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ABSTRACT   
Database query performance problem determination is often 
performed by analyzing query execution plans (QEPs) in addition 
to other performance data. As the query workloads that 
organizations run have become larger and more complex, analyzing 
QEPs manually even by experts has become a very time consuming 
and cumbersome task. Most performance diagnostic tools help with 
identifying problematic queries and most query tuning tools 
address a limited number of known problems and 
recommendations. We present the OptImatch system that offers a 
way to (a) look for varied user defined problem patterns in QEPs 
and (b) automatically get recommendations from an expert 
provided and user customizable knowledge base. Existing 
approaches do not provide the ability to perform workload analysis 
with flexible user defined patterns, as they lack the ability to impose 
a proper structure on QEPs. We introduce a novel semantic web 
system that allows a relatively naive user to search for arbitrary 
patterns and to get solution recommendations stored in a 
knowledge base. Our methodology includes transforming a QEP 
into an RDF graph and transforming a GUI based user-defined 
pattern into a SPARQL query through handlers. The SPARQL 
query is matched against the abstracted RDF graph, and any 
matched portion of the abstracted RDF graph is relayed back to the 
user. With the knowledge base, the OptImatch system 
automatically scans and matches interesting stored patterns in a 
statistical way as appropriate and returns the corresponding 
recommendations. Although the knowledge base patterns and 
solution recommendations are not in the context of the user 
supplied QEPs, the context is adapted automatically through the 
handler tagging interface. We test the performance and scalability 
of our framework to demonstrate its efficiency using a real query 
workload. We also perform a user study to quantify the benefits of 
the approach in terms of precision and time compared to manually 
searching for patterns. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query Processing 

General Terms 
Performance, Design and Experimentation 

Keywords 
Query Performance, Problem Determination, Semantic Web, 
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1. INTRODUCTION 
1.1 Background and Motivation  
Much of the world’s high-valuable data remain in relational 
databases (e.g., operational databases and data warehouses [12]). 
Access to this data is gained through relational query languages 
such as Structured Query Language (SQL). Complex analytic 
queries on large data warehouse system are not only done as 
weekend or end of period canned batch reports. Ad hoc complex 
queries are increasingly run as part of business operations. As such 
it is critical to pay attention to performance of these queries. 

Database systems themselves are certainly increasingly becoming 
more sophisticated and able to automatically tune the environments 
they operate in. General query performance problem determination 
tools [4], [6], [23], [24] also offer an automated way to database 
administrators to analyze performance issues that neither requires 
mastery of an optimizer, nor deep knowledge about the query 
execution plans (QEPs). However, due to the complexity while the 
general approach has merit, there is a lack of customization and 
many refinements are needed, so that the problem determination 
and tuning process can be truly effective and consumable by the 
general end-user. Given the specific circumstances and limitations 
of existing tools, performance analysis today is often best done by 
manually analyzing optimizer QEPs that provide detail of how 
queries are executed.  Manually analyzing these QEPs can be very 
demanding and often requires deep expertise particularly with 
complex queries that are often seen in data warehouse 
environments. Very often the end users and database administrators 
resign themselves to opening problem reports to the database 
vendors so that experts who are well versed in both SQL and 
analyzing optimizer QEPs can provide recommendations. This can 
be a time consuming exercise and does not scale well.   

Existing tools such as IBM® Optim Query Tuner® and IBM Optim 
Workload Tuner® provide tuning recommendations for specific 
known problems.  While very effective, they do not, however, 
provide the ability to perform query performance problem 
determination with flexible user-defined patterns (examples listed 
below). This is mainly because these tools are agnostic to the 
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complex structure of QEPs. There does not exist a general purpose 
automated system that would allow for interactive analysis and 
diagnosis of performance problems by searching for arbitrary 
patterns within a large number of QEPs. A user not so experienced 
with QEPs may want to answer simple questions. For example, 
after searching and determining the cost of a table scan on a 
particular table, the user may want to know how many queries in 
the workload do an index scan access on the table and get a sense 
of the implications of dropping the index by comparing the index 
access cost to that of the table scan. Even with more experienced 
database administrators, often there are clues from monitoring data 
that provide hints of certain characteristics of QEPs that are not 
easily found by using typical search tools like grep. For instance, 
given a large number of queries, say 1000 queries, and the 
corresponding workload QEPs: 

 Find all the queries in the workload that might have a spilling 
hash join below an aggregation and the cost is more than a 
constant N. 

 Find all the subqueries that have a cost that is more than 50% 
of the total cost of the query and provide details of the 
subquery operators (name, cost, and input operators). 

 Find all the queries that have an outer join involving the same 
table somewhere in the plan below both sides of a hash join.  

 Perform cost based clustering and correlate results of 
applying expert patterns to each cluster. 

We consider making it easier and faster to automatically answer 
questions like the above in our work. We provide a flexible system 
OptImatch that performs analysis over large and complex query 
workloads, in order to help diagnosis optimizer problems and 
retrieve solutions that were previously provided by experts. The 
optImatch system drastically lowers the skill level required for 
optimizer access plan problem determination through advanced 
automated pattern matching and retrieving of solution 
recommendations of previously discovered performance problems 
for single queries and large query workloads.  OptImatch is very 
well received and is proving to be very valuable in the IBM support 

of business clients and database optimizer development 
organization. 

At the enterprise level, major commercial state-of-the-art relational 
database systems such as IBM DB2®, Oracle®, and Microsoft® 
SQL Server® are deployed in environments where finding all 
available optimizations and performance tuning strategies becomes 
necessary to maintain the usability of the database. Traditional 
optimization methods often fail to apply when logical subtleties in 
queries and database schemas circumvent them. The examples of 
this include cases, where the recommended performance 
enhancement is to index a table in a particular way, prescribe an 
integrity constraint such as functional dependency [16] or order 
dependency [17], create a materialized view [7] or to rewrite 
manually the proposed SQL query, where orthogonal approach 
with machine optimization [5], [21], [25] failed to rewrite the query 
to get the same answer but with a better performance.   

The problem pattern comprises a list of operators having particular 
properties that are of interest to a user, as exemplified in some of 
the aforementioned problems. By incorporating our query 
performance problem determination system many optimization 
problems could be automatically identified and resolved. Figure 1 
depicts an example of a text graph version of a snippet of a QEP 
from IBM DB2. The snippet shows a nested loop join (NLJOIN) of 
the SALES_FACT table accessed using an index scan (IXSCAN) 
with other columns fetched (FETCH) from the table and then joined 
to the CUST_DIM table. The numbers immediately above the 
operator or table name show the estimated number of rows flowing 
out (cardinality). The numbers in parenthesis show the operator 
number. Operators are also referred to as Plan OPerators (pop) or 
LOw LEvel Plan OPerators (LOLEPOP) in this paper. Each 
operator has an estimated Input/Output (I/O) cost, the bottom 
number below the operator number, and a cumulative cost for itself 
and all operator below it, the number immediately below the 
operator number. In the depicted example, a user could be 
concerned with NLJOIN that has an inner stream of type table scan 
(TBSCAN). Such query is costly as the NLJOIN operator scans the 
entire inner table CUST_DIM for each of the rows from the outer 
SALES_FACT table. An example of a solution recommendation 
might be to provide a recommendation to create an index of the 
target table of the TBSCAN, in this case CUST_DIM.  

In recent years, more and more customer queries are generated 
automatically by query managers (such as IBM Cognos®) with 
business users providing only specific parameters through 
graphical interfaces [9], [10]. Specific parameters are then 
automatically translated by query managers into executable SQL 
queries. Based on analyzing IBM customer workloads there is 
essentially no limit to the length of the query generated 
automatically by query managers. It is quite usual to find queries 
with over one thousand lines of SQL code (hundreds of operators). 
Such queries are very complex and time consuming to analyze with 
nesting and stitching of several subqueries into a larger query being 
a common characteristic. Another common feature is 
repetitiveness, where similar (or even identical) expressions appear 
in several different parts  of the same query, for instance, in the 
queries referring to the same  view or nested query block  multiple 
times [15], [22]. If there is need to improve the performance of such 
complex queries, when optimizer failed, it could be time 
consuming to do this manually. It could take hours or even days to 
analyze a large query workload. Our goal is automate this process 
as much as possible, and therefore save significant amount of time 
spent by users on query performance problem determination. The 
OptImatch system makes this process easier. While optimizers are 
constantly improving, OptImatch allows experts through their 
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Figure 1 Query with NLJOIN 
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experience to create the interesting problem patterns and 
recommendations to overcome issues. 

We decided to use the RDF format as it allows one to easily retrieve 
information with the SPARQL query language. SPARQL has the 
capability for querying optional and required graph patterns. 
Another powerful feature exploited in SPARQL is that of property 
paths. A property path is a possible route through a graph between 
two graph nodes. SPARQL property paths provide a succinct way 
to write parts of graph patterns and to also extend matching patterns 
to arbitrary length paths. With property paths, we can handle 
recursive queries, for instance, search for a descendant operator that 
does not necessarily have an immediate relationship (connection) 
with its parent. We can also search for patterns that appear multiple 
times in the same QEP. Last but not least, SPARQL allows graph 
traversal and pattern matching in a very efficient way [3], enabling 
analysis of a large number of complex QEPs in a short period of 
time. 

While the focus of this work is on query performance problem 
determination, our methodology can be applied to other general 
software problem determination [26], assuming that there exists 
automatically or dynamically generated diagnostic information that 
needs to be further analyzed by an expert. Broadly, the 
contemplated diagnostic data may be human-readable and intended 
for review by human users of the system to which the diagnostic 
data relates.  Examples of possible diagnostic data include log data 
relating to network usage, security, or compiling software, as well 
as software debug data or sensor data relating to some physical 
external system.  In these scenarios, the problem pattern may 
correspond to any sequence of data points or interrelationships of 
data points that are of diagnostic interest. 

1.2 Contributions 
The main contributions of this paper appear in Section 2 and 
Section 3 as follows. 

1. We developed a semantic web tool to transform a QEP into 
an abstracted artefact structure (RDF graph). We propose in 
our framework to model features of the QEP into a set of 
entities containing properties with relationships established 
between them. (Section 2.1) 

2. We provide a web-based graphical interface for the user to 
describe a problem pattern (pattern builder). The tool 
transforms this pattern into a SPARQL query through 
handlers. Handlers provide the functionality of automatically 
generating variable names used as part of the SPARQL 
query. The SPARQL query is executed against the abstracted 
RDF structure and any matched portions of RDF structure are 
relayed back to the user. We present a suite of real-world IBM 
customer problem patterns that illustrate the issues related to 
query performance, which are then used in Section 3 for 
experimental performance evaluation.  (Section 2.2).   

3. We added a knowledge base capability within the tool that 
could be populated with some expert provided patterns and 
solution recommendations as well as allow users to add their 
own patterns and recommendations. The system 
automatically matches problem patterns in knowledge base to 
the QEPs and if there are any search results ranks them using 
statistical correlation analysis. OptImatch distinguishes 
between a pattern builder and a tagging handler interface to 
achieve generality and extensibility. In a nutshell, the pattern 
builder allows the users to specify what is wrong with the 
query execution plan (static semantics), and the handler 
tagging interface defines how to report and fix it (dynamic 
semantics) through automatically adopting the context. Since 

the knowledge base patterns and solution recommendations 
are not in the context of the user supplied QEPs, we have 
defined the language that users can use to add dynamic 
context to the recommendations. (Section 2.3) 

4. An experimental evaluation showing the performance and 
effectiveness of our techniques was carried out using real 
IBM customer datasets. We experimented with different 
problem patterns, and show that our framework runs 
efficiently over large and complex query workloads. Our 
performance evaluation reveals that the time needed to 
compute a search over a specified problem pattern against a 
QEP increases linearly with the size of the workload, the 
number of operators in the QEP and the number of 
pattern/recommendations in the knowledge base. Finally, we 
show through a user study that our system is able to save a 
significant amount of time to analyze QEPs. Moreover, we 
quantify in the user study the benefits of our approach in 
terms of precision over manual pattern searching. (Section 3) 

In Section 4, we discuss related work. We conclude and consider 
future work in Section 5.  

To the best of our knowledge, we are the first to provide a system 
for query performance problem determination by applying QEP 
feature transformation through RDF and SPARQL. This work we 
feel opens exciting venues for future work to develop a powerful 
new family of problem determination techniques over existing 
optimizer performance analysis tools and other diagnostic data 
exploiting graph databases. 

2. SYSTEM  
2.1 Transforming Diagnostic Data 
Even though optimizer diagnostic data may differ in some ways 
between various database management systems, their major 
characteristics remain the same. Query performance diagnostic 
information is usually in the form of QEPs formatted in readable 
text form.  An example of the portion of the QEP generated by the 
IBM DB2 database engine is presented in Figure 1. A QEP includes 
diagnostic information about base objects (e.g., tables, views and 
indexes), operators (e.g., join, sort and group-by) as well as costs 
and characteristics associated with each operator.   

Some properties of operators are included in a QEP in the tree 
diagram as in Figure 1 (e.g., cardinality total cost, Input/Output 
cost, cumulative cost), wherein other properties appear as separate 
textual blocks identified by operator number (e.g., cumulative CPU 
cost, cumulative first row cost and estimated bufferpool buffers). 
Furthermore, some properties are common between different types 
of operators (e.g., cardinality, total cost and CPU cost), while others 
are specific to certain operators. For instance, NLJOIN has a 
property fetch max, and TBSCAN has a property max pages, but 
not vice versa. A QEP also contains some other detailed diagnostic 
data, including information about the DBMS instance and 
environment settings. All of the techniques described in this paper 
have been implemented given IBM DB2 QEPs. Hence, much of the 
discussion through the rest of the paper is framed in the terminology 
and characteristics of IBM DB2. However, the techniques that are 
described have general applicability, and can be used with any other 
DBMS product or other diagnostic data that lends itself to property 
graph representation. 

A QEP can be viewed as a directed graph that indicates the flow of 
operations processing data within the plan. QEPs resemble a tree 
structure, where each node (operator) possesses numerous 
properties and is considered as one of the inputs to a derived 
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ancestor node. LOLEPOPs in a QEP are connected to their parents 
as inputs streams. These inputs can be identified with three different 
types 1) outer input (left input of the parent operator) 2) inner input 
(right input of the parent operator) and 3) general input stream 
(generic input used for any kind of operator). 

The LOLEPOPS may be understood, at the level of abstraction of 
the DBMS user, as indivisible operations that are directly executed 
by the DBMS, with each LOLEPOP carrying a stated cost. The 
stated cost for each LOLEPOP represents an estimate of server 
resources, generated by the DBMS system based on a proposed 
SQL query by taking into account the particular properties of the 
database. The overall QEP is machine-generated by the DBMS 
Optimizer [14]. It is machine-optimized to gravitate towards the 
lowest total cost LOLEPOPs attainable by the DBMS’s optimizer. 
The plan structure is highly dynamic and can change based on 
configuration, statistics of the data associated with referenced base 
objects and other factors even if query characteristics remain 
similar.  However, plan changes are difficult to spot manually as 
they tend to spawn thousands of lines of informative details for 
more complex queries in the workload. 

RDF is a labeled directed graph built out of triples, each containing 
subject (resource), predicate (property or relationship) and object 
(resource or value).  RDF does not enforce specific schema, hence, 
two resources in addition to sharing properties and relationships, 
can also be described by their own unique predicates. This property 
of RDF is beneficial to describe and preserve various types of 
complex diagnostic information about QEPs. Even though RDF 
inherently does not possess a particular structure, such structure can 
be enforced by specifying predicates (for example, defining 
predicates, such as hasInputStreamPop or hasOutputStreamPop, 
and hasInnerInputStreamPop or hasOuterInputStreamPop and 
using them to establish relationships between resources 
(LOLEPOPs)). This allows one to recreate the tree structure and 
characteristics used in QEPs. 

Algorithm 1 TransformingQEPs 
Input: query execution plan files QEPFs[ ] 
Output: execution plans represented as RDF Graphs, RDFGs[] 
  1:  forall qepf in QEPFs[ ] 
  2:       i := 0 
  3:        rdfg := convert qepf  into RDF graph model by traversing 

through base objects, operators and relationship
(input streams) with Jena RDF API 

  4:        RDFGs[i] := rdfg 
  5:        i := i + 1 
  6:  end forall 
  7:  return RDFGs[ ] 

We propose in our framework to model features of the QEP into a 
set of entities containing properties with relationships established 
between them. In these terms, a QEP can be modelled into 
LOLEPOPs (entities), type, cardinality and costs (properties) and 
input/output streams (relationships).  This model, represented in 
our framework by means of Apache Jena RDF API, is applied to 
QEPs provided by the user and persisted in a transformation engine 
(Algorithm 1). Jena is a Java API which can be used to create and 
manipulate RDF graphs. Jena has object classes to represent 
graphs, resources, properties and literals. The result is a 
transformation of the QEP into an RDF graph, where each 
LOLEPOP represents an RDF Resource, each property and 
relationship represents an RDF Predicate and each property value 
is represented by an RDF Object. During the transformation from 
the QEP file to the RDF graph additional derived properties can be 
defined by analyzing resource properties. For instance, the 
hasTotalCostIncrease predicate allows us to calculate and store the 
total cost of the LOLEPOP by subtracting the cost of the input 
LOLEPOPs from currently LOLEPOP being analyzed. The 

<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" . 
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> . 
<http://explainPlan/PlanPop/1> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0". 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/1> . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> . 
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0" 

Figure 2 Generated RDF in textual representation     

 

Figure 3 Web-based Graphical Interface (Pattern Builder) 

<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasPopType> "NLJOIN" . 
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasOuterInputStream> <http://explainPlan/PlanPop/3> . 
<http://explainPlan/PlanPop/2> <http://explainPlan/PlanPred/hasInnerInputStream> <http://explainPlan/PlanPop/5> . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasPopType> "FETCH" . 
<http://explainPlan/PlanPop/3> <http://explainPlan/PlanPred/hasEstimatedCardinality> "19.12" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasPopType> "TBSCAN" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasEstimatedCardinality> "4043.0". 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasTotalCost> "15771.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasIOCost> "49007.0" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasJoinInputLeg> "INNER" . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasOutputStream> <http://explainPlan/PlanPop/2> . 
<http://explainPlan/PlanPop/5> <http://explainPlan/PlanPred/hasInputStreamPop> <http://explainPlan/PlanBaseObject/CUST_DIM> . 
<http://explainPlan/PlanBaseObject/CUST_DIM> <http://explainPlan/PlanPred/hasEstimateCardinality> "812130.0" 

Figure 2 Generated RDF in textual representation    
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Generated RDF graph can then be preserved in memory ready for 
analysis by the transformation engine. The OptImatch System 
architecture is illustrated in Figure 4. 

An example of an auto-generated RDF graph in textual 
representation is presented in Figure 2.  Figure 2 depicts an RDF 
representation of the LOLEPOPs shown in Figure 1. Each RDF 
statement is in the form of a triplet including a resource, a predicate 
and an object.  In the code presented, statements referring to the 
resource “http://explainPlan/PlanPop/5” represents LOLEPOP #5. 
Various predicates are shown, each encoding a piece of information 
from the QEP.  For example, there are predicates that specify 
LOLEPOP #5’s total cost (15771) and estimated cardinality (4043). 
The RDF representation of all other LOLEPOPs is generated 
accordingly.  

2.2 Searching for Problem Patterns 
SPARQL is the RDF Query Language. The SPARQL standard is 
maintained by the W3C. Our system can accomplish the step of 
searching for user-defined problem patterns in QEPs by 
transforming patterns into SPARQL queries directed to the 
abstracted RDF derived from the QEPs. SPARQL performs graph 
traversal and pattern matching efficiently. This allows one to 
analyze complex patterns over large query workloads in a short 
period of time.  

We decided to use RDF and SPARQL as SPARQL contains the 
capability for querying optional and required patterns of the graph 
with arbitrary length paths, and moreover, SPARQL property paths 
provide a succinct way to match patterns in the RDF graph. This 
includes recursive queries, such as looking for descendants 
operators that do not necessarily have an immediate connection 
with their parent (see Pattern B in Section 2.3), and searching for 
patterns that appear multiple times in the same query execution 
plan. We decided to use RDF and SPARQL as SPARQL contains 
the capability for querying optional and required patterns of the 
graph with arbitrary length paths, and moreover, SPARQL property 
paths provide a succinct way to match patterns in the RDF graph. 
While one could consider using any property graph representation 
framework, RDF was used also for convenience since DB2 

supports RDF file format and SPARQL querying across all editions 
from DB2 10.1, when the RDF specific layer, DB2 RDF Store, was 
added. The DB2 RDF Store is optimized for graph pattern 
matching. 

Algorithm 2 TransformingProblemPattern 
Input: problem pattern probPat 
Output: problem pattern probPat transformed to SPARQL query 
  1:  probPatJSON[] := translate problem pattern probPat into 

JSON Object (an array) 
  2:    sparql := initialize prefixes 
  3:    forall probPat in probPatJSON[] 
  4:       sparql +:= transform an element  probPat from JSON object 

probPatJSON with  handlers into the SPARQL query 
  5:  return sparql 

Query performance problems can usually be described as problem 
patterns in the QEP. A problem pattern is a set of optimizer plan 
features and characteristics specified in a particular order and 
containing properties with predefined values. Figure 3 displays a 
web-based graphical user interface (pattern builder) used in our 
system wherein a user can express the problem pattern by selecting 
various properties of LOLEPOPs and plan properties that a user 
might be interested in within the QEP. In the depicted example of 
problem pattern (Pattern A), the user is concerned with a 
LOLEPOP that: (i) is of type NLJOIN; (ii) has an outer input stream 
of type any (ANY) with cardinality greater than one (meaning that 
the outer is likely to be more than one row and consequently the 
inner will be accessed multiple times; (iii) has an inner input stream 
of type TBSCAN; and (iv) the inner input stream has large 
cardinality (greater than 100).  The depicted graphical user 
interface generates an example structure of a LOLEPOP that 
matches the selected properties. In this case, the described 
LOLEPOP is a nested loop join operator (NLJOIN) with some 
operator (ANY) on the outer input stream and a table scan 
(TBSCAN) on the inner input stream.  Such a pattern is costly as 
deduced by satisfying the cardinality conditions. The NLJOIN 
operator scans the entire table (TBSCAN) for each of the rows from 
the outer operator ANY. It would likely be of value for a subject 

 

Figure 4 System Architecture 

519



matter expert to spend time and attention to try to optimize queries 
matching this problem pattern in the QEP. (System 
recommendations are described in details in Section 2.3.) 

When specifying a problem pattern using the graphical user 
interface (GUI) for generality and flexibility sake, the user can 
choose between two types of relationships: immediate and 
descendant. Descendants are operators that are successors but not 
necessarily immediately below the current LOLEPOP. In that case, 
the path between the parent and the descendant child is the portion 
of the graph that in the general case can contain any arbitrary 
number of operators. For instance, in Figure 1, LOLEPOP #4 is an 
immediate child of LOLEPOP #3 and LOLEPOP #4 is a 
descendant child of LOLEPOP #2.  

Once the desired problem pattern is defined by the user by 
describing LOLEPOPs, their characteristics and relationships, it is 
then automatically translated (Algorithm 2) into a JavaScript 
Object Notation (JSON). This object is constructed to contain a 
transformation of the properties specified in the pattern builder to 
the RDF resources and the predicates defined in the model used in 
the QEP. In Figure 5, we present an example JSON Object that 
contains properties specified in the pattern builder (Figure 3). The 
generated JSON Object is an array of objects describing each 
resource operator and its relationships. For instance, the portion of 
JSON Object describing LOLEPOP with ID 1 has specified type 
NLJOIN, an estimated cardinality value of more than 100 and 
relationship with two immediate children operators, LOLEPOP 
with ID 2 and LOLEPOP with ID 3. 

"pops": 	
"ID":1,"type":"NLJOIN","popProperties":	
							 	 "id":"hasOuterInputStream","value":2,"sign":"Immediate									
																						Child” ,	

"id":"hasInnerInputStream","value":3,"sign":"Immediate	
																							Child" ,	
"ID":2,"type":"ANY","popProperties":	

"id":"hasOutputStream","value":1 ,	
"ID":3,"type":"TBSCAN","popProperties":	

"id":"hasEstimateCardinality","value":"100",	
																			"sign":" " ,	

"id":"hasInputStream","value":4,"sign":"Immediate	
Child" ,	
				 "id":"hasOutputStream","value":1 ,	

"ID":4,"type":"BASE	
		OB","popProperties": "id":"hasOutputStream","value":3 ,	

								 "planDetails": 	

Figure 5 JSON Object	

The transformation engine uses JSON Objects to auto-generate an 
executable SPARQL query. An example of the autogenerated 
SPARQL query is presented in Figure 6. The URIs broadly match 
the RDF graph generated based on the QEP in Figure 1, and various 
SPARQL query operators and operands match the elements of the 
problem pattern indicated by the user. 

An autogenerated SPARQL query is composed of two main parts, 
the SELECT clause that defines variables that appear in the query 
results, and the WHERE clause that defines resource properties that 
should be matched against the specified RDF graph. The variables 
that appear in query results are specified by prefixing variable name 
with “?” symbol, i.e., “?variable_name” (and can be referenced 
multiple times in the WHERE clause). The same convention is used 
to define variables to establish relationship between resources and 
the ones used to filter retrieved resources. 

Our framework allows us to autogenerate SPARQL queries with a 
wide range of characteristics, including nesting, filtering, multiple 
resource mapping, and specifying property paths as well as blank 
nodes. Blank nodes in RDF indicate the existence of unnamed or 
previously undefined resources. We introduce the concept of 
handlers to facilitate this. Handlers provide the functionality of 
automatically generated variable names used for the retrieval of 
query results, filtering of retrieved values, and establishing 
relationships between resources and blank nodes. 

Handler generation is performed in a modular manner, by building 
the SPARQL query one layer (one operator) at the time over 
portions of JSON Object.  In order to generate the SPARQL query, 
we define four types of handler variables: result handlers, internal 
handlers, relationship handlers and blank node handlers. Result 
handlers are created based on identifiers (sequential identifiers 
assigned to each LOLEPOP as shown in the graphical user interface 
in Figure 3), i.e., ?pop1 and ?pop2 etc. For instance, in our 
SPARQL query, the result handler ?pop1 is a resource returned to 
the user,  and is also used in the WHERE clause to identify this 
resource as NLJOIN by adding the predicate hasPopType.  

PREFIX	popURI:	 http://explainPlan/PlanPop/ 	

			SELECT	 ?pop1	AS	?TOP 	 ?pop2	AS	?ANY2 		

																		 ?pop4	AS	?BASE4 	

			WHERE	 	

						?pop1	predURI:hasPopType	"NLJOIN"	.	

							?pop1	predURI:hasOuterInputStream														
?BNodeOfpop2_to_pop1	.	

							?BNodeOfpop2_to_pop1	predURI:hasOuterInputStream				
?pop2	.	

							?pop2	predURI:hasOutputStream	?BNodeOfpop2_to_pop1.	

							?BNodeOfpop2_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop1	predURI:hasInnerInputStream	

																		?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasInnerInputStream		
?pop3	.	

							?pop3	predURI:hasOutputStream	?BNodeOfpop3_to_pop1.	

							?BNodeOfpop3_to_pop1	predURI:hasOutputStream	?pop1	.	

							?pop3	predURI:hasPopType	"TBSCAN"	.	

							?pop3	predURI:hasEstimateCardinality	?internalHandler1.	

																		FILTER	 	?internalHandler1	 	100 	.	

							?pop3	predURI:hasInputStream	?BNodeOfpop4_to_pop3	.	

							?BNodeOfpop4_to_pop3	predURI:hasInputStream	?pop4	.			

							?pop4	predURI:hasOutputStream	?BNodeOfpop4_to_pop3.	

							?BNodeOfpop4_to_pop3	predURI:hasOutputStream?pop3	.	

							?pop4	predURI:isABaseObj		?internalHandler2	.	

	ORDER	BY	?pop1	

Figure 6 Autogenerated SPARQL Executable Query 

Internal handlers are used to filter results. Identifiers of internal 
handlers are not tied to a specific resource. Their identifiers are 
automatically incremented on the server. For instance, the handler 
?internalHandler1 is generated to provide the filtering of 
cardinality property by first associating it with ?pop1 (?pop1 
predURI:hasEstimatedCardinality ?internalHandler1) and then 
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utilizing it in the FILTER clause (FILTER (?internalHandler1 > 
100)). 

Relationship handlers establish connection between resources 
based on information about the hierarchy of operators retrieved 
from the JSON Object (e.g., {"id": "hasOuterInputStream","value": 
2,"sign": "Immediate Child”}). The relationship handlers are used 
in conjunction with blank node handlers to resolve ambiguity 
problems. Ambiguity problems are encountered when the same 
LOLEPOP is absorbed in the different parts of the QEP. Such a 
LOLEPOP, for example, a common sub expression with a 
temporary table (TEMP) that has multiple consumers, has the same 
cardinality in all the consumers which may produce different 
results. This might be the case, for example, when a common sub 
expression TEMP is consumed by both a NLJOIN and a HSJOIN 
in the different parts of the QEP applying different predicates. In 
such a case, the output columns of NLJOIN and HSJOIN might 
differ even though the input common sub expression TEMP into 
each of them is the same. In the above example, ?pop1 resource has 
the predicate hasOuterInputStream connecting it to ?pop2 via the 
blank node ?BnodeOfPop2_to_pop1 (?pop1 predURI: 
hasOuterInputStream   ?BNodeOfpop2_to_pop1). This design 
ensures the uniqueness of each resource instance in the received 
QEP.    

The autogenerated SPARQL query through handlers is matched 
against the abstracted RDF structure containing information about 
the QEP. It maps any matched portions of the abstracted RDF 
structure back to the corresponding diagnostic data (Algorithm 3). 
Figure 1 represents an example of the DBMS QEP that contains 
problem pattern specified in Figure 3.  

Algorithm 3 FindingMatches 
Input: problem pattern probPat, 
           query execution plan files QEPFs[ ] 
Output: matches found in query execution plans 
  1:  RDFGs[ ] := TransformingQEPs(QEPFs[ ])   
  2:   sparql := TransformingProblemPattern(probPat) 
  3:   forall rdfg in RDFGs[] 
  4:        matchProbPat[ ] := match abstracted problem pattern sparql 

against query execution plan rdfg   
  5:       if (matchProbPat != empty) 
  6:             matchProbPatDet[ ] :=  detransformation by relating

any matched portions of RDF structure
matchProbPat back to corresponding query plan 

  7:                MATCHES[ ].append(matchProbPatDet[ ]) 
  8:        endif 
  9:  end forall 
  10:  return MATCHES[ ] 

Matching problem patterns against diagnostic data allows for 
dynamic analysis of ad-hoc patterns. However, beyond single 
pattern matching, the tool usage can vary from problem 
identification and analysis to solution recommendations as 
described in the following section.   

2.3 Finding Solutions in Knowledge Base 
The OptImatch system has the ability to access the knowledge base 
to provide solutions to the known problems (Algorithm 4 and 
Algorithm 5). The knowledge base is populated with predetermined 
problem patterns and associated query plan recommendations by 
subject matter experts (e.g. IBM employees or expert database 
administrators). The OptImatch system  promotes and supports 
collaboration among developers, experts and database 
administrators to create library of patterns and recommendations.  

Once defined, the problem pattern is preserved in the knowledge 
base in two forms: an executable SPARQL query that is applied to 
the QEP provided by the user and as an RDF structure describing 
this pattern. Although the knowledge base problem patterns and 
solution recommendations are not in the context of the user 
supplied QEPs, the context for problem patterns is adapted 
automatically through the handlers tagging with the defined 
language.  

Once a problem pattern to be stored in the knowledge base is 
described by an expert, it is translated into the SPARQL query that 
includes result handlers (Section 2.2). The result handlers can have 
aliases associated with them. Looking at the example SPARQL 
snippet we can see that the result handler ?pop1 has been assigned 
an alias ?TOP and ?pop4  an alias ?BASE4. These aliases are used 
to tag the recommendation to the specified result handlers. Tagging 
allows for identifying a specific result handler or a set of result 
handlers to be returned. This allows OptImatch to list table names, 
column names and predicates etc., in the context of the QEP 
provided by the user even though these are not available when the 
recommendations were created.   

Algorithm 4 SavingRecommendationsKB 
Input: problem patter probPat 
           suggested recommendations recomms[] 
           current knowledge base KB[ ] 
Output: updated knowledge base KB[ ] 
  1:  sparql := TransformingProblemPattern(probPat) 
  2:   save abstracted problem sparql, problem pattern represented 

as RDF and corresponding recommendations recomms[] 
in knowledge base KB[ ] with handlers tagging interface

  3:  return KB[ ] 

Our language allows for surrounding static parts of 
recommendations with dynamic components generated through 
aliases by preceding each alias of the handler with an “@” sign. 
This approach is also used to limit the number of resource handlers 
returned to the user since in complex queries there can be large 
number or result handlers generated, however, only some of them 
might be significant to the recommendation.   

Algorithm 5 FindingRecommendationsKB 
Input: query execution plan files QEPFs[ ] 
           knowledge base KB[ ] 
Output: solution recommendations for queries that match  
            QEPFs[] 
  1:   forall qepf  in QEPFs[] 
  2:       queryReccomendation[ ] := match specified qepf against 

knowledge base KB[] using statistical analysis and 
provide recommendations to diagnostic data through tags 
of handlers 

  3:       if (queryReccomendation != empty) 
  4:             queryRecommendations[ ]. 

append(queryReccomendation) 
  5:       else 
  6:               queryRecommendations[ ].  
                        append(“There is currently no recommendation in   

knowledge base”) 
  7:        endif 
  8:  end forall 
  9:  return queryRecommendations[] 

A user may include multiple result handlers and apply the same 
rules to each of them by using array brackets  e.g., [@TOP, 
@ANY2].  For common patterns (appearing multiple times in the 
same QEP) a user may limit the number of occurrences of the 
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pattern that is returned in recommendation results. In the following 
example, [@TOP, @ANY2]:1, only the first occurrence  of @TOP 
and @ANY2 is returned and the specifics of the LOLEPOP types 
and names are obtained from the context of each occurrence.   

Furthermore, a user can make use of various helper functions 
constructed to allow for interactions with base tables, indexes and 
materialized query tables (MQTs). These functions provide  means 
to list column predicates and table names specific to each 
occurrence of the pattern in the context of the user provided query 
execution plan. For instance, a following expression 
@TOP.listColumns("PREDICATE") lists columns from an alias 
handler in the predicate indicated by the keyword PREDICATE.   

An expert can also use ?TOP alias tagging handler to indicate that 
when such pattern is encountered all input columns (using keyword 
INPUT) coming from ?BASE4 object into the NLJOIN should be 
listed and are valid candidates for the index creation. This can be 
accomplished by tagging recommendation with following 
expression:  

“Create index on table @BASE4 on columns    
@TOP.listColumns("INPUT”)”, 

and adding it to the knowledge base with the corresponding pattern. 

Our system can look through all the QEPs supplied and iterate 
through both the user-defined problem patterns and the library of 
expert provided patterns with corresponding recommendations. If 
there is a match between the problem pattern in the knowledge base 
and the QEP, one or more query plan recommendations are returned 
with the appropriate context.  

Our system returns ranked recommendations by using statistical 
correlation analysis. QEPs typically have operators, estimated or 
actual cost, frequency or priority metrics associated with them (as 
described in more details in Section 2.1). These characteristics are 
critical to the database system in terms of performance. Based on 
these characteristics a prioritized list of recommendations is 
provided by the system. The ranked recommendations are provided 

with a confidence score. For instance, in the example described in 
Section 2.2 with NLJOIN, the query plan problem determination 
program could output the recommendation (by automatically 
generating context)  to create an index of the CUST_DIM table that 
is the source for the TBSCAN, as this could be the recommendation 
stored in the knowledge base created by the experts. An example of 
the syntax for creating index is illustrated in the previous paragraph. 
An alternate recommendation may be to collect column group 
statistics in order to get better cardinality estimates so that the 
optimizer may choose a hash join instead of a nested loop join. 
Ranking between these two recommendations can be aided with 
statistical correlation analysis comparing the QEP context of 
cardinality and cost estimates with that in the expert provided 
patterns. 

OptImatch can provide advanced guidance with a variety of 
recommendations for example, changing database configuration, 
improving statistics quality, recommending materialized views, 
suggesting alternate query and schema design changes, and 
recommending integrity constraints that promote performance. We 
illustrate some examples of these below. 

As an example of a problem related to query rewrite, we describe 
the pattern that represents the problem of poor join order. This 
pattern (Pattern B) is given by the following properties: (i) 
LOLEPOP of type JOIN (which means any type of JOIN method, 
e.g. NLJOIN, hash join (HSJOIN) and merge scan join (MSJOIN)); 
(ii) has a descendant (i.e., not necessarily immediately below) outer 
input stream of type JOIN; (ii) has a descendant inner input stream 
of type JOIN; (iii) the descendant outer input stream join is a Left 
Outer Join; (iv) descendant inner input stream join is a Left Outer 
Join. The recommendation for this pattern is to rewrite the query 
from the following structure (T1 LOJ T2) … JOIN … (T3 LOJ T4) 
to ((T1 LOJ T2).... JOIN ....T3) LOJ T4 as the rewritten query is 
more efficient. This optimization is now automatically done in DB2 
but was found to be a limitation in early versions of DB2. This 
illustrates the usefulness of the tool in database optimizer 
development as well as supporting clients that use previous version 
of the DB2 system. We found QEPs matching this problem pattern 
in the real customer workload used in experiments, since the 
customer uses previous version of DB2. Figure 7 represents an 
example of the DBMS QEP that contains specified problem pattern. 
(Left outer join operators are prefixed in a QEP with “>” symbol, 
e.g, >HSJOIN and >NLJOIN.) This pattern is an example of the 
recursive problem pattern, since descendant outer and inner input 
stream of type LOJ do not have to be necessary immediate child of 
JOIN. (For instance, see LOLEPOP #5 and LOLEPOP #15) in 
Figure 7.   

An alternate recommendation for this pattern, in case T1 = T3, is to 
materialize the column(s) from table T4 into table T1 and change 
the order of the operators from (T1 LOJ T2)… JOIN… (T1 LOJ 

        0.157686 
         NLJOIN 
         (   5) 
         644901 
         751020 
   /--------+---------\ 
    8.78417e+06   1.79511e-08 
 >HSJOIN          TBSCAN 
 (   6)    (  13) 
 633711          2267.08 
 750436    583.334 
     /---+----\             | 
78417e+06  5.99144e+06  0.174681 
  ^HSJOIN    TBSCAN          TEMP  
   (   7)    (  12)         (  14) 
   561520    68023.4        2267.07 
   664808    85628          583.334 
     |             | 
      5.99144e+06     0.174681     
   TELEPHONE_DETAIL   >NLJOIN 
          Q1    (  15) 
      2267.07 
                             583.334 

Figure 7 Query with Left Outer Join 
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T4) to ((T1 LOJ T2).... JOIN ....T1), eventually allowing to 
eliminate T4 as well as one instance of T1, because it had a unique 
key join to itself. This optimization is not automatically done in 
current version of DB2 optimizer.  

The next pattern (Pattern C) represents the problem related to 
estimation of the execution cost by optimizer. This pattern is given 
by the following properties: (i) LOLEPOP of type index Scan 
(IXSCAN) or table scan (TBSCAN) (ii) has cardinality smaller 
than 0.001; (iii) has a generic input stream of type Base Object 
(BASE OB); (iv) the generic input stream has cardinality bigger 
than 100000. The recommendation in this case is to create column 
group statistics (CGS) on equality local predicate columns and 
CGS on equality join predicate columns of the Base Object.  Figure 
8 represents an example of the DBMS query explain plan that 
contains specified problem pattern.  With column group statistics, 
the optimizer can determine a better QEP and improve query 
performance. This is a common tuning recommendation when there 
is statistical correlation between column values associated with 
multiple equality local predicates or equality join predicates.  

A user can also encounter a problem related to SORT spilling 
(Pattern D) given by the following properties:  (i) LOLEPOP of 
type SORT; (ii) has an input stream immediately below with an I/O 
cost less than the I/O cost of the SORT. The recommendation may 
be to change the database memory configuration to increase sort 
memory if the number of QEPs containing this pattern is large 
enough to benefit the performance of many queries in the workload. 

With expert or user provided patterns and recommendations in the 
knowledge base, OptImatch can iterate over all of the 
predetermined problem patterns in the knowledge base.  
Specifically, each problem pattern may, in such cases, be 
understood as being received from the knowledge base. If matched, 
OptImatch recalls and returns the recommendations corresponding 
to the particular problem pattern. Such a technique enables query 
plan checks to be routinized – a user can, with no particular 
knowledge or training, run a general test of all predetermined 
problem patterns against a given query workload. 

3. EXPERIMENTAL STUDY 
In this section, we present an experimental evaluation of our 
techniques. Our evaluation focuses on three objectives. 

a) An evaluation of the effectiveness of our approach using real 
IBM customer query workload (1000 QEP files). (Section 3.2 
and Section 3.3) 

b) Scalability and performance over different problem 
characteristics: sizes of the query workload (Section 3.2.1), 
number of LOLEPOPs (Section 3.2.2) and number of 
recommendations in the knowledge base (Section 3.2.3).  

c) A comparative study with manual search for patterns by 
experts, quantifying the benefits of our approach in terms of 
time and precision. (Section 3.3) 

3.1 Setup  
Our experiments were run on an Intel® Core™ i5-4330M machine 
with 2.80GHz processor and 8GB of memory. For all the conducted 
experiments, we used three patterns created by IBM experts. Each 
pattern has associated recommendations for the user (stored in the 
knowledge base), providing a diagnosis of the artefact. The patterns 
used throughout the experimental study and their respective 
recommendations are as follows (detailed description of each 
pattern can be found in Section 2).  

a) Pattern #1 – Pattern A (Section 2.2) that represents a 
problem with recommendation related to indexing. 

b) Pattern #2 – Pattern B (Section 2.3) of a problem with a 
recommendation related to rewriting the query. 

c) Pattern #3 – Pattern C (Section 2.3) that represents problem 
with a recommendation related to statistics for better 
cardinality (and consequently cost) estimation. 

We measure the performance by computing system time for 
running OptImatch over the IBM customer query workload. We 
demonstrate the benefits of our framework by quantifying the 
running time against the size of the query workload (number of 
QEPs), number of LOLEPOPS (complexity of individual QEPs) 
and number of recommendations in the knowledge base.  

3.2 Performance and Scalability 
3.2.1 Size of Query Workload 
In the first experiment, we measure the performance of our tool by 
dividing the IBM customer query workload into ten buckets, each 
containing a different number of execution files. The first bucket 
contains 100 QEP files, and for each following bucket another 100 
unique QEP files is added up to 1000. In other words, the 
distribution of the QEP files over buckets is as follows: [100, 200, 
..., 1000]. 

The purpose of this experiment is to verify how efficient our tool is 
to search for portions of QEP files that match the prescribed pattern 
against different sizes of the query workload. The test was repeated 
six times (for each pattern), by dividing the QEP files into buckets 
randomly. (The average time is reported.)  

Figure 9 reveals that the time needed to compute the search 
increases linearly with the number of QEP files. The linear 
dependence allows our problem determination tool to scale well to 
large query workloads. (There is a possibility to even further reduce 
the time by optimizing the communication between the client and 
server in our system.) Furthermore, the time to perform the search 
even for a large query workload with 1000 QEPs (with hundreds of 
operators each) that involves complex SPARQL reqursion is less 
than 70 seconds. Therefore, we can conclude that our tool allows 
for efficient search for patterns over complex diagnostic data.  

Note that Pattern #2 takes more time to be searched for than the 
others (around two times more). This is because Pattern #2 is more 
complex, as it contains descendant nodes. Therefore, recursion is 
used to analyze all LOLEPOPs inside the query explain plans 
which are fairly complex involving on average 100+ operators in 
the experimental workload.  

3.2.2 Number of LOLEPOPs 
In the second experiment, we measured the performance of our 
system over QEPs with varying number of LOLEPOPs. We divided 
the IBM customer query workload into eleven buckets. The first 
bucket contains QEPs with the number of LOLEPOPs from 0 to 50, 
the second one from 50 to 100, and so on, until the last bucket that 
contains from 500 to 550 LOLEPOPs. (The maximum number of 
LOLEPOPs encountered in the workload was 550.)  However, 
buckets 7-10 with the number of LOLEPOPS from 250 to 500 
turned out to be empty, because the tested query workload contains 
only query explain plans with number of LOLEPOPS below 250 or 
above 500. Hence, as a consequence we report numbers for six 
buckets, 1-5 and 11. In other words, the distribution of the buckets 
is [0-50], [50-100], [100-150], [150-200], [200-250], and [500-
550]. The number of pops is tied to the size of the explain file, the 
larger number of pops, the larger the size of the file. 

The objective to run this experiment is to verify how efficient 
searching for patterns is as a function of number of pops. The 
experiment was repeated 6 times for each pattern, and the average 
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time is reported. For each bucket, we report the average time in 
milliseconds, to analyze a single explain plan.  

The results of this experiment are presented in Figure 10. As 
expected, the time spent to analyze QEPs increases as the number 
of LOLEPOPs increases. However, the time spent to analyze the 
QEPs increases in a linear fashion. Therefore, our system scales 
well for complex queries with a large number of LOLEPOPs. 
Moreover, even large and complex queries (with around 500 
LOLEPOPs) can be processed efficiently by our tool (less than 400 
milliseconds). 

3.2.3 Number of Recommendations in Knowledge Base 
In the next experiment, we quantify the performance of our system 
against the number of recommendations in the knowledge base. We 
measure the running time to analyze 1000 QEP files against 1, 10, 
100 and 250 recommendations in the knowledge base, respectively.    

We perform this experiment to simulate the important use case for 
our system described in Section 2.3 to routinize query plan checks 
with expert provided predetermined problem patterns and 
corresponding recommendations against a given complex query 
workload.  Instead of taking a specific problem pattern defined by 
the user, the system iterates over all of the predetermined problem 
patterns in the query plan knowledge base and provides matching 
solutions to known problems. 

We report the results of this experiment in Figure 11. Our 
framework adapts well, with linear dependence over the number of 
recommendations in the knowledge base. The linear dependence 
allows our system to scale well to large knowledge databases. Our 
tool can process a 1000 query workload against 250 problem 
patterns and recommendations in around 70 minutes. 

3.3 Comparative User Study 
In the last experiment, we measure the time to perform pattern 
search both manually by experts and automatically with OptImatch. 
We also looked at the search quality. For each of the three patterns, 
we provide users the workload with 100 distinct QEP files. Out of 
100 QEP files, 15, 12 and 18 QEP files match the three prescribed 
patterns #1, #2, and #3, respectively. Three experts participated in 
this experiment. We report the aggregated average statistics. 

The purpose of this experiment is to quantify the benefits of our 
automatic approach against cumbersome manual search by experts 
that is prone to human error. The time comparison is shown in 
Figure 12. It can be observed that our tool drastically reduces the 
time to search for a pattern against even a sample of the query 
workload. (We perform this experiment over a sample of the query 
workload due to the limited time experts could spend to participate 
in the experiment.) Overall, our tool is around 40 times faster than 
the manual search by IBM experts. To simulate real world 
environment during the manual search for patterns experts were 

 

Figure 9 Search time versus number of QEP files 

 

           Figure 10 Search time versus number of LOLEPOPs 

 
      Figure 11  Matching recommendations in knowledge base 

 
                          Figure 12 Comparative user study 
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allowed to access the tools that they use in their daily problem 
determination tasks. An example of this includes the grep 
command-line utility for searching plain-text data sets for lines 
matching a regular expression.  

When we measure the running time for automatic search with our 
tool, we include the time both for specifying the pattern using 
graphical interface in our tool (on average around 60 seconds), as 
well as, performing the actual search by our system. Based, on this 
experiment, it can be inferred that manual search for a larger query 
workload (1000 queries) would take approximately 5 hours, 
whereas, with our tool this can be performed in around 2 minutes 
(around 150 times faster). Note that an automatically searched 
pattern has to be specified only once by the user. 

Last but not least, we report the quality of the search results in our 
comparative study. We measure the precision as the function of 
missed QEP files that contain the prescribed pattern. As predicted, 
manual search has been prone to human error.  The precision for 
manual search by experts is on average 80%. Details are provided 
in Table 1.  The common errors include misinterpreting information 
stored in the QEP file as well as formatting errors, e.g., using  grep 
on operand value 0.001 while this information is represented in the 
QEP in either the decimal form or with an exponent as 10 . 
Obviously, since our tool is fully automatic and immune to such 
differences, it provided 100% precision. Our system does not only 
perform significantly faster than a manual search but it also 
guarantees correctness. Often, high precision may be very 
important in problem determination analysis, as such, this 
experiment emphasizes another important benefit of OptImatch.  

4. RELATED WORK 
The SQL programming language is declarative in nature. 
Therefore, it is enough to specify what data we want to retrieve, 
without actually specifying how to get data. This is one of the main 
strengths of SQL, as it means that it should not make a difference 
to the query optimizer how a query is written as long as the different 
versions are semantically equivalent. However, in practice this is 
only partially true, as there is only a limited number of machine-
generated query rewrites that a database optimizer can perform [9]. 
As the complexity of SQL grows, there is an increasing need to 
have tools help with performance problem determination.  

Many different formalisms have been proposed in query 
optimization. We cite here only the most pertinent references. Join, 
sort and group by are at the heart of many database operations. The 
importance of these operators for query processing has been 
recognized very early on. Right from the beginning, the query 
optimizer of System R paid particular attention to interesting orders 
by keeping truck of indexes, ordered sets and pipelining operators 
throughout the process of query optimization, as described in 
Selinger et al. [14]. Within query plans, group-by, order-by and join 
operators can be accomplished either by a partition operation (such 
as by the use of a hash index), or by the use of an ordered tuple 
stream, as provided by a tree-index scan or by a sort operation (if 
appropriate indexes are not prescribed).  

In Guravannavar et al. [11], authors explored the use of sorted sets 
for executing nested queries. The importance of sorted sets in query 
optimization has prompted the researchers to look beyond the sets 

that have been explicitly generated. In Szlichta et al. [17], authors 
show how to use relationship between sorted attributes discovered 
by reasoning over the physical schema via integrity constraints to 
avoid potentially expensive join operator. The inference system 
presented in follow-up work provides a formal way of reasoning 
about previously unknown or hidden sorted sets [18], [19]. Based 
on that work, many other optimization techniques from relational 
query processing can also be adapted to optimize group by, order 
by and case expressions [2], [20].  

Optimization strategies described above hold the promise for good 
improvement. Their weakness, however, is that often the indexes, 
views and constraints that would be useful for optimization for a 
given database and workload is not explicitly available and there is 
only a limited number of types of query transformations that the 
optimizer can perform. Therefore, problem determination tools 
[23], [24] offer an alternative automated way to analyze QEPs and 
provide recommendations, such as re-write the query, create an 
index or materialized view or prescribe an integrity constraints. 
However, existing automatic tools for query performance problem 
determination do not provide the ability to perform workload 
analysis with flexible user defined patterns, as they lack the ability 
to impose proper structure on QEPs (as described in details in 
Section 1).  

5. CONCLUSIONS 
Query performance problem determination is a complex process. It 
is a tedious manual task that requires one to analyze a large number 
of QEPs that could span thousands of lines. It also necessitates a 
high level of skill and in-depth optimizer knowledge from users. 
Identification of even known issues is a very time and resource 
consuming and prone to human error.  

To the best of our knowledge, we are the first to provide the system 
that performs interactive analysis in a structured manner of 
potentially a large number of QEPs in order to diagnose and match 
optimizer problem patterns and retrieve corresponding 
recommendations that are provided by experts. Our semantic 
system combines and applies the benefits of RDF model and 
SPARQL query language in query performance problem 
determination and QEP analysis. OptImatch is very well received 
and is proving to be very valuable in the IBM support of clients and 
database optimizer development organization by providing quick 
work around solutions through the use of a well-defined knowledge 
base. 

Our methodology can certainly be applied to other general software 
determination problems (e.g., log data relating to network usage, 
security, or software compiling, as well as software debug data or 
sensor data relating to some physical system external to the 
system). Our framework can be applied to other general software 
problem determination, assuming that there exists automatically 
generated structured diagnostic information in the form of the 
graph that needs to be further analyzed by an expert or general user. 
This is the direction that we would like to explore in the future 
work. 
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