
Query Performance Problem Determination with
Knowledge Base in Semantic Web System OptImatch

Guilherme Damasio*

University of Ontario Institute of Technology
Faculty of Science, Computer Science

guilherme.fetterdamasio@uoit.ca

Piotr Mierzejewski
IBM Canada Ltd

piotrm@ca.ibm.com

Jaroslaw Szlichta*

University of Ontario Institute of Technology
Faculty of Science, Computer Science

jaroslaw.szlichta@uoit.ca

Calisto Zuzarte
IBM Canada Ltd

calisto@ca.ibm.com

ABSTRACT
Database query performance problem determination is often
performed by analyzing query execution plans (QEPs) in addition
to other performance data. As the query workloads that
organizations run have become larger and more complex, analyzing
QEPs manually even by experts has become a very time consuming
and cumbersome task. Most performance diagnostic tools help with
identifying problematic queries and most query tuning tools
address a limited number of known problems and
recommendations. We present the OptImatch system that offers a
way to (a) look for varied user defined problem patterns in QEPs
and (b) automatically get recommendations from an expert
provided and user customizable knowledge base. Existing
approaches do not provide the ability to perform workload analysis
with flexible user defined patterns, as they lack the ability to impose
a proper structure on QEPs. We introduce a novel semantic web
system that allows a relatively naive user to search for arbitrary
patterns and to get solution recommendations stored in a
knowledge base. Our methodology includes transforming a QEP
into an RDF graph and transforming a GUI based user-defined
pattern into a SPARQL query through handlers. The SPARQL
query is matched against the abstracted RDF graph, and any
matched portion of the abstracted RDF graph is relayed back to the
user. With the knowledge base, the OptImatch system
automatically scans and matches interesting stored patterns in a
statistical way as appropriate and returns the corresponding
recommendations. Although the knowledge base patterns and
solution recommendations are not in the context of the user
supplied QEPs, the context is adapted automatically through the
handler tagging interface. We test the performance and scalability
of our framework to demonstrate its efficiency using a real query
workload. We also perform a user study to quantify the benefits of
the approach in terms of precision and time compared to manually
searching for patterns.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query Processing

General Terms
Performance, Design and Experimentation

Keywords
Query Performance, Problem Determination, Semantic Web,
Knowledge Bases and Business Intelligence.

1. INTRODUCTION
1.1 Background and Motivation
Much of the world’s high-valuable data remain in relational
databases (e.g., operational databases and data warehouses [12]).
Access to this data is gained through relational query languages
such as Structured Query Language (SQL). Complex analytic
queries on large data warehouse system are not only done as
weekend or end of period canned batch reports. Ad hoc complex
queries are increasingly run as part of business operations. As such
it is critical to pay attention to performance of these queries.

Database systems themselves are certainly increasingly becoming
more sophisticated and able to automatically tune the environments
they operate in. General query performance problem determination
tools [4], [6], [23], [24] also offer an automated way to database
administrators to analyze performance issues that neither requires
mastery of an optimizer, nor deep knowledge about the query
execution plans (QEPs). However, due to the complexity while the
general approach has merit, there is a lack of customization and
many refinements are needed, so that the problem determination
and tuning process can be truly effective and consumable by the
general end-user. Given the specific circumstances and limitations
of existing tools, performance analysis today is often best done by
manually analyzing optimizer QEPs that provide detail of how
queries are executed. Manually analyzing these QEPs can be very
demanding and often requires deep expertise particularly with
complex queries that are often seen in data warehouse
environments. Very often the end users and database administrators
resign themselves to opening problem reports to the database
vendors so that experts who are well versed in both SQL and
analyzing optimizer QEPs can provide recommendations. This can
be a time consuming exercise and does not scale well.

Existing tools such as IBM® Optim Query Tuner® and IBM Optim
Workload Tuner® provide tuning recommendations for specific
known problems. While very effective, they do not, however,
provide the ability to perform query performance problem
determination with flexible user-defined patterns (examples listed
below). This is mainly because these tools are agnostic to the

* Damasio is a Student Fellow in IBM Centre for Advanced Studies
(CAS) and Szlichta is a Faculty Fellow in IBM CAS in Toronto.

© 2016, Copyright is with the authors. Published in Proc. 19th
International Conference on Extending Database Technology (EDBT),
March 15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Industrial and Applications Paper

Series ISSN: 2367-2005 515 10.5441/002/edbt.2016.49

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.49

complex structure of QEPs. There does not exist a general purpose
automated system that would allow for interactive analysis and
diagnosis of performance problems by searching for arbitrary
patterns within a large number of QEPs. A user not so experienced
with QEPs may want to answer simple questions. For example,
after searching and determining the cost of a table scan on a
particular table, the user may want to know how many queries in
the workload do an index scan access on the table and get a sense
of the implications of dropping the index by comparing the index
access cost to that of the table scan. Even with more experienced
database administrators, often there are clues from monitoring data
that provide hints of certain characteristics of QEPs that are not
easily found by using typical search tools like grep. For instance,
given a large number of queries, say 1000 queries, and the
corresponding workload QEPs:

 Find all the queries in the workload that might have a spilling
hash join below an aggregation and the cost is more than a
constant N.

 Find all the subqueries that have a cost that is more than 50%
of the total cost of the query and provide details of the
subquery operators (name, cost, and input operators).

 Find all the queries that have an outer join involving the same
table somewhere in the plan below both sides of a hash join.

 Perform cost based clustering and correlate results of
applying expert patterns to each cluster.

We consider making it easier and faster to automatically answer
questions like the above in our work. We provide a flexible system
OptImatch that performs analysis over large and complex query
workloads, in order to help diagnosis optimizer problems and
retrieve solutions that were previously provided by experts. The
optImatch system drastically lowers the skill level required for
optimizer access plan problem determination through advanced
automated pattern matching and retrieving of solution
recommendations of previously discovered performance problems
for single queries and large query workloads. OptImatch is very
well received and is proving to be very valuable in the IBM support

of business clients and database optimizer development
organization.

At the enterprise level, major commercial state-of-the-art relational
database systems such as IBM DB2®, Oracle®, and Microsoft®
SQL Server® are deployed in environments where finding all
available optimizations and performance tuning strategies becomes
necessary to maintain the usability of the database. Traditional
optimization methods often fail to apply when logical subtleties in
queries and database schemas circumvent them. The examples of
this include cases, where the recommended performance
enhancement is to index a table in a particular way, prescribe an
integrity constraint such as functional dependency [16] or order
dependency [17], create a materialized view [7] or to rewrite
manually the proposed SQL query, where orthogonal approach
with machine optimization [5], [21], [25] failed to rewrite the query
to get the same answer but with a better performance.

The problem pattern comprises a list of operators having particular
properties that are of interest to a user, as exemplified in some of
the aforementioned problems. By incorporating our query
performance problem determination system many optimization
problems could be automatically identified and resolved. Figure 1
depicts an example of a text graph version of a snippet of a QEP
from IBM DB2. The snippet shows a nested loop join (NLJOIN) of
the SALES_FACT table accessed using an index scan (IXSCAN)
with other columns fetched (FETCH) from the table and then joined
to the CUST_DIM table. The numbers immediately above the
operator or table name show the estimated number of rows flowing
out (cardinality). The numbers in parenthesis show the operator
number. Operators are also referred to as Plan OPerators (pop) or
LOw LEvel Plan OPerators (LOLEPOP) in this paper. Each
operator has an estimated Input/Output (I/O) cost, the bottom
number below the operator number, and a cumulative cost for itself
and all operator below it, the number immediately below the
operator number. In the depicted example, a user could be
concerned with NLJOIN that has an inner stream of type table scan
(TBSCAN). Such query is costly as the NLJOIN operator scans the
entire inner table CUST_DIM for each of the rows from the outer
SALES_FACT table. An example of a solution recommendation
might be to provide a recommendation to create an index of the
target table of the TBSCAN, in this case CUST_DIM.

In recent years, more and more customer queries are generated
automatically by query managers (such as IBM Cognos®) with
business users providing only specific parameters through
graphical interfaces [9], [10]. Specific parameters are then
automatically translated by query managers into executable SQL
queries. Based on analyzing IBM customer workloads there is
essentially no limit to the length of the query generated
automatically by query managers. It is quite usual to find queries
with over one thousand lines of SQL code (hundreds of operators).
Such queries are very complex and time consuming to analyze with
nesting and stitching of several subqueries into a larger query being
a common characteristic. Another common feature is
repetitiveness, where similar (or even identical) expressions appear
in several different parts of the same query, for instance, in the
queries referring to the same view or nested query block multiple
times [15], [22]. If there is need to improve the performance of such
complex queries, when optimizer failed, it could be time
consuming to do this manually. It could take hours or even days to
analyze a large query workload. Our goal is automate this process
as much as possible, and therefore save significant amount of time
spent by users on query performance problem determination. The
OptImatch system makes this process easier. While optimizers are
constantly improving, OptImatch allows experts through their

 19860.9
 NLJOIN
 (2)
 16246.59
 4909.624
 /--------+---------\
 19.12 4043
 FETCH TBSCAN
 (3) (5)
 26.0884 15771
 2.624 4907
 /---+----\ |
 19.12 1228 812130
 IXSCAN SALES_FACT CUST_DIM
 (4) Q2 Q1
 11708.7
 5250
 |
9.18948e+07
 IDX1
 Q2

Figure 1 Query with NLJOIN

516

experience to create the interesting problem patterns and
recommendations to overcome issues.

We decided to use the RDF format as it allows one to easily retrieve
information with the SPARQL query language. SPARQL has the
capability for querying optional and required graph patterns.
Another powerful feature exploited in SPARQL is that of property
paths. A property path is a possible route through a graph between
two graph nodes. SPARQL property paths provide a succinct way
to write parts of graph patterns and to also extend matching patterns
to arbitrary length paths. With property paths, we can handle
recursive queries, for instance, search for a descendant operator that
does not necessarily have an immediate relationship (connection)
with its parent. We can also search for patterns that appear multiple
times in the same QEP. Last but not least, SPARQL allows graph
traversal and pattern matching in a very efficient way [3], enabling
analysis of a large number of complex QEPs in a short period of
time.

While the focus of this work is on query performance problem
determination, our methodology can be applied to other general
software problem determination [26], assuming that there exists
automatically or dynamically generated diagnostic information that
needs to be further analyzed by an expert. Broadly, the
contemplated diagnostic data may be human-readable and intended
for review by human users of the system to which the diagnostic
data relates. Examples of possible diagnostic data include log data
relating to network usage, security, or compiling software, as well
as software debug data or sensor data relating to some physical
external system. In these scenarios, the problem pattern may
correspond to any sequence of data points or interrelationships of
data points that are of diagnostic interest.

1.2 Contributions
The main contributions of this paper appear in Section 2 and
Section 3 as follows.

1. We developed a semantic web tool to transform a QEP into
an abstracted artefact structure (RDF graph). We propose in
our framework to model features of the QEP into a set of
entities containing properties with relationships established
between them. (Section 2.1)

2. We provide a web-based graphical interface for the user to
describe a problem pattern (pattern builder). The tool
transforms this pattern into a SPARQL query through
handlers. Handlers provide the functionality of automatically
generating variable names used as part of the SPARQL
query. The SPARQL query is executed against the abstracted
RDF structure and any matched portions of RDF structure are
relayed back to the user. We present a suite of real-world IBM
customer problem patterns that illustrate the issues related to
query performance, which are then used in Section 3 for
experimental performance evaluation. (Section 2.2).

3. We added a knowledge base capability within the tool that
could be populated with some expert provided patterns and
solution recommendations as well as allow users to add their
own patterns and recommendations. The system
automatically matches problem patterns in knowledge base to
the QEPs and if there are any search results ranks them using
statistical correlation analysis. OptImatch distinguishes
between a pattern builder and a tagging handler interface to
achieve generality and extensibility. In a nutshell, the pattern
builder allows the users to specify what is wrong with the
query execution plan (static semantics), and the handler
tagging interface defines how to report and fix it (dynamic
semantics) through automatically adopting the context. Since

the knowledge base patterns and solution recommendations
are not in the context of the user supplied QEPs, we have
defined the language that users can use to add dynamic
context to the recommendations. (Section 2.3)

4. An experimental evaluation showing the performance and
effectiveness of our techniques was carried out using real
IBM customer datasets. We experimented with different
problem patterns, and show that our framework runs
efficiently over large and complex query workloads. Our
performance evaluation reveals that the time needed to
compute a search over a specified problem pattern against a
QEP increases linearly with the size of the workload, the
number of operators in the QEP and the number of
pattern/recommendations in the knowledge base. Finally, we
show through a user study that our system is able to save a
significant amount of time to analyze QEPs. Moreover, we
quantify in the user study the benefits of our approach in
terms of precision over manual pattern searching. (Section 3)

In Section 4, we discuss related work. We conclude and consider
future work in Section 5.

To the best of our knowledge, we are the first to provide a system
for query performance problem determination by applying QEP
feature transformation through RDF and SPARQL. This work we
feel opens exciting venues for future work to develop a powerful
new family of problem determination techniques over existing
optimizer performance analysis tools and other diagnostic data
exploiting graph databases.

2. SYSTEM
2.1 Transforming Diagnostic Data
Even though optimizer diagnostic data may differ in some ways
between various database management systems, their major
characteristics remain the same. Query performance diagnostic
information is usually in the form of QEPs formatted in readable
text form. An example of the portion of the QEP generated by the
IBM DB2 database engine is presented in Figure 1. A QEP includes
diagnostic information about base objects (e.g., tables, views and
indexes), operators (e.g., join, sort and group-by) as well as costs
and characteristics associated with each operator.

Some properties of operators are included in a QEP in the tree
diagram as in Figure 1 (e.g., cardinality total cost, Input/Output
cost, cumulative cost), wherein other properties appear as separate
textual blocks identified by operator number (e.g., cumulative CPU
cost, cumulative first row cost and estimated bufferpool buffers).
Furthermore, some properties are common between different types
of operators (e.g., cardinality, total cost and CPU cost), while others
are specific to certain operators. For instance, NLJOIN has a
property fetch max, and TBSCAN has a property max pages, but
not vice versa. A QEP also contains some other detailed diagnostic
data, including information about the DBMS instance and
environment settings. All of the techniques described in this paper
have been implemented given IBM DB2 QEPs. Hence, much of the
discussion through the rest of the paper is framed in the terminology
and characteristics of IBM DB2. However, the techniques that are
described have general applicability, and can be used with any other
DBMS product or other diagnostic data that lends itself to property
graph representation.

A QEP can be viewed as a directed graph that indicates the flow of
operations processing data within the plan. QEPs resemble a tree
structure, where each node (operator) possesses numerous
properties and is considered as one of the inputs to a derived

517

ancestor node. LOLEPOPs in a QEP are connected to their parents
as inputs streams. These inputs can be identified with three different
types 1) outer input (left input of the parent operator) 2) inner input
(right input of the parent operator) and 3) general input stream
(generic input used for any kind of operator).

The LOLEPOPS may be understood, at the level of abstraction of
the DBMS user, as indivisible operations that are directly executed
by the DBMS, with each LOLEPOP carrying a stated cost. The
stated cost for each LOLEPOP represents an estimate of server
resources, generated by the DBMS system based on a proposed
SQL query by taking into account the particular properties of the
database. The overall QEP is machine-generated by the DBMS
Optimizer [14]. It is machine-optimized to gravitate towards the
lowest total cost LOLEPOPs attainable by the DBMS’s optimizer.
The plan structure is highly dynamic and can change based on
configuration, statistics of the data associated with referenced base
objects and other factors even if query characteristics remain
similar. However, plan changes are difficult to spot manually as
they tend to spawn thousands of lines of informative details for
more complex queries in the workload.

RDF is a labeled directed graph built out of triples, each containing
subject (resource), predicate (property or relationship) and object
(resource or value). RDF does not enforce specific schema, hence,
two resources in addition to sharing properties and relationships,
can also be described by their own unique predicates. This property
of RDF is beneficial to describe and preserve various types of
complex diagnostic information about QEPs. Even though RDF
inherently does not possess a particular structure, such structure can
be enforced by specifying predicates (for example, defining
predicates, such as hasInputStreamPop or hasOutputStreamPop,
and hasInnerInputStreamPop or hasOuterInputStreamPop and
using them to establish relationships between resources
(LOLEPOPs)). This allows one to recreate the tree structure and
characteristics used in QEPs.

Algorithm 1 TransformingQEPs
Input: query execution plan files QEPFs[]
Output: execution plans represented as RDF Graphs, RDFGs[]
 1: forall qepf in QEPFs[]
 2: i := 0
 3: rdfg := convert qepf into RDF graph model by traversing

through base objects, operators and relationship
(input streams) with Jena RDF API

 4: RDFGs[i] := rdfg
 5: i := i + 1
 6: end forall
 7: return RDFGs[]

We propose in our framework to model features of the QEP into a
set of entities containing properties with relationships established
between them. In these terms, a QEP can be modelled into
LOLEPOPs (entities), type, cardinality and costs (properties) and
input/output streams (relationships). This model, represented in
our framework by means of Apache Jena RDF API, is applied to
QEPs provided by the user and persisted in a transformation engine
(Algorithm 1). Jena is a Java API which can be used to create and
manipulate RDF graphs. Jena has object classes to represent
graphs, resources, properties and literals. The result is a
transformation of the QEP into an RDF graph, where each
LOLEPOP represents an RDF Resource, each property and
relationship represents an RDF Predicate and each property value
is represented by an RDF Object. During the transformation from
the QEP file to the RDF graph additional derived properties can be
defined by analyzing resource properties. For instance, the
hasTotalCostIncrease predicate allows us to calculate and store the
total cost of the LOLEPOP by subtracting the cost of the input
LOLEPOPs from currently LOLEPOP being analyzed. The

<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" .
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> .
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> .
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" .
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0".
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/1> .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> .
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0"

Figure 2 Generated RDF in textual representation

Figure 3 Web-based Graphical Interface (Pattern Builder)

<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" .
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> .
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> .
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" .
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0".
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/2> .
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> .
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0"

Figure 2 Generated RDF in textual representation

518

Generated RDF graph can then be preserved in memory ready for
analysis by the transformation engine. The OptImatch System
architecture is illustrated in Figure 4.

An example of an auto-generated RDF graph in textual
representation is presented in Figure 2. Figure 2 depicts an RDF
representation of the LOLEPOPs shown in Figure 1. Each RDF
statement is in the form of a triplet including a resource, a predicate
and an object. In the code presented, statements referring to the
resource “http://explainPlan/PlanPop/5” represents LOLEPOP #5.
Various predicates are shown, each encoding a piece of information
from the QEP. For example, there are predicates that specify
LOLEPOP #5’s total cost (15771) and estimated cardinality (4043).
The RDF representation of all other LOLEPOPs is generated
accordingly.

2.2 Searching for Problem Patterns
SPARQL is the RDF Query Language. The SPARQL standard is
maintained by the W3C. Our system can accomplish the step of
searching for user-defined problem patterns in QEPs by
transforming patterns into SPARQL queries directed to the
abstracted RDF derived from the QEPs. SPARQL performs graph
traversal and pattern matching efficiently. This allows one to
analyze complex patterns over large query workloads in a short
period of time.

We decided to use RDF and SPARQL as SPARQL contains the
capability for querying optional and required patterns of the graph
with arbitrary length paths, and moreover, SPARQL property paths
provide a succinct way to match patterns in the RDF graph. This
includes recursive queries, such as looking for descendants
operators that do not necessarily have an immediate connection
with their parent (see Pattern B in Section 2.3), and searching for
patterns that appear multiple times in the same query execution
plan. We decided to use RDF and SPARQL as SPARQL contains
the capability for querying optional and required patterns of the
graph with arbitrary length paths, and moreover, SPARQL property
paths provide a succinct way to match patterns in the RDF graph.
While one could consider using any property graph representation
framework, RDF was used also for convenience since DB2

supports RDF file format and SPARQL querying across all editions
from DB2 10.1, when the RDF specific layer, DB2 RDF Store, was
added. The DB2 RDF Store is optimized for graph pattern
matching.

Algorithm 2 TransformingProblemPattern
Input: problem pattern probPat
Output: problem pattern probPat transformed to SPARQL query
 1: probPatJSON[] := translate problem pattern probPat into

JSON Object (an array)
 2: sparql := initialize prefixes
 3: forall probPat in probPatJSON[]
 4: sparql +:= transform an element probPat from JSON object

probPatJSON with handlers into the SPARQL query
 5: return sparql

Query performance problems can usually be described as problem
patterns in the QEP. A problem pattern is a set of optimizer plan
features and characteristics specified in a particular order and
containing properties with predefined values. Figure 3 displays a
web-based graphical user interface (pattern builder) used in our
system wherein a user can express the problem pattern by selecting
various properties of LOLEPOPs and plan properties that a user
might be interested in within the QEP. In the depicted example of
problem pattern (Pattern A), the user is concerned with a
LOLEPOP that: (i) is of type NLJOIN; (ii) has an outer input stream
of type any (ANY) with cardinality greater than one (meaning that
the outer is likely to be more than one row and consequently the
inner will be accessed multiple times; (iii) has an inner input stream
of type TBSCAN; and (iv) the inner input stream has large
cardinality (greater than 100). The depicted graphical user
interface generates an example structure of a LOLEPOP that
matches the selected properties. In this case, the described
LOLEPOP is a nested loop join operator (NLJOIN) with some
operator (ANY) on the outer input stream and a table scan
(TBSCAN) on the inner input stream. Such a pattern is costly as
deduced by satisfying the cardinality conditions. The NLJOIN
operator scans the entire table (TBSCAN) for each of the rows from
the outer operator ANY. It would likely be of value for a subject

Figure 4 System Architecture

519

matter expert to spend time and attention to try to optimize queries
matching this problem pattern in the QEP. (System
recommendations are described in details in Section 2.3.)

When specifying a problem pattern using the graphical user
interface (GUI) for generality and flexibility sake, the user can
choose between two types of relationships: immediate and
descendant. Descendants are operators that are successors but not
necessarily immediately below the current LOLEPOP. In that case,
the path between the parent and the descendant child is the portion
of the graph that in the general case can contain any arbitrary
number of operators. For instance, in Figure 1, LOLEPOP #4 is an
immediate child of LOLEPOP #3 and LOLEPOP #4 is a
descendant child of LOLEPOP #2.

Once the desired problem pattern is defined by the user by
describing LOLEPOPs, their characteristics and relationships, it is
then automatically translated (Algorithm 2) into a JavaScript
Object Notation (JSON). This object is constructed to contain a
transformation of the properties specified in the pattern builder to
the RDF resources and the predicates defined in the model used in
the QEP. In Figure 5, we present an example JSON Object that
contains properties specified in the pattern builder (Figure 3). The
generated JSON Object is an array of objects describing each
resource operator and its relationships. For instance, the portion of
JSON Object describing LOLEPOP with ID 1 has specified type
NLJOIN, an estimated cardinality value of more than 100 and
relationship with two immediate children operators, LOLEPOP
with ID 2 and LOLEPOP with ID 3.

"pops": 	
"ID":1,"type":"NLJOIN","popProperties":	
							 	 "id":"hasOuterInputStream","value":2,"sign":"Immediate									
																						Child” ,	

"id":"hasInnerInputStream","value":3,"sign":"Immediate	
																							Child" ,	
"ID":2,"type":"ANY","popProperties":	

"id":"hasOutputStream","value":1 ,	
"ID":3,"type":"TBSCAN","popProperties":	

"id":"hasEstimateCardinality","value":"100",	
																			"sign":" " ,	

"id":"hasInputStream","value":4,"sign":"Immediate	
Child" ,	
				 "id":"hasOutputStream","value":1 ,	

"ID":4,"type":"BASE	
		OB","popProperties": "id":"hasOutputStream","value":3 ,	

								 "planDetails": 	

Figure 5 JSON Object	

The transformation engine uses JSON Objects to auto-generate an
executable SPARQL query. An example of the autogenerated
SPARQL query is presented in Figure 6. The URIs broadly match
the RDF graph generated based on the QEP in Figure 1, and various
SPARQL query operators and operands match the elements of the
problem pattern indicated by the user.

An autogenerated SPARQL query is composed of two main parts,
the SELECT clause that defines variables that appear in the query
results, and the WHERE clause that defines resource properties that
should be matched against the specified RDF graph. The variables
that appear in query results are specified by prefixing variable name
with “?” symbol, i.e., “?variable_name” (and can be referenced
multiple times in the WHERE clause). The same convention is used
to define variables to establish relationship between resources and
the ones used to filter retrieved resources.

Our framework allows us to autogenerate SPARQL queries with a
wide range of characteristics, including nesting, filtering, multiple
resource mapping, and specifying property paths as well as blank
nodes. Blank nodes in RDF indicate the existence of unnamed or
previously undefined resources. We introduce the concept of
handlers to facilitate this. Handlers provide the functionality of
automatically generated variable names used for the retrieval of
query results, filtering of retrieved values, and establishing
relationships between resources and blank nodes.

Handler generation is performed in a modular manner, by building
the SPARQL query one layer (one operator) at the time over
portions of JSON Object. In order to generate the SPARQL query,
we define four types of handler variables: result handlers, internal
handlers, relationship handlers and blank node handlers. Result
handlers are created based on identifiers (sequential identifiers
assigned to each LOLEPOP as shown in the graphical user interface
in Figure 3), i.e., ?pop1 and ?pop2 etc. For instance, in our
SPARQL query, the result handler ?pop1 is a resource returned to
the user, and is also used in the WHERE clause to identify this
resource as NLJOIN by adding the predicate hasPopType.

PREFIX	popURI:	 http://explainPlan/PlanPop/ 	

			SELECT	 ?pop1	AS	?TOP 	 ?pop2	AS	?ANY2 		

																		 ?pop4	AS	?BASE4 	

			WHERE	 	

						?pop1	predURI:hasPopType	"NLJOIN"	.	

							?pop1	predURI:hasOuterInputStream														
?BNodeOfpop2_to_pop1	.	

							?BNodeOfpop2_to_pop1	predURI:hasOuterInputStream				
?pop2	.	

							?pop2	predURI:hasOutputStream	?BNodeOfpop2_to_pop1.	

							?BNodeOfpop2_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop1	predURI:hasInnerInputStream	

																		?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasInnerInputStream		
?pop3	.	

							?pop3	predURI:hasOutputStream	?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop3	predURI:hasPopType	"TBSCAN"	.	

							?pop3	predURI:hasEstimateCardinality	?internalHandler1.	

																		FILTER	 	?internalHandler1	 	100 	.	

							?pop3	predURI:hasInputStream	?BNodeOfpop4_to_pop3	.	

							?BNodeOfpop4_to_pop3	predURI:hasInputStream	?pop4	.			

							?pop4	predURI:hasOutputStream	?BNodeOfpop4_to_pop3.	

							?BNodeOfpop4_to_pop3	predURI:hasOutputStream?pop3	.	

							?pop4	predURI:isABaseObj		?internalHandler2	.	

	ORDER	BY	?pop1	

Figure 6 Autogenerated SPARQL Executable Query

Internal handlers are used to filter results. Identifiers of internal
handlers are not tied to a specific resource. Their identifiers are
automatically incremented on the server. For instance, the handler
?internalHandler1 is generated to provide the filtering of
cardinality property by first associating it with ?pop1 (?pop1
predURI:hasEstimatedCardinality ?internalHandler1) and then

520

utilizing it in the FILTER clause (FILTER (?internalHandler1 >
100)).

Relationship handlers establish connection between resources
based on information about the hierarchy of operators retrieved
from the JSON Object (e.g., {"id": "hasOuterInputStream","value":
2,"sign": "Immediate Child”}). The relationship handlers are used
in conjunction with blank node handlers to resolve ambiguity
problems. Ambiguity problems are encountered when the same
LOLEPOP is absorbed in the different parts of the QEP. Such a
LOLEPOP, for example, a common sub expression with a
temporary table (TEMP) that has multiple consumers, has the same
cardinality in all the consumers which may produce different
results. This might be the case, for example, when a common sub
expression TEMP is consumed by both a NLJOIN and a HSJOIN
in the different parts of the QEP applying different predicates. In
such a case, the output columns of NLJOIN and HSJOIN might
differ even though the input common sub expression TEMP into
each of them is the same. In the above example, ?pop1 resource has
the predicate hasOuterInputStream connecting it to ?pop2 via the
blank node ?BnodeOfPop2_to_pop1 (?pop1 predURI:
hasOuterInputStream ?BNodeOfpop2_to_pop1). This design
ensures the uniqueness of each resource instance in the received
QEP.

The autogenerated SPARQL query through handlers is matched
against the abstracted RDF structure containing information about
the QEP. It maps any matched portions of the abstracted RDF
structure back to the corresponding diagnostic data (Algorithm 3).
Figure 1 represents an example of the DBMS QEP that contains
problem pattern specified in Figure 3.

Algorithm 3 FindingMatches
Input: problem pattern probPat,
 query execution plan files QEPFs[]
Output: matches found in query execution plans
 1: RDFGs[] := TransformingQEPs(QEPFs[])
 2: sparql := TransformingProblemPattern(probPat)
 3: forall rdfg in RDFGs[]
 4: matchProbPat[] := match abstracted problem pattern sparql

against query execution plan rdfg
 5: if (matchProbPat != empty)
 6: matchProbPatDet[] := detransformation by relating

any matched portions of RDF structure
matchProbPat back to corresponding query plan

 7: MATCHES[].append(matchProbPatDet[])
 8: endif
 9: end forall
 10: return MATCHES[]

Matching problem patterns against diagnostic data allows for
dynamic analysis of ad-hoc patterns. However, beyond single
pattern matching, the tool usage can vary from problem
identification and analysis to solution recommendations as
described in the following section.

2.3 Finding Solutions in Knowledge Base
The OptImatch system has the ability to access the knowledge base
to provide solutions to the known problems (Algorithm 4 and
Algorithm 5). The knowledge base is populated with predetermined
problem patterns and associated query plan recommendations by
subject matter experts (e.g. IBM employees or expert database
administrators). The OptImatch system promotes and supports
collaboration among developers, experts and database
administrators to create library of patterns and recommendations.

Once defined, the problem pattern is preserved in the knowledge
base in two forms: an executable SPARQL query that is applied to
the QEP provided by the user and as an RDF structure describing
this pattern. Although the knowledge base problem patterns and
solution recommendations are not in the context of the user
supplied QEPs, the context for problem patterns is adapted
automatically through the handlers tagging with the defined
language.

Once a problem pattern to be stored in the knowledge base is
described by an expert, it is translated into the SPARQL query that
includes result handlers (Section 2.2). The result handlers can have
aliases associated with them. Looking at the example SPARQL
snippet we can see that the result handler ?pop1 has been assigned
an alias ?TOP and ?pop4 an alias ?BASE4. These aliases are used
to tag the recommendation to the specified result handlers. Tagging
allows for identifying a specific result handler or a set of result
handlers to be returned. This allows OptImatch to list table names,
column names and predicates etc., in the context of the QEP
provided by the user even though these are not available when the
recommendations were created.

Algorithm 4 SavingRecommendationsKB
Input: problem patter probPat
 suggested recommendations recomms[]
 current knowledge base KB[]
Output: updated knowledge base KB[]
 1: sparql := TransformingProblemPattern(probPat)
 2: save abstracted problem sparql, problem pattern represented

as RDF and corresponding recommendations recomms[]
in knowledge base KB[] with handlers tagging interface

 3: return KB[]

Our language allows for surrounding static parts of
recommendations with dynamic components generated through
aliases by preceding each alias of the handler with an “@” sign.
This approach is also used to limit the number of resource handlers
returned to the user since in complex queries there can be large
number or result handlers generated, however, only some of them
might be significant to the recommendation.

Algorithm 5 FindingRecommendationsKB
Input: query execution plan files QEPFs[]
 knowledge base KB[]
Output: solution recommendations for queries that match
 QEPFs[]
 1: forall qepf in QEPFs[]
 2: queryReccomendation[] := match specified qepf against

knowledge base KB[] using statistical analysis and
provide recommendations to diagnostic data through tags
of handlers

 3: if (queryReccomendation != empty)
 4: queryRecommendations[].

append(queryReccomendation)
 5: else
 6: queryRecommendations[].
 append(“There is currently no recommendation in

knowledge base”)
 7: endif
 8: end forall
 9: return queryRecommendations[]

A user may include multiple result handlers and apply the same
rules to each of them by using array brackets e.g., [@TOP,
@ANY2]. For common patterns (appearing multiple times in the
same QEP) a user may limit the number of occurrences of the

521

pattern that is returned in recommendation results. In the following
example, [@TOP, @ANY2]:1, only the first occurrence of @TOP
and @ANY2 is returned and the specifics of the LOLEPOP types
and names are obtained from the context of each occurrence.

Furthermore, a user can make use of various helper functions
constructed to allow for interactions with base tables, indexes and
materialized query tables (MQTs). These functions provide means
to list column predicates and table names specific to each
occurrence of the pattern in the context of the user provided query
execution plan. For instance, a following expression
@TOP.listColumns("PREDICATE") lists columns from an alias
handler in the predicate indicated by the keyword PREDICATE.

An expert can also use ?TOP alias tagging handler to indicate that
when such pattern is encountered all input columns (using keyword
INPUT) coming from ?BASE4 object into the NLJOIN should be
listed and are valid candidates for the index creation. This can be
accomplished by tagging recommendation with following
expression:

“Create index on table @BASE4 on columns
@TOP.listColumns("INPUT”)”,

and adding it to the knowledge base with the corresponding pattern.

Our system can look through all the QEPs supplied and iterate
through both the user-defined problem patterns and the library of
expert provided patterns with corresponding recommendations. If
there is a match between the problem pattern in the knowledge base
and the QEP, one or more query plan recommendations are returned
with the appropriate context.

Our system returns ranked recommendations by using statistical
correlation analysis. QEPs typically have operators, estimated or
actual cost, frequency or priority metrics associated with them (as
described in more details in Section 2.1). These characteristics are
critical to the database system in terms of performance. Based on
these characteristics a prioritized list of recommendations is
provided by the system. The ranked recommendations are provided

with a confidence score. For instance, in the example described in
Section 2.2 with NLJOIN, the query plan problem determination
program could output the recommendation (by automatically
generating context) to create an index of the CUST_DIM table that
is the source for the TBSCAN, as this could be the recommendation
stored in the knowledge base created by the experts. An example of
the syntax for creating index is illustrated in the previous paragraph.
An alternate recommendation may be to collect column group
statistics in order to get better cardinality estimates so that the
optimizer may choose a hash join instead of a nested loop join.
Ranking between these two recommendations can be aided with
statistical correlation analysis comparing the QEP context of
cardinality and cost estimates with that in the expert provided
patterns.

OptImatch can provide advanced guidance with a variety of
recommendations for example, changing database configuration,
improving statistics quality, recommending materialized views,
suggesting alternate query and schema design changes, and
recommending integrity constraints that promote performance. We
illustrate some examples of these below.

As an example of a problem related to query rewrite, we describe
the pattern that represents the problem of poor join order. This
pattern (Pattern B) is given by the following properties: (i)
LOLEPOP of type JOIN (which means any type of JOIN method,
e.g. NLJOIN, hash join (HSJOIN) and merge scan join (MSJOIN));
(ii) has a descendant (i.e., not necessarily immediately below) outer
input stream of type JOIN; (ii) has a descendant inner input stream
of type JOIN; (iii) the descendant outer input stream join is a Left
Outer Join; (iv) descendant inner input stream join is a Left Outer
Join. The recommendation for this pattern is to rewrite the query
from the following structure (T1 LOJ T2) … JOIN … (T3 LOJ T4)
to ((T1 LOJ T2).... JOINT3) LOJ T4 as the rewritten query is
more efficient. This optimization is now automatically done in DB2
but was found to be a limitation in early versions of DB2. This
illustrates the usefulness of the tool in database optimizer
development as well as supporting clients that use previous version
of the DB2 system. We found QEPs matching this problem pattern
in the real customer workload used in experiments, since the
customer uses previous version of DB2. Figure 7 represents an
example of the DBMS QEP that contains specified problem pattern.
(Left outer join operators are prefixed in a QEP with “>” symbol,
e.g, >HSJOIN and >NLJOIN.) This pattern is an example of the
recursive problem pattern, since descendant outer and inner input
stream of type LOJ do not have to be necessary immediate child of
JOIN. (For instance, see LOLEPOP #5 and LOLEPOP #15) in
Figure 7.

An alternate recommendation for this pattern, in case T1 = T3, is to
materialize the column(s) from table T4 into table T1 and change
the order of the operators from (T1 LOJ T2)… JOIN… (T1 LOJ

 0.157686
 NLJOIN
 (5)
 644901
 751020
 /--------+---------\
 8.78417e+06 1.79511e-08
 >HSJOIN TBSCAN
 (6) (13)
 633711 2267.08
 750436 583.334
 /---+----\ |
78417e+06 5.99144e+06 0.174681
 ^HSJOIN TBSCAN TEMP
 (7) (12) (14)
 561520 68023.4 2267.07
 664808 85628 583.334
 | |
 5.99144e+06 0.174681
 TELEPHONE_DETAIL >NLJOIN
 Q1 (15)
 2267.07
 583.334

Figure 7 Query with Left Outer Join

1.311e-08
IXSCAN
(38)
16.9825

3
|

2.55276e+08
IDX9

TRAN_BASE
Q21

 Figure 3 Estimation of the execution cost

1.311e-08
IXSCAN
(38)
16.9825

3
|

2.55276e+08
IDX9

TRAN_BASE
Q21

 Figure 8 Estimation of the execution cost

522

T4) to ((T1 LOJ T2).... JOINT1), eventually allowing to
eliminate T4 as well as one instance of T1, because it had a unique
key join to itself. This optimization is not automatically done in
current version of DB2 optimizer.

The next pattern (Pattern C) represents the problem related to
estimation of the execution cost by optimizer. This pattern is given
by the following properties: (i) LOLEPOP of type index Scan
(IXSCAN) or table scan (TBSCAN) (ii) has cardinality smaller
than 0.001; (iii) has a generic input stream of type Base Object
(BASE OB); (iv) the generic input stream has cardinality bigger
than 100000. The recommendation in this case is to create column
group statistics (CGS) on equality local predicate columns and
CGS on equality join predicate columns of the Base Object. Figure
8 represents an example of the DBMS query explain plan that
contains specified problem pattern. With column group statistics,
the optimizer can determine a better QEP and improve query
performance. This is a common tuning recommendation when there
is statistical correlation between column values associated with
multiple equality local predicates or equality join predicates.

A user can also encounter a problem related to SORT spilling
(Pattern D) given by the following properties: (i) LOLEPOP of
type SORT; (ii) has an input stream immediately below with an I/O
cost less than the I/O cost of the SORT. The recommendation may
be to change the database memory configuration to increase sort
memory if the number of QEPs containing this pattern is large
enough to benefit the performance of many queries in the workload.

With expert or user provided patterns and recommendations in the
knowledge base, OptImatch can iterate over all of the
predetermined problem patterns in the knowledge base.
Specifically, each problem pattern may, in such cases, be
understood as being received from the knowledge base. If matched,
OptImatch recalls and returns the recommendations corresponding
to the particular problem pattern. Such a technique enables query
plan checks to be routinized – a user can, with no particular
knowledge or training, run a general test of all predetermined
problem patterns against a given query workload.

3. EXPERIMENTAL STUDY
In this section, we present an experimental evaluation of our
techniques. Our evaluation focuses on three objectives.

a) An evaluation of the effectiveness of our approach using real
IBM customer query workload (1000 QEP files). (Section 3.2
and Section 3.3)

b) Scalability and performance over different problem
characteristics: sizes of the query workload (Section 3.2.1),
number of LOLEPOPs (Section 3.2.2) and number of
recommendations in the knowledge base (Section 3.2.3).

c) A comparative study with manual search for patterns by
experts, quantifying the benefits of our approach in terms of
time and precision. (Section 3.3)

3.1 Setup
Our experiments were run on an Intel® Core™ i5-4330M machine
with 2.80GHz processor and 8GB of memory. For all the conducted
experiments, we used three patterns created by IBM experts. Each
pattern has associated recommendations for the user (stored in the
knowledge base), providing a diagnosis of the artefact. The patterns
used throughout the experimental study and their respective
recommendations are as follows (detailed description of each
pattern can be found in Section 2).

a) Pattern #1 – Pattern A (Section 2.2) that represents a
problem with recommendation related to indexing.

b) Pattern #2 – Pattern B (Section 2.3) of a problem with a
recommendation related to rewriting the query.

c) Pattern #3 – Pattern C (Section 2.3) that represents problem
with a recommendation related to statistics for better
cardinality (and consequently cost) estimation.

We measure the performance by computing system time for
running OptImatch over the IBM customer query workload. We
demonstrate the benefits of our framework by quantifying the
running time against the size of the query workload (number of
QEPs), number of LOLEPOPS (complexity of individual QEPs)
and number of recommendations in the knowledge base.

3.2 Performance and Scalability
3.2.1 Size of Query Workload
In the first experiment, we measure the performance of our tool by
dividing the IBM customer query workload into ten buckets, each
containing a different number of execution files. The first bucket
contains 100 QEP files, and for each following bucket another 100
unique QEP files is added up to 1000. In other words, the
distribution of the QEP files over buckets is as follows: [100, 200,
..., 1000].

The purpose of this experiment is to verify how efficient our tool is
to search for portions of QEP files that match the prescribed pattern
against different sizes of the query workload. The test was repeated
six times (for each pattern), by dividing the QEP files into buckets
randomly. (The average time is reported.)

Figure 9 reveals that the time needed to compute the search
increases linearly with the number of QEP files. The linear
dependence allows our problem determination tool to scale well to
large query workloads. (There is a possibility to even further reduce
the time by optimizing the communication between the client and
server in our system.) Furthermore, the time to perform the search
even for a large query workload with 1000 QEPs (with hundreds of
operators each) that involves complex SPARQL reqursion is less
than 70 seconds. Therefore, we can conclude that our tool allows
for efficient search for patterns over complex diagnostic data.

Note that Pattern #2 takes more time to be searched for than the
others (around two times more). This is because Pattern #2 is more
complex, as it contains descendant nodes. Therefore, recursion is
used to analyze all LOLEPOPs inside the query explain plans
which are fairly complex involving on average 100+ operators in
the experimental workload.

3.2.2 Number of LOLEPOPs
In the second experiment, we measured the performance of our
system over QEPs with varying number of LOLEPOPs. We divided
the IBM customer query workload into eleven buckets. The first
bucket contains QEPs with the number of LOLEPOPs from 0 to 50,
the second one from 50 to 100, and so on, until the last bucket that
contains from 500 to 550 LOLEPOPs. (The maximum number of
LOLEPOPs encountered in the workload was 550.) However,
buckets 7-10 with the number of LOLEPOPS from 250 to 500
turned out to be empty, because the tested query workload contains
only query explain plans with number of LOLEPOPS below 250 or
above 500. Hence, as a consequence we report numbers for six
buckets, 1-5 and 11. In other words, the distribution of the buckets
is [0-50], [50-100], [100-150], [150-200], [200-250], and [500-
550]. The number of pops is tied to the size of the explain file, the
larger number of pops, the larger the size of the file.

The objective to run this experiment is to verify how efficient
searching for patterns is as a function of number of pops. The
experiment was repeated 6 times for each pattern, and the average

523

time is reported. For each bucket, we report the average time in
milliseconds, to analyze a single explain plan.

The results of this experiment are presented in Figure 10. As
expected, the time spent to analyze QEPs increases as the number
of LOLEPOPs increases. However, the time spent to analyze the
QEPs increases in a linear fashion. Therefore, our system scales
well for complex queries with a large number of LOLEPOPs.
Moreover, even large and complex queries (with around 500
LOLEPOPs) can be processed efficiently by our tool (less than 400
milliseconds).

3.2.3 Number of Recommendations in Knowledge Base
In the next experiment, we quantify the performance of our system
against the number of recommendations in the knowledge base. We
measure the running time to analyze 1000 QEP files against 1, 10,
100 and 250 recommendations in the knowledge base, respectively.

We perform this experiment to simulate the important use case for
our system described in Section 2.3 to routinize query plan checks
with expert provided predetermined problem patterns and
corresponding recommendations against a given complex query
workload. Instead of taking a specific problem pattern defined by
the user, the system iterates over all of the predetermined problem
patterns in the query plan knowledge base and provides matching
solutions to known problems.

We report the results of this experiment in Figure 11. Our
framework adapts well, with linear dependence over the number of
recommendations in the knowledge base. The linear dependence
allows our system to scale well to large knowledge databases. Our
tool can process a 1000 query workload against 250 problem
patterns and recommendations in around 70 minutes.

3.3 Comparative User Study
In the last experiment, we measure the time to perform pattern
search both manually by experts and automatically with OptImatch.
We also looked at the search quality. For each of the three patterns,
we provide users the workload with 100 distinct QEP files. Out of
100 QEP files, 15, 12 and 18 QEP files match the three prescribed
patterns #1, #2, and #3, respectively. Three experts participated in
this experiment. We report the aggregated average statistics.

The purpose of this experiment is to quantify the benefits of our
automatic approach against cumbersome manual search by experts
that is prone to human error. The time comparison is shown in
Figure 12. It can be observed that our tool drastically reduces the
time to search for a pattern against even a sample of the query
workload. (We perform this experiment over a sample of the query
workload due to the limited time experts could spend to participate
in the experiment.) Overall, our tool is around 40 times faster than
the manual search by IBM experts. To simulate real world
environment during the manual search for patterns experts were

Figure 9 Search time versus number of QEP files

 Figure 10 Search time versus number of LOLEPOPs

 Figure 11 Matching recommendations in knowledge base

 Figure 12 Comparative user study

00:00:00

00:00:17

00:00:35

00:00:52

00:01:09

00:01:26

0 200 400 600 800 1000

Ti
m
e
[h
s:
m
in
s:
se
cs
]

Number of QEP files

Pattern #1 Pattern #2 Pattern #3

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11

Ti
m
e
[m

s]

Bucket (# of LOLEPOPs)
1) [0‐50]; 2) [50‐100]; 3) [100‐150];

4) [150‐200]; 5) [200‐250] 11) [500‐550]

Pattern #1 Pattern #2 Pattern #3

00:00:00

00:14:24

00:28:48

00:43:12

00:57:36

01:12:00

0 50 100 150 200 250

Ti
m
e
[h
s:
m
in
s:
se
cs
]

Number of Reccomendations

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

1 2 3

Ti
m
e
[h
s:
m
in
s:
se
cs
]

Pattern #

User Optimatch

524

allowed to access the tools that they use in their daily problem
determination tasks. An example of this includes the grep
command-line utility for searching plain-text data sets for lines
matching a regular expression.

When we measure the running time for automatic search with our
tool, we include the time both for specifying the pattern using
graphical interface in our tool (on average around 60 seconds), as
well as, performing the actual search by our system. Based, on this
experiment, it can be inferred that manual search for a larger query
workload (1000 queries) would take approximately 5 hours,
whereas, with our tool this can be performed in around 2 minutes
(around 150 times faster). Note that an automatically searched
pattern has to be specified only once by the user.

Last but not least, we report the quality of the search results in our
comparative study. We measure the precision as the function of
missed QEP files that contain the prescribed pattern. As predicted,
manual search has been prone to human error. The precision for
manual search by experts is on average 80%. Details are provided
in Table 1. The common errors include misinterpreting information
stored in the QEP file as well as formatting errors, e.g., using grep
on operand value 0.001 while this information is represented in the
QEP in either the decimal form or with an exponent as 10 .
Obviously, since our tool is fully automatic and immune to such
differences, it provided 100% precision. Our system does not only
perform significantly faster than a manual search but it also
guarantees correctness. Often, high precision may be very
important in problem determination analysis, as such, this
experiment emphasizes another important benefit of OptImatch.

4. RELATED WORK
The SQL programming language is declarative in nature.
Therefore, it is enough to specify what data we want to retrieve,
without actually specifying how to get data. This is one of the main
strengths of SQL, as it means that it should not make a difference
to the query optimizer how a query is written as long as the different
versions are semantically equivalent. However, in practice this is
only partially true, as there is only a limited number of machine-
generated query rewrites that a database optimizer can perform [9].
As the complexity of SQL grows, there is an increasing need to
have tools help with performance problem determination.

Many different formalisms have been proposed in query
optimization. We cite here only the most pertinent references. Join,
sort and group by are at the heart of many database operations. The
importance of these operators for query processing has been
recognized very early on. Right from the beginning, the query
optimizer of System R paid particular attention to interesting orders
by keeping truck of indexes, ordered sets and pipelining operators
throughout the process of query optimization, as described in
Selinger et al. [14]. Within query plans, group-by, order-by and join
operators can be accomplished either by a partition operation (such
as by the use of a hash index), or by the use of an ordered tuple
stream, as provided by a tree-index scan or by a sort operation (if
appropriate indexes are not prescribed).

In Guravannavar et al. [11], authors explored the use of sorted sets
for executing nested queries. The importance of sorted sets in query
optimization has prompted the researchers to look beyond the sets

that have been explicitly generated. In Szlichta et al. [17], authors
show how to use relationship between sorted attributes discovered
by reasoning over the physical schema via integrity constraints to
avoid potentially expensive join operator. The inference system
presented in follow-up work provides a formal way of reasoning
about previously unknown or hidden sorted sets [18], [19]. Based
on that work, many other optimization techniques from relational
query processing can also be adapted to optimize group by, order
by and case expressions [2], [20].

Optimization strategies described above hold the promise for good
improvement. Their weakness, however, is that often the indexes,
views and constraints that would be useful for optimization for a
given database and workload is not explicitly available and there is
only a limited number of types of query transformations that the
optimizer can perform. Therefore, problem determination tools
[23], [24] offer an alternative automated way to analyze QEPs and
provide recommendations, such as re-write the query, create an
index or materialized view or prescribe an integrity constraints.
However, existing automatic tools for query performance problem
determination do not provide the ability to perform workload
analysis with flexible user defined patterns, as they lack the ability
to impose proper structure on QEPs (as described in details in
Section 1).

5. CONCLUSIONS
Query performance problem determination is a complex process. It
is a tedious manual task that requires one to analyze a large number
of QEPs that could span thousands of lines. It also necessitates a
high level of skill and in-depth optimizer knowledge from users.
Identification of even known issues is a very time and resource
consuming and prone to human error.

To the best of our knowledge, we are the first to provide the system
that performs interactive analysis in a structured manner of
potentially a large number of QEPs in order to diagnose and match
optimizer problem patterns and retrieve corresponding
recommendations that are provided by experts. Our semantic
system combines and applies the benefits of RDF model and
SPARQL query language in query performance problem
determination and QEP analysis. OptImatch is very well received
and is proving to be very valuable in the IBM support of clients and
database optimizer development organization by providing quick
work around solutions through the use of a well-defined knowledge
base.

Our methodology can certainly be applied to other general software
determination problems (e.g., log data relating to network usage,
security, or software compiling, as well as software debug data or
sensor data relating to some physical system external to the
system). Our framework can be applied to other general software
problem determination, assuming that there exists automatically
generated structured diagnostic information in the form of the
graph that needs to be further analyzed by an expert or general user.
This is the direction that we would like to explore in the future
work.

6. ACKNOWLEDGMENTS
The authors would like to thank members of the DB2 optimizer
development and support teams for their feedback and guidance
through the development of the OptImatch system. Special thanks
in particular to Shu Lin, Vincent Corvinelli and Manopalan
Kandiah.

7. TRADEMARKS
IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp., registered in

Table 1 Precision for manual search

Pattern # #1 #2 #3

Precision 88% 71% 81%

525

many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

8. REFERENCES
[1] Barber, R., Lohman, G.M., Pandis, I., Raman, V., Sidle, R.,

Attaluri, G.K., Chainani, N., Lightstone, S., Sharpe, D.
Memory-Efficient Hash Joins. PVLDB, 8(4): 353-364, 2014.

[2] Ben-Moshe, S., Kanza, Y., Fischer, F., Matsliah, A., Fischer,
M., and Staelin, C. Detecting and exploiting near-sortedness
for efficient relational query evaluation. In ICDT, 256-267,
2011.

[3] Bornea, M.A., Dolby, J., Kementsietsidis, A., Srinivas, K.,
Dantressangle, P., Udrea, O., Bhattacharjee, B. Building an
efficient RDF store over a relational database. In SIGMOD,
121-132, 2013.

[4] Chaudhuri, S., Narasayya, V.R. Self-Tuning Database
Systems: A Decade of Progress. In VLDB, 3-14, 2007.

[5] Cheng, Q., Gryz, J., Koo, F., Leung, T., Liu, L., Qian, X.,
and Schiefer, K. Implementation of Two Semantic Query
Optimization Techniques in DB2 Universal Database. In
VLDB, 687-698, 1999.

[6] Dageville, B., Das, D., Dias, K., Yagoub, K., Zaït, M., and
Ziauddin, M. Automatic SQL Tuning in Oracle 10g. In
VLDB, 1346- 1355, 2004.

[7] El-Helw, A., Ilyas, I.F, Zuzarte, C. StatAdvisor:
Recommending Statistical Views. PVLDB, 2(2), 1306-1317,
2009.

[8] Ghanem, T.M., Elmagarmid, A.K., Larson, P., Aref, W.G.
Supporting views in data stream management systems. ACM
Trans. Database Syst., 35(1), 2010.

[9] Gryz, J., Wang, Q., Qian, X., Zuzarte, C. Queries with CASE
expressions. Journal of Intelligent Information Systems,
34(3): 345-366, 2010.

[10] Gryz, J., Wang, Q., Qian, X., Zuzarte, C. SQL Queries with
CASE Expressions. In ISMIS, 351-360, 2008.

[11] Guravannavar, R., Ramanujam, H., and Sudarshan, S.
Optimizing Nested Queries with Parameter Sort Orders. In
VLDB, 481-492, 2005.

[12] Kimaball, R., and Ross, M. 2002. The Data Wareshouse
Toolkit Second Edition, The Complete Guide to Dimensional
modeling. John Wiley & Sun.

[13] Larson, P., Birka, A., Hanson, E.H, Huang, W.,
Nowakiewicz, M., Papadimos, V. Real-Time Analytical
Processing with SQL Server. PVLDB, 8(12), 1740-1751,
2015.

[14] Selinger, P., and Astrahan, M. Access Path Selection in a
Relational Database Management System. In SIGMOD, 23-
34, 1979.

[15] Silva, Y.N., Aref, W.G., Larson, P., Pearson, S., Mohamed
Ali, H. Similarity queries: their conceptual evaluation,
transformations, and processing. VLDB J., 22(3), 395-420,
2013.

[16] Simmen, D., Shekita, E., and Malkemus. T. Fundamental
Techniques for Order Optimization. In SIGMOD, 57-67,
1996.

[17] Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Pawluk, P., and
Zuzarte, C. Queries on dates: fast yet not blind. In EDBT,
497-502, 2011.

[18] Szlichta, J., Godfrey, P., Gryz, J. Fundamentals of Order
Dependencies. PVLDB, 5(11): 1220-1231, 2012.

[19] Szlichta, J., Godfrey, P., Gryz, J., and Zuzarte, C.
Expressiveness and Complexity of Order Dependencies.
PVLDB, 6(14): 1858-1869, 2013.

[20] Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Qiu, W., Zuzarte,
C. Business-Intelligence Queries with Order Dependencies in
DB2. In EDBT, 750-761, 2014.

[21] Wang, X. and Cherniack, M. Avoiding Sorting and Grouping
in Processing Queries. In VLDB, 826-837, 2003.

[22] Zhu, Q., Tao, Y., Zuzarte, C. Optimizing complex queries
based on similarities of subqueries. Knowl. Inf. Syst., 8(3):
350-373, 2005.

[23] Zilio, D.C, Rao, J., Lightstone, S., Lohman, G.M, Storm,
A.J., Garcia-Arellano, C., Fadden, S. DB2 Design Advisor:
Integrated Automatic Physical Database Design. In VLDB
1087-1097, 2004.

[24] Zilio, D.C., Zuzarte, C., Lightstone, S., Ma, W., Lohman,
G.M., Cochrane, R., Pirahesh, H., Colby, L.S., Gryz, J.
Alton, E., Liang, D., Valentin, Recommending Materialized
Views and Indexes with IBM DB2 Design Advisor. In ICAC,
180-188, 2004.

[25] Zuzarte, C., Pirahesh, H., Ma, W., Cheng, Q., Liu, L., Wong,
K. WinMagic: Subquery Elimination Using Window
Aggregation. In SIGMOD, 652-656, 2003.

[26] Miller, B.A., Nastacio, D., Perazolo, M. Problem
determination service. Patent application, US7818338 B2,
http://www.google.com/patents/US7818338

526

	Query Performance Problem Determination with Knowledge Base in Semantic Web System OptImatchGuilherme Damasio, Piotr Mierzejewski, Jaroslaw Szlichta, Calisto Zuzarte

