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ABSTRACT

Traditional temporal association mining systems, once sup-
plied with a specific parameter setting such as time periods
of interest, minimum support and confidence, generate the
rule set from scratch. This one-at-a-time paradigm forces
the analysts to perform successive trial-and-error iterations
to finally discover interesting temporal patterns. This pro-
cess is not only prohibitively time and resource consuming,
but also ineffective in providing meaningful feedback for im-
proving the desired rule outcome.

In this work, we introduce the first solution to interac-
tively explore temporal associations from evolving data at
multiple levels of abstraction, henceforth referred to as temp-
oral association rule analytics (TARA). The offline rule
preparation phase of the TARA infrastructure extracts the
temporal associations from the raw data and compresses
them into a knowledge-rich yet compact evolving parameter
space (EPS) structure. The online exploration phase of
TARA leverages this EPS structure to offer rich classes
of novel exploration operations from parameter recommen-
dations and time-travel queries to the discovery of hidden
insights of associations with near instantaneous responsive-
ness. As demonstrated by our extensive experiments on real-
world data sets, TARA accomplishes three to five orders
of magnitude improvement over state-of-the art approaches
while offering a rich interactive exploration experience.

1. INTRODUCTION
1.1 Motivation

Nowadays batches of data are continuously transmitted
from a rich variety of sources including websites, mobile de-
vices and other data sources, henceforth referred to as evolv-
ing datasets. Discovering associations and their dynamics
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hidden in such large evolving datasets has been recognized
as critical for domains ranging from market products analy-
sis, stock trend monitoring, targeted advertising to weather
forecasting.

For example, in the retail businesses, the arrival of new
fashions or gadgets may boost unprecedented sales while sea-
sonal products may gain or lose customers’ interest. Some
products are purchased together more frequently in the days
leading to a large sports event or during a traditional holi-
day like Thanksgiving. Companies such as Amazon, eBay,
Walmart and other retail businesses apply temporal associ-
ation mining techniques to their transaction logs to identify
popular product combination at specific times and their be-
havior over time. Such information is critical for deciding
the times when products can be placed together on a web
page or configured into attractive bundle-offers to be used
for recommendations to encourage sales.

Interactive data mining models, crucial for discovering
knowledge from data, enable analysts to actively engage in
the analysis process. State-of-the-art temporal association
mining systems [2, 9, 14, 18], once supplied with a specific
parameter setting, tend to generate the ruleset for each re-
quest from scratch. This one-at-the-time request model suf-
fers from severe limitations described below.

1.2 Limitations of State-of-the-Art

Lack of instantaneous responsiveness. Lag in re-
sponsiveness is known to risk losing an analyst’s attention
during the exploration process. In applications like targeted
ad placement such delay in decision making may prove to
be the cause of missed business opportunities and thus a
potentially huge loss in profit. Unfortunately, temporal as-
sociation mining algorithms [2, 14] are known to be compu-
tationally intensive. To overcome this challenge, [18] pre-
generates the intermediate itemsets that are subsequently
used to derive the temporal associations instead of extract-
ing them from the huge raw data store. With this promising
one-time preprocessing strategy, the response time has been
shown to be greatly reduced. However, the process of the
final rule derivation remains a query-time task. This re-
sults in the shortcoming that the response times for mining
such requests are not sufficient to support truly interactive
exploration as confirmed by our experiments (Sec. 8).

Lack of parameter recommendations. Temporal as-
sociation mining algorithms are parametrized not only by
traditional measures like support and confidence but also
by time-variant measures [11, 16, 17]. Parameter settings
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used for one batch of data may produce insignificant rules
for a newly incoming data batch. Thus the data analysts
often must perform numerous successive trial-and-error it-
erations to find an appropriate parameter configuration out
of a seemingly infinite number of possible settings. Exist-
ing state-of-the-art models tend to correspond to a black-
box [2, 6, 9, 14, 18] - providing little to no feedback about
which parameter settings best capture the analyst’s inter-
est. To tackle this, [10] incorporates an indexing technique
to swiftly produce parameter recommendations. However it
is restricted to static data and thus does not support time
variant operations essential for temporal association mining.

Lack of evolving ruleset comparison. Analysis of the
data in finer time granularity may reveal that associations
exist only in certain time periods. Some may fluctuate as
new data arrives while others may remain stable. Further-
more, two seemingly similar parameter settings can generate
different results. Systems like [2, 6, 14, 18] independently
generate the ruleset for each parameter settings. Worse yet,
analysts then have to go through a tedious process to manu-
ally investigate the results generated by different parameter
settings to extract their differences. This can be extremely
tedious and impractical for large data sets.

Lack of insights into the evolving associations. Given
a parameter configuration, a system often generates a huge
number of rules. Analysts would benefit from being able to
quickly identify the most interesting ones, such as the most
stable rules [11] within the last week, the most significant
rules that occur every weekend, or the rules concerning spe-
cific products. Offering such rich insights into time-variant
rule behavior would provide the analysts with the opportu-
nity to leverage their domain knowledge to drive the discov-
ery process. Unfortunately, most existing parameter-driven
exploration systems [10, 16, 18] do not support the analyst
in the discovery of such useful time-sensitive insights.

1.3 Research Challenges

To develop an interactive temporal analytic system, the
following research challenges must be tackled.

Processing time-variant evolving data. Given a time-
variant data set containing m unique items, the maximum
number of possible associations are bounded by 3" — 2" + 1
[10]. The significance of associations may vary over time,
as newly incoming data may bring new items and associa-
tions. Being able to quickly extract these associations and
their behavior w.r.t different time horizons to answer ana-
lysts’ requests is the key to providing an interactive mining
experience. However, it is almost impossible to pre-generate
all such information. Thus the system must have an efficient
preprocessing strategy that pregenerates a minimal yet suf-
ficient amount of information as its critical knowledge store
to support interactive temporal association exploration.

Managing temporal associations for all parame-
ters. Typical input parameters, such as minimum support
and confidence, can be configured using any real number re-
stricted to a certain range. Similarly, the time specification
can be composed of one or multiple time periods along the
continuous timeline. Clearly, an infinite number of possible
parameter settings exists. Maintaining the corresponding
ruleset for each parameter setting individually thus is im-
practical. Therefore, an efficient mechanism is needed to
map the pregenerated temporal associations to the space of
parameter settings.
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Maintaining parameter values for different time
periods. The prominence level of an association may vary
significantly for some associations while remaining stable for
others. Such time-variant properties of parameter values
may reveal important evolving patterns of an association
in the evolving dataset. Yet keeping each single historical
parameter value for each association is inefficient, result-
ing in large storage and search space. Therefore, a compact
archive structure is needed to efficiently maintain the param-
eter values of the associations across time while supporting
fast system access to retrieve any desired information.

Supporting advanced temporal association explo-
ration. Rule mining algorithms tend to generate too many
rules - making it extremely hard for the analysts to quickly
identify the interesting ones. The problem of interesting-
ness of temporal rules has been previously investigated [12,
17]. An interactive temporal association exploration system
must integrate such interestingness measures to provide crit-
ical insights about the associations such as their evolving
behaviors across time. The retrieved rules w.r.t particular
parameter settings must be efficiently evaluated using these
measures so that the instant responsiveness of the system is
safeguarded.

1.4 The TARA Approach

We propose a novel temporal association rule analytics
(TARA) framework that addresses the above challenges.
The TARA infrastructure depicted in Fig. 1 employs an of-
fline preprocessing phase composed of Association Generator
and Knowledge Base Constructor followed by TARA Online
Explorer that enables analysts to interactively explore the
evolving data with support by the knowledge base.

The Association Generator extracts temporal associations
from the evolving data and compactly stores them in the
Temporal Association Rule Archive (TAR Archive) of TARA
knowledge base. Later, by request, the parameter values of a
particular association w.r.t various fine granularities can be
quickly computed without processing the raw data again.
These pregenerated temporal associations are compressed
into a knowledge-rich yet compact evolving parameter space
(EPS) that encodes the relationships among the temporal
associations. Next, the TARA knowledge base explicitly ex-
tracts and then models the distribution of the pregenerated
temporal associations with respect to their parameters, e.g.
support, confidence and time periods.

Beyond achieving speedup in response time, the online
processing strategies leverage the EPS index to offer ana-
lysts an innovative “rule-centric panorama” into the tempo-
ral associations present within the evolving dataset. The
framework supports rich classes of novel exploration opera-



tions from time-travel queries and parameter recommenda-
tions to evolving ruleset comparisons.

1.5 Contributions

Key contributions of this work include:

e We propose the first interactive temporal association
rule mining analytics framework called TARA that enables
analysts to explore associations across time and pinpoint
appropriate parameter settings in a systematic way.

e The TARA model organizes the temporal associations
in the space of query parameters. It abstracts the temporal
associations at the coarse granularity of time-aware stable
regions across multiple time periods.

e The TARA model is supported by evolving parameter
space (EPS) index structure that indexes time-aware stable
regions along with the associated domination graph. TARA
offers efficient algorithms for offline EPS index construction.

e For the rules generated, we design a temporal associa-
tion rule archive, called TAR Archive, that compactly en-
codes the parameter values of each rule across time. Our
specially designed encoding and decoding strategies achieve
fast access to the requested information from this archive.

e We propose a rich set of novel temporal rule exploration
operations beyond traditional temporal rule mining. Effec-
tive strategies for the online processing of the proposed op-
erations that leverage our precomputed TARA index struc-
tures are provided.

e TARA framework supports the exploration of the asso-
ciations at coarser or finer time granularities by roll-up and
drill down operations. We provide a theoretical bound on
the approximation of the solution under roll-up operations.

e Our extensive experiments using IBM Quest [1], retail
[3] and webdocs [13] datasets demonstrate that TARA is 3
to 5 orders of magnitude faster than its state-of-the-art com-
petitors for traditional temporal association mining, while in
addition supporting novel analytics within milliseconds.

2. PRELIMINARIES OF TEMPORAL
ASSOCIATION

T = {..,ti,...,tj,...} denotes a set of times, countably
infinite, over which a linear order <7 is defined, where ¢; <7
t; means t; occurs strictly before ¢;. Let Z = {i1,1i2,...,in}
represent a set of items. D = {d1,d2,...,dm } is a collection
of subsets of I called the transaction database. Each
transaction d; in D is a set of items such that d; C 7.
Each d; has an associated timestamp ¢;, denoted by d;.time
=t;. Let X C 7 be a set of items, called itemset. If X C d;,
d; contains X. If the cardinality of X is k, X is called a k-
itemset. Given a closed time period [t;,t;] where t; <7
t;, then the set of transactions in the range [t;, t;] of D that
contain X is indicated by F(X, D, [ti, t;]) = {dkx | d € D A
ty <dg.time <t; AN X C dk}

DEFINITION 1. A temporal association rule is an ex-
pression of the form R4l = (X = )), where X C I,
Y CI\X, and [t;,t;] indicates that R is derived from all
the transactions in D whose timestamps fall into [t;,t;].

A temporal association rule defaults to the traditional
association rule if the time period is set to the entire time-
line. This time restriction [¢;, t;] empowers the data analysts
to discover associations that are not significant throughout
the entire data set. Moreover, an association may reappear
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Table 1: Example of pregenerated temporal association rule

(a) Item set (min supp = 0.05) (b) Rule (min conf = 0.25)

Itemset Support Rule (Support, Confidence)
T 7 T 7
a 0.36 0.44 Ryra-=b | (0.18,0.5) | (0.11,0.25)
b 0.45 0.22 Ry:b-=a | (0.18,0.4) (0.11,0.5)
c 0.36 0.44 Ry a->c (0.18,0.5) | (0.33,0.75)
ab 0.18 0.11 Rye-=a | (0.18,0.5) | (0.33,0.75)
ac 0.18 0.33 Ry c-=b | (0.09,0.25) | (0.11,0.25)
be 0.09 0.11 R b-=c (0.11,0.5)

in multiple time periods expressing some periodicity. Fur-
thermore, the association may behave differently in terms of
its measured values. The evolution of the associations over
time can lead to insightful observations [11].

Many measurements [17] have been proposed to evaluate
the interestingness of associations. Out of these measure-
ments, we work with the most common measures of sup-
port and confidence to demonstrate the key principles of
our framework, though others can be plugged in the future.
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The support defined in Formula 1 describes the propor-
tion of the transactions within the defined time period that
contains all items in the association. The confidence de-
fined in Formula 2 describes the probability of finding the
consequent ) of the association within the defined time
period under the condition that these transactions also con-
tain the antecedent X.

Confidence(RI"')

3. THE TARA MODEL

We now introduce our TARA model framework for inter-
active exploration of associations from evolving data.

3.1 Time Dimension of the TARA Model
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Figure 2: Tumbling Window Model of TARA

Data analysts often are interested in exploring the asso-
ciations that hold in particular time periods, such as an
hour or a day. Coarser time specifications can be broken
down to ranges of smaller granularities. Moreover, the mea-
sures of an association in a longer time period can then be
computed based on the measures of the associations in the
shorter periods that are part of this longer period. Based
on this observation, TARA partitions the data set into dis-
joint time periods, called windows. Mining queries with a
coarser time granularity settings than this basic window size
are then supported using roll-up operations.

Let D be the evolving data set and w be the basic window



size that represents the minimum granularity. Therefore, the
set of times T contains disjoint but consecutive time periods
each of size w denoted by 7 = {..., T4, ..., T5, ...}, V75, T;5),
if T; # T;, and T; N T; = 0. The evolving data set D is
partitioned into small chunks according to each time pe-
riod 7; in T denoted by D = {..., D;, ..., Dj, ...} where D; =
F(@,D,T;). In Fig. 2, for example we set the window size
w = 20. That is, the time frame is partitioned into a set
of time periods of length 20, e.g T2 = [t21,t40]. The evolv-
ing data set D is partitioned into time-oriented data subsets
D; according to these time periods, e.g. D2 = F(0,D, Tz).
For each data partition D;, TARA pregenerates the asso-
ciations off-line (See Sec. 4). Table 1.(b) shows an example
of the associations generated for the time periods 71 and 7s.
TARA processes the raw data D once to pregenerate the
temporal associations held in these windows. A query with
the coarser time specification can then be answered based
on these pregenerated associations.

DEFINITION 2. Time awvailability: Let w be the finest
time granularity. Then T ={...,T;", ..., T;*,...} corresponds
to the basic time periods of T that are generated by TARA
through time partitioning by w. A time specification Ti sup-
ported in TARA thus is Ty, T, where i < j.

This strategy allows us to support roll-up and drill-
down of time periods at run time such as days, months
or years to support long and short term goals.

3.2 Evolving Parameter Space Model

In association rule mining, the input parameter values of
minimum support and confidence can be any real number
within [0,1]. Each combination, referred to as parameter
setting, corresponds to a set of rules generated by using this
parameter setting. We now extend this into the notion of
an Fvolving Parameter Space (EPS) that models relation-
ships and distribution of rules across the multi-dimensional
temporal parameter space.

)

Figure 3: Evolving Parameter Space

DEFINITION 3. Evolving Parameter Space: Let D be
an evolving data set, D; be a partition of D by a basic time
granularity T;, VT; € T. Let p; be one of the n parameters.
The (n+1)-dimensional space, denoted by € = { p1,...,pn,
T} and called Evolving Parameter Space (EPS), orga-
nizes the rules {R}7 where {R}T =" {R}"" and k is the
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total number of time partitions of D. A temporal associa-
tion rule R is associated with its temporal parametric lo-
cations (R.value(p:),..., R.value(p,))” where R.value(p;)
denotes the value of the j*" parameter for rule R in time T;.

For simplicity, we use two parameters, namely support and
confidence while others could be defined as well. Thus hence-
forth, the EPS £ is a 3-dimensional space with support, con-
fidence and time as its dimensions. A temporal parametric
location depicting a rule R in time 7;, denoted as R(supp,
conf )T", is represented as a line segment indicating the pa-
rameter values of R in 7;. Fig. 3 shows the EPS for the
rules in Table 1(b). Rules R1, Rs and R4 map to the same
temporal parametric location (0.18, 0.5)T1 in the time period
T1. However in time 72, R travels in the space so that now
it maps to same location as Rs(0.11,0.5)72.
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Figure 4: Evolving Parameter Space slice at Time T2

LEMMA 3.1. Let £ denote a temporal parametric location
in the EPS &, L.p; be the value of parameter p; for location
L. Given a set of temporal parametric locations in the same
time period Ti, VLm, Ln € {L}, where m # n, if there exists
a p; such that L,.p; # Ln.p:, then the temporal association
rules that map to L., are guaranteed to be distinct from those
that map to L.

PrROOF. Rules’ temporal parametric locations in time T;
are generated from the same data partition D;. Any given
rule at time 7; cannot have two distinct values for one pa-
rameter. Therefore, a rule R cannot map to two distinct
temporal parametric locations within the same time. []

Each rule’s temporal parametric location can either remain
steady or change over multiple time periods. We call this
stream of locations the trajectory of the association.

DEFINITION 4. Trajectory of an association: Given a
sequence of time periods {T} = {Ti...,Tm}, the trajectory
of an association R in {T} is the set of temporal paramet-
ric locations that represent its parameter values in the time
periods in {T}.

This trajectory of a rule allows us to compute different
measures about the rule that summarize its evolving pat-
terns like coverage [16], stability [11] and standard devia-
tion. These measures can be computed for each individual
rule or even for a set of rules to provide individual or global
summarization respectively.

Given a data set with n unique items, the maximum num-
ber of rules is finite, bounded by 3" — 2" +1 [10]. Therefore,
some set of parameter settings must correspond to same set



of rules. Fig. 4 shows a slice of the evolving parameter
space for time 73. Rules with identical parameter values are
represented by the same point in this space. These points
partition the space into 4 regions marked by dashed lines.
If a user specified minimum support and confidence config-
uration for mining falls into region Ss, then regardless of
its actual position within the region, the output ruleset is
always {R3,R4}. This observation is inspired by the work
presented in [10]. Thus the entire evolving parameter space
at a time 7; can be partitioned into a finite set of regions
referred to as time-aware stable regions. This notion of time-
aware stable regions forms our coarse granularity abstraction
of the temporal association rules generated from an evolving
data set D.

DEFINITION 5. Time-Aware Stable Regions: Given an
EPS & of n parameters {p1,...,pn} and times T as (n + 1)
dimensions for an evolving data set D, then a time-aware

stable region in a time period T; is a closed hyper-box de-

(upper(p1),..-upper(pn))
noted by 87-75{(lmuer(;l),mlower(pn))}

ified by locations (S.upper(p1),...,S.upper(p,))”i and {(S
dower(p1),...,S.lower(p,) )71 } within each of which no mat-
ter how the parameter values are adjusted, the set of rules
generated from D; remains unchanged.

with its boundary spec-

Considering the 3-dimensional EPS in Fig. 3, a time-
aware stable region is bounded by an upper location
(suppu,conf,)”t and k lower locations {(supplj,conflj)ﬂ}
where j € [1,k]. The support and confidence values of the
upper location will always be greater than those of all its
lower points, i.e., Vj (supp. > suppi;) and (confu > confi;).
The upper location of a time-aware stable region is called its
cut location.

DEFINITION 6. Cut Location: Let EPS E be a 3-dimensi-
onal space with support x, confidence y and time z as its
dimensions, {X'} be a set of the intersections formed by the
perpendicular projections of each temporal parametric loca-
tion onto x and y planes. The cut locations within £ are
then denoted by {C}, where {X} = {C}U{L}.

Fig. 3 depicts time-aware stable regions Sty (0.18,0.5)

(0,0.4) and
S5 Eg‘é)l’o")) Eg‘éﬁ?ﬁ), the cut location is (0.18,

0.5)71. It is bounded by the parametric locations (0.18,0.5)71
and (0,0.4)7* and contains rules R, R3 and Ra.

. For region S11

LEMMA 3.2. Given a set of time-aware stable regions {S}
for the same Ti, ¥ Sm, Sn € {S}, where m # n, the associ-
ations that map to the cut location of Sy, are guaranteed to
be distinct from the ones that map to the cut location of S, .

Proo¥r. By Lemma 3.1, rules generated in the same time
period but map to different temporal parametric locations
are guaranteed to be distinct. The locations in {X'} either
belong to {L} or have no rule. Therefore, within a time pe-
riod 7, rules that map to different time-aware stable regions
are guaranteed to be distinct. []

DEFINITION 7. Dominating Stable Region: A time-
aware stable region S, dominates region S, where m #
n, if and only if Vp; € P Smn.C.pi < S,.C.pi, and S, and
S, are in same T; where Sp,.C refers to the cut location of
stable region Sy, .
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LEMMA 3.3. Considering two time-aware stable regions
Sm and S, where m # n. If Sp, dominates Sy, then rules
valid within the dominated region S, are also wvalid in the
dominating region S, but not vice versa.

PROOF. A temporal rule R; is in the final output ruleset
if in the specified Tk, ¥V pj, Ri.value(p;) > min parameters
where p; € {p1,...,pn}. If R; belongs to region S, the tempo-
ral parametric location of R; is the upper location of S,,. Be-
cause Sy, dominates Sy, V p;, Sm.upper(p;) < Sp.upper(p;),
meaning V p;, Sm.upper(p;) < Ri.value(p;). So R; is valid
in S,, as well. However, vice versa is not true, as can be
trivially shown. [

Consider &1 = Sﬂgg;éi?ﬁ) and S2 = S1y 58;8?’0'25) in Fig
3. Based on Def. 7, So dominates S1 because every param-
eter value in the upper location of Sy is smaller than the
corresponding value of Sy.

If the rules in region Sr; 28;8?’0‘25)
result, then region must also contain the rules that are valid
in St Eg;éi?ﬁ) By Lemma 3.3, given a user-specified pa-
rameter setting, once a region is identified as a valid region
to produce the final ruleset, all its dominated regions should
then also be included in the user output.

Using this concept of dominating stable regions [10], each
rule is stored once in the stable region and by iterating over
its dominating regions the final ruleset can simply be ob-
tained for a given pair of support and confidence values.

3.3 Supported Queries on TARA Model

We now propose TARA operations that offer a rich classes
of novel temporal analytical queries.
Temporal Association Mining. Given a parameter set-
ting and time periods, Q1 returns the associations that sat-
isfy the minimum parameters, such as minimum support and
confidence. The evolving trajectory and measures of asso-
ciations for each of the specified time periods are also re-
turned. The Measures including coverage [16], stability [11]
and standard deviation summarize the evolving patterns.
Ezact match option returns the associations that are con-
sistently valid in all of the specified time periods. Single
match returns the associations that are valid in exactly one
of the specified time periods. Fuzzy match returns the asso-
ciations that are valid in at least one or more of the specified
time periods. @2 returns the differences of associations with
regards to two different parameter settings.

are included in the final

Q1 RETURN Rule, Trajectory, Measures
FROM Evolving Data Set D
PARAMETER A ,Z, MinParameter; = P;
IN-TIME = Time Periods & Granularity
MATCH = Exact|Single(Time Period) |Fuzzy

Use Case for Temporal Association Mining. In the
retail dataset [3], over the time period of one year broken
in windows of a week, Q1 may return the rule (turkey —
pumpkin pie) with relatively low support and confidence
value (0.4,0.5) throughout the year. However, this rule peri-
odically rises to high support and confidence value of (0.6,0.7)
in the week before Thankgiving. If we had examined this
rule in the roll-up view over the complete data (whole year),
it’s support and confidence would overall have been too low.
With Q1, an analyst can find the rules that are frequent



only within certain intervals. It also allows to find all time
periods during which this rule was more popular.

Q2 RETURN Rule, Trajectory, Measures
FROM EPS FE
PARAMETER A ,Z;, MinParameterl; = PIl;
COMPARE-TO A ;Z; MinParameter2; = P2;
IN-TIME = Time Periods & Granularity
MATCH = Exact|Single(Time Period) |Fuzzy

Use Case of Unnoticeable Changes. For a dense data
set like webdocs [13], the size of the returned rulesets is
huge, making it difficult for the analysts to perform man-
ual inspection of the differences produced by two different
parameter settings. To effectively tune the best parameter
setting that includes the most important associations across
the specified time intervals, analyst would benefit from be-
ing able to quickly explore the differences in the results. Q2
allow to find all rules that were generated in last month by
parameter configuration setting like (0.4, 0.8) but not by
configuration setting (0.5, 0.95).

Stable Region Exploration. These queries provide meta
information about the time-aware stable regions. In partic-
ular, @3 returns the sets of stable regions identified for the
given parameter settings across the time periods specified
by the match clause. @4 returns region parameters that
contain the specified associations.

Q3 RETURN Stable Region
FROM EPS E
PARAMETER A ;2; MinParameter; = P;
IN-TIME = Time Periods & Granularity
MATCH = Exact|Single(Time Period) |Fuzzy

Use Case of Parameter Recommendation. For a sparse
dataset like retail [3], often despite submitting several suc-
cessive mining requests with different parameter settings,
the system repeatedly returns the same set of rules due to
a sparse distribution of rules. This trial and error process
can be avoided by using query Q3. For example for the re-
tail dataset [3] broken in windows of a week, 3 can easily
inform an analyst that during the last week of a month, the
same set of rules will be generated for all parameter config-
urations within (0.88, 0.76) and (0.91,0.78).

Q4 RETURN Region
FROM Ruleset |J,”; R;
IN-TIME = Time Periods & Granularity
MATCH = Exact|Single(Time Period) |Fuzzy

Time Specification: Roll-up and Drill-down. For each
of the above queries, a time granularity must be specified.
For example, a time period 7; can refer to a particular hour,
a day, or a week.

Rule Search. As [12] pointed out, supporting content-
based rule search can leverage analysts’ domain knowledge
to efficiently narrow down the result into a more manageable
smaller set. @5 allows analysts to filter a ruleset, generated
by any of the above queries, based on the absence or pres-
ence of certain items given in the MATCH clause.
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Q5 RETURN Rule
FROM Ruleset |J;2; R;
MATCH {I}" U {I}~

Use Case of Content-based Association Exploration.
In the retail dataset using query Q1 with Single match op-
tion and the time equal to week before Christmas returns a
huge number of rules for the support and confidence values
of (0.4,0.5). With @5 an analyst can quickly find all the
rules that contains “Ipads” and do not include “Laptops”.

4. OFF-LINE EPS-INDEX CONSTRUCTION

Our proposed Evolving Parameter Space (EPS) Index con-
struction is composed of three tasks that are performed off-
line. Task 1 generates the temporal association rules; task 2
computes the time-aware stable regions and constructs the
domination graph, and task 3 constructs the EPS-Index.
These tasks three are explained below (See Algo. 1).

Task 1: Temporal Association Rule Generation. TA-
RA first pre-generates the rules from the evolving dataset
using the lowest meaningful parameter settings, called the
primary support 6 and the confidence )\, to prevent excess
pre-generation [12]. Based on the minimum time granular-
ity, TARA mines the rules from the current window, whose
support and confidence value exceed 6 and A. The rules
and their parameter values w.r.t to the transactions within
this window are then archived (See Sec. 5). In our work, we
plug in FP-Tree [7] as the rule generation algorithm. The
rule mining module in TARA framework is extendable to
any incremental or parallel rule mining solution [8].

Task 2: Time-Aware Stable Region. To construct the
time-aware stable regions (see Def. 5), TARA first com-
putes the cut locations using a two step approach. In the
first step, the temporal parametric locations of rules gener-
ated in the previous task are initialized as the first set of cut
locations. Each cut location maintains a set of references to
its rules. In the second step, let x, y, and z be the axes
representing support, con fidence and time measures and o
be the origin of all measures. The intersections formed by
the perpendicular projections of each point onto the x and
y planes are added to the cut location set.

By Lemma 3.2, each cut location identifies a unique time-
aware stable region. For each cut location, the lower bounds
are computed to form a complete time-aware stable region.
Simultaneously, the immediate dominated regions are iden-
tified and connected to construct the domination graph.
Upon user request, the time-aware stable regions can be con-
structed for the coarser time granularity over basic granu-
larity used by the system. New parameter values of rules
forming these time-aware stable regions are computed by
Formulas 4 & 5.

Task 3: EPS-Index Construction. Within each time-
aware stable region, all rules are indexed by their respec-
tive attributes, called a region shard. Next, the two layered
Evolving Parameter Space Index (EPS-Indez) is created to
efficiently answer the TARA model requests. The top level
of the EPS-Index facilitates the search to locate a partic-
ular time-aware stable region given its input parameters.
Regions are indexed separately by different time periods.
For regions within a single time period, a grid-based spatial
index is utilized to partition the EPS into equal-sized grid
cells. The time-aware stable regions are then allocated to
their respective positions in the grid. The stable regions in



Algorithm 1: Offline EPS Construction

Input: Dataset D
begin
for each D; from D do
{R} «+— 0; {8} +— 0;
{R} <— RuleGenerator(D;, 0, \);
{8} «— RegionAbstractor({R});
£ +— EPSIndexConstructor({ST},{R});

1.A: RuleGenerator

Input: D;, 6, A

Output: RuleSet {R}

begin
{R} +— 0;
{R} «— FP-Tree(D;, 0, \);
Archive({R});

1.B: RegionAbstractor
Input: {R}
Output: RegionSet {S}
begin
{C} +— 0;
{S} +— 0;
{C} +— GetCutLocation({R});
for each C; € {C} do
S «— ConstructShard(C;);
S +— GetRegion(C;, {C});
S +— ConnectDominatedRegion(S,{C});
(S} {S}uUs;

/*Initial cut location set*/

1.C: EPSIndexConstructor

Input: {S}
Output: EPS-Index £
begin

| GridIndexer({S});
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Figure 5: The EPS-Index

0.45

each cell point to the corresponding nodes in the next level
of the EPS-Indezr. Fig. 5 shows the spatial index of the
time-aware stable regions for Ti.

Using the proposed grid structure, the online search for a
stable region can be performed in near constant time. The
online processing of our TARA exploration using this index
is described in Sec. 7.

The second level of the EPS-Index, namely, the region
domination graph (Fig. 5), is designed to expedite the col-
lection of rules from dominating regions [10]. Each stable
region forms a node in the graph with each node linked to
its closest dominating neighbors. The region domination
graph enables us to locate the closest dominating neighbor
regions in near constant time and also produce complete rule
sets in linear time in the number of rules involved.

S. TEMPORAL ASSOCIATION ARCHIVE

As explained before, the rules themselves can be huge.
We describe an efficient storage structure for managing the
rules generated across time called temporal association rule
archive (TAR Archive).
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5.1 TAR Archive Design

Our proposed archive structure consists of a directory and
a number of index entries. The directory contains all tempo-
ral association rules. Each rule in the directory has a pointer
to its index entry. The index entry stores the history of its
parameters w.r.t a specific time granularity. The index entry
can be implemented using a time sequence [6] as illustrated
in Fig. 6. For simplicity only one parameter is shown. The
size of the time sequence is equal to the number of basic
windows. The advantage of using such naive time sequence
is that every element in this structure maps to a parameter
value of the rule within a specific window. Given a window
and rule id, the search of the parameter value takes only
O(1) time.

Rule
Director

Re

Figure 6: Rule Index with Time Sequence

Interestingly, [15] observed that daily updates in transac-
tion databases more often than not affect only a small part
of the ruleset. [6] also indicates that parameter values of the
frequent patterns mined from the data stream often remain
stable within a period of time. In Fig. 6, R1,R2 and R3
are stable over several consecutive windows. Therefore, the
time sequence structure may contain redundant values.

Rule Binary
Igw_J Encoding Compressed Entry

R, [--3[ 10019 }--->[ 05 [ 06 |

R, > 113 (- 04 | 03 |

R, f--»{1101a3)}---[ o6 | 04 | 05 |

R, F--3{1111as)}--->[ o5 [ 03 [ 02 | 03
Rs f--3 113 F---[ 07 [ 00 |

Re f--3 10019) }---[ 00 [ 08 |

Figure 7: Rule Index with Compact Time Sequence

To avoid the above problems while still achieving efficient
access, we propose the TAR Archive with compact time se-
quence structure as depicted in Fig. 7. Each compact time
sequence for one parameter consists of a binary code B and
an array of distinct parameter values, called value sequence,
denoted as V = {v1, ...v, }. The ith bit from the lowest order
indicates whether or not the parameter value within the ith
window is identical to the value within the previous window.
The encoding strategy is shown in Formula 3.

Bit(R.p}) = (3)

0 if Rp! =Rpl™"
1 otherwise

For example, in Fig. 6 the parameter values of Ry are
stable in the first three windows with only the value in the
latest window being different. “1001” denotes the evolution
of this parameter across 4 windows. The lowest order digit
represents the parameter value in the oldest window and
the highest order digit represents the parameter value in the
newest window. In this case, the parameter values in 71, 72



and T3 only need to be stored once in the structure because
they are identical.

5.2 TAR Archive Operations

Next we discuss the supported operations, namely append,

access, purge and merge on the TAR Archive.
Append: As the new window is being processed, rules are
added into the TAR Archive. We distinguish between three
cases when a rule is being appended: (1) The new rule al-
ready exists in the archive; (2) The new rule does not exist
in the archive; (3) A rule that is in the archive does no longer
appear in the newly generated ruleset.

For case 1, if the new value of the rule is different than
in the last window, then “1” is added to the binary code
otherwise no action is needed. To address case 2, first, this
new rule is inserted in the rule directory. Second, for each
parameter, if the current window is the very first window,
the binary code is set to “1” and p? is inserted into the
empty value sequence. If j > 0, the binary code is first
initialized as “1” and “0.0” is inserted into the value sequence.
Then the procedure in case 1 is followed to process the new
information. To address case 3, the system simply appends
the parameter value “0.0” to all parameters of such rule. The
append procedure is the same as the procedure for case 1.
Access: Our decoding strategy for compact time sequence
structure allows to search TAR Archive takes O(1) time.
Given a window id j, the parameter value p] from V; is
retrieved. For instance, in Fig. 7, for R4, if j = 3, the system
needs to locate the correct value p® in the value sequence.
In B;, the count of “1” is the length of the value sequence
because every time a bit is set to “1”, a new value is then
appended to the wvalue sequence. Finding the offset of the
element in the sequence value corresponding to the queried
window j is equivalent to counting “1”s up until the jth bit
in B;. For the previous example, if j = 3, the binary code
up until 3rd bit in B is “001” which only has 1 bit set to
“1”. So s1 in the value sequence represents the value of p3.
Given a 7, we calculate the offset of the element in the value
sequence as follows Offset(j) = HammingWeight(B AND (27
- 1)). HammingWeight is a O(1) algorithm for bit counting.
Purge: As parameter values begin to accumulate, the size of
the archive grows bigger and bigger. For some applications,
historical information inserted at the very beginning may
become insignificant. Therefore, an operation that purges
such data is necessary. Specifically, the operator deletes the
parameter values of the entire ruleset in the archive w.r.t a
set of consecutive windows from 77 to Tr where k < total
number of windows. For each rule R, the purge operation
performs a two-step procedure: (1) Delete the values that
correspond to < Di,..., Dy > for each parameter from the
value sequence. (2) Update the binary code so that it reflects
the changes of the parameter within the rest of the windows.
For an input k, if Of fset(k) equals to Of fset(k + 1) which
means the values of a parameter in Dy, and Dy are mapped
to the same s; in S, then {s;|1 < j < i — 1} are removed
from S. The corresponding B is right shifted ¢ — 1 times
and the first bit of the modified B’ is set to “1”. If the
results of Of fset(k) and Of fset(k + 1) are not identical,
then {s;|1 < j < i,i = Of fset(k)} are removed from S.
The corresponding B vector is right shifted i times.
Merge: For some applications, analysts may be interested in
recent changes at a fine granularity, but longer term changes
at a coarse granularity. To support such time-sensitive roll-
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up, also called Natural tilted-time window or logarithmic
tilted-time window [6] an efficient merge operation is needed
for the TAR Archive.

{R}; denotes the ruleset generated from D;. The merge
operation unions the rulesets, i;:i{R}wv that correspond
to the set of consecutive windows [7;, 7;] and computes the
new parameter value for each rule in the merged window.
[T:,T;] denotes a set of consecutive windows that are re-
quested to be merged, |D;| denotes the total number of
transactions in 7;. The support and confidence of a rule
in the merged window is computed as follows:

J
> |Dw| X R.supp®
Support(R) = “=

J
> Dl
|Dw| X R.supp®”
- ()

| Duw| x Rt
1

i

Confidence(R)

-

Based on the definition of support and confidence, For-
mula 4 describes the proportion of the transactions within
the merged window that contains all items of the associ-
ation; Formula 5 describes the ratio of the number of the
transactions that contains all items of the association to the
number of the transactions that contains antecedent items
in the merged window. With these new values, the merge
operator then further updates both the binary encodings B;
and value sequences V; in the rule entry. For a particular
parameter of a rule, if the windows from 4 to j are merged,
then the bits from ith to jth position in its binary code are
also merged into one bit. The value of this new bit and
(4 1)th bit depends on whether the represented parameter
value is different from its last parameter value.For example,
in Fig. 7 when 72 and 73 are requested to be merged, the
new binary code becomes “11” and value is 0.3.

6. ROLL-UP SUPPORT ACROSS TIME

In the rule generation step, rules with parameter val-
ues below minimal system thresholds are not maintained.
Therefore, we may not have the exact parameter values for
each rule when multiple windows are merged.The parameter
value of a rule in a coarser time period (merged window) is
computed based on its parameter values in all periods that
compose the window. The calculation is described in For-
mula 4 & 5. For example, let 6 be 0.1, support values of R
in 71 and 72 be 0.2 and 0.08 respectively. If 77 and T3 are
requested to be merged, the exact support of R in the new
window is W‘ However, let us assume that
R had been withdrawn from 72 because 0.08 < 6. Therefore
the support value of R in T3 becomes unknown and thus is
treated as 0. As a result, we no longer have the exact pa-
rameter value of rules in a merged coarser-time-granularity
window, rather only an approximate value. Rules withdrawn
from a window may fall into 3 cases depending on whether
they either fail to satisfy one of the system thresholds or
both. The margin of error of the parameters value in merged
windows varies case by case. Since the withdrawn rules are
absent from the system, the exact reason of the withdrawal
becomes unknown. Therefore, we introduce the worst sce-



nario below:

Let [T:,T;] be a set of consecutive windows that are re-
quested to be merged, R be a rule that at least appears
once in any of these windows, 7' be the windows in which
R is absent, 7" be the windows in which R appears, S(R)
and C'(R) be the approximated support and confidence of
R calculated based on Formulas 4&5, S(R) and C(R) be
the exact support and confidence of R. The worst scenario
arises where all absents of R are caused by R.supp > 6 and
R.conf < A.

In this case, R has a qualified support. In order to have
a confidence value smaller than the threshold, R’s support
must be larger than 6, however, smaller than \. Therefore,

S Dk X A+ > |D"k| x R.supppr,,
k=1 k=1

S(R) < S(R) < -
> Dyl

(6)

The error in confidence is caused by miss counting the with-

drawn support of R, as well as miss counting of the with-

drawn support of the antecedent of R. The confidence with
maximum margin of errors is the following:

m n
S Dk X A+ X |D"k| x R.supppr,
k=1 k=1

2D+ X2 D] x
k=1 k=1

(7)

margin = =
AsuppDuk

R.con
fD”k

Note that this value does not guarantee to be smaller or
larger than C (R), because the errors are both introduced in
the numerator and denominator.

Formula 6 gives the worst scenario for the approximation
of support and Formula 7 the worst scenario for the approx-
imation of confidence. The smaller § and A\ are, the more
accurate our approximation will be. Because with a smaller
system threshold, less rules would be withdrawn from the
window reducing the chance of miss counting.

7. ONLINE QUERY PROCESSING

In this section, we explain how the analytical TARA queries
introduced in Section 3 are handled by the TARA frame-
work (Algo. 2). Depending upon the query type, the appro-
priate subroutine is invoked. @1, 2 and @3 are handled
by subroutines 2.A, 2.B, 2.C respectively. For Q4 once the
ruleset is selected by any of the subroutines, routine 2.C is
used to return the stable region.

The response time for query processing mainly consists

of 3 components, namely, Cost(SearchRegion), Cost(GetRule)

and Cost(GetDominatedRegions). The TARA storage struc-
tures namely EPS-Index and TAR Archive are in-memory
structures. The cost for a region search against EPS-Index
is O(1). As illustrated in Fig. 5, locating the regions within
the same time interval takes O(1). By converting input pa-
rameters into offsets, the appropriate cell can be found in
O(1) as well. Thus Cost(SearchRegion) = O(1). Note
that the system must generate the stable regions for such
time periods in which they don’t exist. To iteratively col-
lect all the immediate dominated regions in the domination
graph, a breadth-first search (BFS) is required starting at
the node containing (minsupp,minconf) in 7. The time
complexity of BFS is O(|V|+ |E|). In our case, E < (2 x
V) as each vertex has a fanout of at most two edges. Thus,
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Algorithm 2: Online Temporal Association Exploration

2.A: Temporal Association Mining Query
Input: s,c,{7 },matchtype
Output: Ruleset
begin
{R} «— 0; {S} +— 0;
switch matchtype do
case single(T )
{S} «— SearchRegion(s,c,T);
{S} «— {S} U GetDominatedRegion({S});

case ezxact
T +—any T € {T};
{8} +— SearchRegion(s,c, T);
{8} «+— {8} U GetDominatedRegion({S});

case fuzzy
for each T; € {T} do
{8} +— SearchRegion(s,c,T;);
{8} «— {S} U GetDominatedRegion({S});

| {R} «— GetRule({5});

2.B Ruleset Comparison Query
Input: si,c1,s2,c2,T,matchtype
Output: Rulesets {R}1,{R}2
begin
Sec «— maz(si, s2); cc +— mazx(ci,c2);
{S}1 «— SearchRegion(s1,c1,T);
{S}2 +— SearchRegion(sa,c2,T);
//Collect the regions till it reaches a parameter value
fori=1;i1< 2;1++ do
if s; # s. then
L {S}i +— GetDominatedRegion(S;, sc);
if ¢; # c. then
L {S}i +— GetDominatedRegion(S;, c.);

{R}1 «— GetRule({S}1);
| {R}2 «— GetRule({S}2);

2.C Stable Region Query
Input: s,c,{7},matchtype
Output: Region S
begin
{8} «+— 0;
switch matchtype do
case single(T )
S +— SearchRegion(s,c,T);
case exact or fuzzy
for each T; € {7} do
L L {8} «— SearchRegion(s,c,T);

Cost(GetDominatedRegions) =O(|V]). If the trajectory of
a rule cannot be obtained from the retrieved regions (exact
or single match), Get Rule searches the parameter values of
the rule in the specified periods in the TAR Archive. If the
granularity of the specified time periods is coarser than the
ones available in the archive, GetRule finds the windows
that are contained in coarser time periods and computes
the parameter value for the merged window. See Sec. 5 for
the complexity analysis of accessing the TAR Archive and
the computation for obtaining the parameter value in the
merged window.

8. EXPERIMENTAL EVALUATION

Experimental Setup. Experiments are conducted on a
OS X machine with 2.4 GHz Intel Core i5 processor and 8
GB RAM. The system and its competitors are implemented
in C++ using Qt Creator with Clang 64-bit compiler.

Datasets. We select a variety of datasets with diverse
characteristics here. The benchmark datasets, T5kL50N100
and T2kL100N1k, are generated by the IBM Quest data
generator [1] modeling transactions in a retail store. We



Table 2: Datasets

100retasl T5k T2k webdocs
Transactions 8,816,200 | 5,000,000 | 2,000,000 | 1,692,082
Unique Items 16,470 23,870 30,551 5,267,656
Avg Len of Tran 10 50 100 177
Size 416.8 MB 1.48 GB 1.38 GB 1.48 GB
Table 3: Thresholds for Indexes
Dataset | H-Mine TARA&PARAS (supp, conf)
retail 0.0002 (0.0002, 0.1)
T5k 0.0012 (0.0012, 0.2)
T2k 0.001 (0.001, 0.2)
webdocs 0.1123 (0.1123, 0.2)

partition these datasets into 5 equal-sized batches to form
the evolving data sources. The retail dataset [3] contains
88,163 transactions collected from a Belgian retail super-
market store in 5 months. To study scalability, we repli-
cate this retail dataset 100 times. The webdocs dataset [13]
is built from a spidered collection of web html documents.
Both of these real datasets are partitioned into 10 equal-
sized batches to form evolving data sources.The statistics of
the datasets are summarized in Tab. 2.

Alternate State-of-the-art Techniques. The performance

of TARA is compared against three competitors. DCTAR
[9] derives the ruleset directly from the raw data given a pa-
rameter configuration. It computes the associations from
scratch whenever a new batch of data arrives. H-Mine [18]
instead pregenerates the intermediate frequent item sets of-
fline. For specific parameter settings, the algorithm utilizes
the itemsets to generate the associations online instead of
extracting them from the raw data. PARAS [10] pregener-
ates frequent itemsets and rules offline for the entire data set
assuming all data is static and given apriori. That is, time
is ignored. For our experiments, we construct the PARAS
index for a single time period. However at online time if
request comes for different periods it then generates the as-
sociations from scratch.

Experimental Methodologies: The performance of our
approach and state-of-the-art algorithms is measured by:
Offline Preprocessing Time. We measure the single and
multiple data batches preprocessing time for TARA, H-
Mine and PARAS. Since DCTAR does not involve any pre-
processing, it is excluded from this measurement.

Online Processing Time. We measure the online process-
ing time for a query averaged over multiple runs (explained
in Sec 8.2) to evaluate the speedup.

Size of Pregenerated Information. We compare the
sizes of the preprocessed information. DCTAR is again ex-
cluded. The size of the tree structure in H-Mine and the size
of the TAR Archive in TARA are thus compared.

8.1 Evaluation of Preprocessing Time

We first compare the preprocessing times for H-Mine, PAR-
AS and TARA. In the offline step, as the window slides, H-
Mine (1) precomputes the frequent item sets and (2) stores
them along with their associated support value into a tree
structure. Whereas TARA (1) precomputes the frequent
item sets, (2) derives the ruleset, (3) archives them along
with the associated support and confidence values and (4)
updates the EPS-Index. PARAS proceeds with the same
process as TARA except that it does not utilize the archive
nor does it keep the pregenerated information from the pre-
vious windows. Therefore, the total preprocessing time of
PARAS is similar to TARA except for the archival time.
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Fig. 10 compares the preprocessing time of H-Mine and

TARA for all windows for the retail, TSkL50N100, T2kL100N 1k

datasets, with the system threshold settings summarized in
Tab. 3. As shown, frequent item set generation occupies
a relatively large portion of the preprocessing time as com-
pared to other tasks. This confirms prior works [7] that rule
generation is more efficient compared to frequent itemset
generation. Overall, the additional preprocessing tasks in
TARA require no more than 20% extra time than H-Mine.
This extra time gives significant advantage to TARA in
terms of truly interactive online performance and support
of many advanced exploration operations.

8.2 Evaluation of Online Processing Time

Next, we compare the online processing times (y-axis in
log scale) for our proposed operations. The user-specified
parameters, namely minsupp, minconf and time periods, are
varied. The examined queries fall into two categories: (1)
Rule trajectory and parameter recommendation queries and
(2) Ruleset comparison queries. In the first experiment, we
test the performance of TARA against the three competi-
tors using several query types, namely @1 and @3 in single
match mode. Second, we use Q2 in exact match mode to
test the performance of TARA against others. We choose
Q1, Q2 and @3 because they cover the major exploration
operations and subroutines in the online processing phase.

8.2.1 Trajectory and Parameter Recommendation

To process @1, the system needs to find the rules that

satisfy minsupp and conf in a single time period and examine
their parameter values in other specified time periods. For
DCTAR, it mines the rules from the transactions that fall
into the last window and examines their parameter values
by processing the transactions that fall into the 3 previous
windows. For PARAS, the process is identical except that
the rules are retrieved from the PARAS index built based
upon the newest window. For H-Mine, the rules are derived
and examined by using its item set index.
Impact of Varying Support and Confidence. To deter-
mine the effect of minsupp, we conduct several experiments
by fixing minconf to a constant value and varying the min-
supp value. Fig. 8 illustrate the query processing times
for retail, TSkL50N100, T2kL100N1k and webdocs datasets
with fixed minconf 0.4, 0.2, 0.2 and 0.4, respectively.

We observe that, TARA consistently outperforms DC-
TAR and PARAS by 6,7,7 and 5 orders and H-Mine by
3, 4, 4 and 4 orders of magnitude for retail, T5kL50N100,
T2kL100N1k and webdocs datasets respectively. TARA-S
stands for the implementation of TARA with the rule in-
dex inside each time sensitive stable region to support con-
tent based exploration (Q5). The merging of indexes when
dominated regions are being collected incurs extra costs as
compared to the TARA system without these rule indexes.
Especially when the number of rules in the result is small,
this extra cost results in similar or slower response time com-
pared to H-Mine as shown in Figs. 8(b) and (c). The reason
of the fast response of TARA is that it prepares sufficient
amount of information in the offline stage, so that answering
such queries is simply about searching the TARA index.

TARA-R shows the response time of returning the time-
sensitive stable region which answers Q3. Since PARAS al-
ways builds the index for the latest window, in this par-
ticular experiment, it achieves the same response time as
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TARA because only regions that fall into the latest win-
dow are considered. All other systems are not capable of
answering Q3. That is, using DCTAR and H-Mine, an ana-
lyst would need to generate all possible rules in the specified
time period and then investigate all to find the answer.
Impact of Varying Confidence. Next, we fix the minsupp
to a constant value and vary the minconf value. Fig. 9 il-
lustrates the query processing times for retail, T5kL50N100,
T2kL100N1k and webdocs datasets with fixed minsupp 0.0002
0.0012, 0.0012 and 0.1123, respectively. Overall, both TARA
and TARA-S consistently perform several orders of magni-
tude better than the three competitors.

8.2.2  Ruleset Comparison Queries

Q2 returns the differences of the rulesets w.r.t two param-
eter settings that share the same time specification. In this
particular experiment, the query is configured with the ex-
act match mode. It returns the differences of two parameter
setting across 4 windows. Since the DCTAR and H-Mine
do not support such query, we implement a subroutine in
their rule derivation module to determine if the parameter
value of the rule satisfies one setting but not the other. This
subroutine is optimized so that it does not generate the over-
lapping ruleset w.r.t 2 different settings. In this experiment,
we either fix minsupp or minconf and vary the other one.
Impact of Varying 2"¢ Support. Fig. 11 illustrates the
query processing times for retail, TOkL50N100, T2kL100N 1k
and webdocs datasets. The fixed min parameters for these
datasets are (minsuppi, minconfi, minconfz): (0.0002,
0.4, 0.4), (0.0012, 0.2, 0.2), (0.0012, 0.2, 0.2) and (0.1123,
0.4, 0.4), respectively. The query processing times increase

)
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with an increase in the minsupp because the increase of the
deviation from minsupp: to minsuppz results in larger dif-
ferences between the two parameter settings. In particular,
TARA outperforms DCTAR and PARAS by 6,7,6 and 6 or-
ders, H-Mine by 4, 5, 4 and 4 orders for retail, T5kL50N100,
T2kL100N1k and webdocs datasets, respectively.

Impact of Varying 2"? Confidence. Fig. 12 illustrates
the query processing times for retail, T5kL50N100, T2kL100N 1k
and webdocs datasets. The fixed min parameters for these
four datasets are (minsuppi, minconfi, minsu

pp2): (0.0002, 0.4, 0.0002), (0.0012, 0.2, 0.0012), (0.0012,
0.2, 0.0012) and (0.1123, 0.4, 0.1123), respectively. TARA
consistently performed several orders of magnitude better
than the three competitors.

8.3 Evaluation of Archive Size

We compare the sizes of the pregenerated information in
TARA, H-Mine and PARAS. For H-Mine, the size of the
structure is determined by the number of frequent item sets
times the number of processed partitions, while the size of
pre-stored information in TARA is determined by the size
of the TAR Archive. PARAS only pregenerates the associa-
tion in a single window. Its maximum size is 3" —2"+1 where
n is the unique items in that particular window. The actual
index sizes can be estimated by multiplying the number of
instances with the average space required per instance.

Fig 13 shows the size of the H-Mine Index, TAR Archive
and the actual number of uncompressed rule parameter val-
ues for our four datasets with the system threshold settings
summarized in Tab. 3. As TARA pre-generates rules in-
stead of only the item sets, the size of the TAR Archive is
larger than the H-Mine index. However, our encoding tech-
nique achieves favorable compression as compared to un-
compressed rule parameter values.

9. RELATED WORK

Temporal association mining. Adding the time di-
mension in the context of association rules was first men-
tioned in [14]. However, while more follow-on works [6, 9,
18] improve the efficiency of temporal association mining by
maintaining intermediate frequent item sets, all of these ap-
proaches require the user to input a specific parameter set-
ting. This one-at-a-time approach not only limits efficiency,



g e 7 e - le4 g led TARA —&—
g 1le2 = ® le3 T 1e3 B 1e3 = DCTAR —%—
g lel § 1e2 2 le2 é 162 H-Mine —6—
= 1e0 = let 2 fe1 = el -9 PARAS —B—
© qa 9 1e0 A 3
& tet & o1 8 1e0 8 1e0
= le-3 > 13 2 le2 3 le2
S led S le-4 S le-3 g 1le-3
© tes & O ges & © fea © tea
0.0004 0.0006 0.0008 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.12 0.125 0.13
Min support (0-1) Min support (0-1) Min support (0-1) Min support (0-1)
(a) retail (b) T5kL50N100 (c) T2kL100N1k (d) webdocs
Figure 11: Ruleset Comparison: Varying 2"¢ Support

T le3 7 led 7 led - le4 TARA
3 le2 P # # g 1:2 g 1e3 g 1e3 s DCTAR —%—
o lel @ o le2 1e2 H-Mine —6—
2 1e0 2 tet — 2 et & i — PARAS —E—
) o > =

- & e
T e .
g te2 £ 1e2 g ted g 1e2
S 1e-3 = S le-2 =
> > le3 > > le3
S led 9 le-4 g le3 S led —
© tes © tes © 4 Y tes

0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 06 0.7 0.8 0.4 0.5 0.6 0.7 0.8

Min confidence (0-1) Min confidence (0-1)

(a) retail (b) T5kL50N100

(c) T2kL100N1k

Min confidence (0-1) Min confidence (0-1)

(d) webdocs

Figure 12: Ruleset Comparison: Varying 2"?¢ Confidence

1e+10 . . . i
FP-Stream Index
TAR Archive E—=1
AR _m—
retail

Figure 13: Size of the TAR Archive

1e+09 -

1e+08 -

1e+07

1e+06

100000 |

# of Instances [log scale]

10000 F

L
OIS0
L]

1000

5

S|

=
4
=

21 webdocs

but also provides very limited feedback for the user.

Interestingness of temporal associations. [12, 17]
identify the importance of analyzing the interestingness mea-
sures of associations. In the context of time-variant data,
[11] measures the changes of the interestingness of the asso-
ciation w.r.t its histories. It is suggested that the interest
in the rule itself is primarily determined by the interesting-
ness of its change over time. Neither of these works tackle
interactive mining through precomputation. In contrast, we
explore the space of interestingness parameters for prestor-
ing data mining results to facilitate fast online mining.

Interactive association mining. Prior works [4, 5, 10]
have explored the space of parameters for handling data min-
ing requests. However this work is restricted to static data.
These approaches do not consider the time dimension as
a property of the pattern. Instead we now study the prob-
lem of incorporating the time dimension into the association
mining exploration process.

10. CONCLUSION

We present the first framework for interactive temporal
association analytics. Our TARA framework employs a
novel evolving parameter space model for pre-generating
rules such that near real-time performance is guaranteed for
online mining. In a variety of tested cases, TARA outper-
forms the three state-of-the-art competitor techniques, each
by several orders of magnitude, while offering a holistic ex-
ploration experience supporting new classes of time-variant
rule analytics.
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