWC+ and scheme kNWC* (extensions
of scheme NWC+ and scheme NWC*, respectively, for kNWC
queries) in this and the following experiments.

Figure 13 shows the effect of k on the CA and NY datasets. It
is obvious that when k gets larger, both schemes need to spend
more time in exploring more qualified windows. As shown in Fig-
ure 13, the I/O costs for both schemes almost linearly increase. As
mentioned in Section 5.4, since the NY dataset is of many highly
clustered objects, the I/O costs of both scheme in the CA dataset
are higher than the I/O costs in the NY dataset. In addition, due to
the effect of DEP and IWP, scheme kNWC* outperforms scheme
kNWC+ in both datasets. Since both schemes perform well in the
NY dataset, the I/O cost reduction rate of scheme kNWC* over
scheme kNWC+ in the CA dataset is higher than that in the NY
dataset. In our experiment, the average I/O cost reduction rates of
scheme kNWC* over scheme kNWC+ in the CA and NY datasets
are around 84.3% and 35.3%, respectively.

5.6 Effect of m
Figure 14 shows the effect of m on the CA and NY datasets.

Setting m to a larger value means that users accept more iden-
tical objects in the nearest qualified windows. When a nearest
qualified window is found, the qualified windows nearby are of
high likelihood to be the qualified windows. Thus, it is easier

351



0 2 4 6 8
Value of m

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

I/
O

 C
o
s
t

kNWC+

kNWC*

(a) CA Dataset

0 2 4 6 8
Value of m

200

300

400

500

600

700

800

900

1000

1100

I/
O

 C
o
s
t

kNWC+

kNWC*

(b) NY Dataset

Figure 14: Effect of m

for both schemes to find k nearest qualified windows when m gets
larger. Similarly, both schemes are of higher I/O costs in the CA
dataset than in the NY dataset. Fortunately, with the aid of DEP
and IWP, scheme kNWC* outperforms scheme kNWC+ in both
datasets. In our experiment, the average I/O cost reduction rates of
scheme kNWC* over scheme kNWC+ in the CA and NY datasets
are around 83.8% and 33.9%, respectively.

6. CONCLUSIONS
In this paper, we propose a novel type of spatial queries, namely

nearest window cluster (NWC) queries. To process NWC queries,
we identify several properties to find qualified windows, leading
to the development of the NWC algorithm. To further accelerate
NWC search, we present four optimization techniques to reduce
I/O cost. We conduct several experiments to evaluate the perfor-
mance of the NWC algorithm and the proposed optimization tech-
niques. Experimental results show that these optimization tech-
niques are complementary with each other, and the NWC algorithm
with these optimization techniques performs the best in terms of
I/O cost.
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