
RDF-TX: A Fast, User-Friendly System for Querying the
History of RDF Knowledge Bases

Shi Gao Jiaqi Gu Carlo Zaniolo
University of California, Los Angeles

{gaoshi, gujiaqi, zaniolo}@cs.ucla.edu

ABSTRACT
Knowledge bases that summarize web information in RDF triples
deliver many benefits, including providing access to encyclopedic
knowledge via SPARQL queries and end-user interfaces. As the
real world evolves, the knowledge base is updated and the evolu-
tion history of entities and their properties becomes of great inter-
est to users. Thus, users need query tools of comparable power
and usability to explore such evolution histories or flash-back to
the past. An integrated system that supports user-friendly queries
and efficient query evaluation on the history of knowledge bases is
required. In this paper, we introduce (i) SPARQLT, a temporal ex-
tension of SPARQL that expresses powerful structured queries on
temporal RDF graphs, (ii) an efficient in-memory query engine that
takes advantage of compressed multiversion B+ trees to achieve
fast evaluation of SPARQLT queries, and (iii) a query optimizer that
improves selectivity estimation of temporal queries and generates
efficient join orders using the statistics of temporal RDF graphs.
The performance and scalability of our system are validated by ex-
tensive experiments on real world datasets, which shows significant
performance improvement comparing with other approaches.

1. INTRODUCTION
Knowledge bases that summarize valuable information in the

RDF format are rapidly growing in terms of scale and significance
and playing a crucial role in many applications such as seman-
tic search and question answering. The extraordinary success of
crowdsourcing and text mining for knowledge discovery makes
it easy to generate and update the information in the knowledge
bases. In fact, large knowledge bases undergo frequent changes.
Table 1 lists the statistics of Wikipedia Infobox edit history, which
shows that updates are quite common in many properties: e.g., on
average each value in the population property of the city pages is
updated more than 7 times. This is not specific to Wikipedia, but
also happens in other knowledge repositories.

The management of historical information has emerged as a crit-
ical issue for knowledge bases. In fact, timestamping is an impor-
tant part of the provenance information that is associated with each
RDF triple in the knowledge base. The evolution history of knowl-
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Category Property Average Number of Updates
Software Release 7.27

Player Club 5.85
Country GDP(PPP) 11.78

City Population 7.16

Table 1: Statistics of Wikipedia Infobox Edit History

edge bases captures and describes the change of real world entities
and properties, and thus is of great interest to users. However, the
size of the history is very large and the schema of knowledge base is
also under evolution, which presents challenges in query language,
query processing and indexing.

As the RDF model for representing knowledge bases is gain-
ing great popularity, the importance of managing and querying the
evolution history of knowledge bases is also recognized. Gutier-
rez et al. [17] extended the RDF model with time elements and
several approaches [16, 29, 30, 32] have been proposed to support
the queries on temporal RDF datasets. Most previous works em-
ploy relational databases and RDF engines to store temporal RDF
triples and rewrite temporal queries into SQL/SPARQL for eval-
uation. The languages proposed in these works use an interval-
based temporal model which leads to complex expressions for tem-
poral queries, e.g., those requiring joins and coalescing [12, 33].
At the physical level, previous approaches exploit indexes such as
tGrin [30] to accelerate the processing of simple temporal queries,
but they do not explore the use of general temporal indices and
query optimization techniques. This limits their scalability and per-
formance on large knowledge bases and for complex queries.

In this paper, we describe a vertically integrated system RDF-
TX (RDF Temporal eXpress) that efficiently supports the data man-
agement and query evaluation of large temporal RDF datasets while
simplifying the temporal queries for SPARQL programmers and
consequently, for end-user interfaces facilitating the expression of
the same queries. To support the queries over the evolution his-
tory of knowledge bases, we propose efficient storage and index
schemes for temporal RDF triples using multiversion B+ tree [7]
and implement a query engine which achieves fast query evalua-
tion by taking advantage of comprehensive indices. We also build
a query optimizer that generates efficient join orders using a cost-
based model and the statistics of temporal RDF graphs.

We propose a general and scalable solution for the problem of
managing and querying massive temporal RDF data based on three
main contributions:
• We propose SPARQLT , a temporal extension of the struc-

tured query language SPARQL based on a point-based tem-
poral model which simplifies the expression of temporal joins
and eliminates the need for temporal coalescing. This ap-
proach makes possible end-user interfaces, such as those in [6,
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15], where queries are entered via simple by-example condi-
tions in the infoboxes of Wikipedia pages.
• We present an efficient main memory system RDF-TX for

managing temporal RDF data and evaluating SPARQLTqueries.
Our system uses multiversion B+ tree (MVBT) to store and
index temporal RDF triples. An effective delta encoding
scheme is introduced to reduce the storage overhead of in-
dices. The algorithms on MVBT are extended and optimized
to exploit the characteristics of the compression scheme and
query patterns. Experimental evaluation demonstrates supe-
rior performance and scalability of RDF-TX compared with
other approaches.
• We implement a query optimizer that generates the efficient

join orders of SPARQLT query patterns using the statistics of
temporal RDF graphs. To manage temporal statistics, we in-
troduce compressed Multi-Version SB Trees (MVSBT) that
provide highly accurate estimation of statistics with a small
storage overhead.

The rest of this paper is organized as follows. Section 2 provides
an overview of RDF-TX system and temporal RDF model. Then
we present the SPARQLTquery language in Section 3. Section 4 de-
scribes our storage model and index compression techniques. The
query evaluation techniques are discussed in Section 5. Section 6
introduces a query optimizer for join order optimization. We eval-
uate our system on real world datasets in Section 7, and discuss
related work in Section 8. Finally, we conclude in Section 9.

2. OVERVIEW AND DATA MODEL
In this section, we discuss the challenges of supporting temporal

queries against the history of knowledge bases and provide a gen-
eral overview of the RDF-TX system. Then we review the temporal
RDF model introduced in [17].

2.1 Overview
The addition of temporal information to the basic RDF model

poses difficult challenges that parallel those encountered by re-
searchers working on extending the relational model with temporal
information. A first lesson learned from that experience is that sup-
porting temporal event information is simple, but state-based tem-
poral information presents many challenges. In fact, timestamps
can be associated with temporal events via standard RDF predicates
(e.g. birthDate and establishedYear). Then they can be queried as
any ordered domain.

Supporting state information is much more complex, as demon-
strated by the many temporal representations and constructs pro-
posed [12, 13, 25, 33] and the rich set of interval-based operators
required [5]. For instance, answering a simple query such as “Who
was the president of University of California on 9/9/2009?” re-
quires determining the time interval that contains 9/9/2009. In a
valid time temporal database, the curators are responsible for sup-
plying these timestamps, thus creating a valid-time history. How-
ever, in DBpedia and other web repositories, the curators do not up-
date timestamps directly: instead they update web pages and asso-
ciated Infoboxes to reflect the changes that occurred in the domain
they describe. Thus, readers of the web page will notice a change
of the president name from Mark Youdof to Janet Napolitano. The
date and time of this change, i.e. the timestamp in which the up-
date was executed by the system, is known as transaction time (or
system time) and, as such, it is constructed from the system log.

Whereas tardy curators will eventually enter the correct valid
time, any tardiness of their actions adds permanently to the im-
precision of a transaction time databases. Nevertheless, when as in

Figure 1: RDF-TX Architecture

the case of Wikipedia, valid time histories are not available, trans-
action time history will provide a reasonable substitute. Indeed,
since the varying tardiness with which Wikipedia Infoboxes are re-
freshed has not damaged their popularity, it is reasonable to expect
that databases describing their system time history will be equally
popular, particularly when users are given tools to compensate for
temporal imprecision1.

Moreover, there are other scenarios in which transaction time
histories are needed:
• History Browsing and Analyzing [14, 15]. The history of

knowledge base captures the revisions of knowledge, which
is of great interest for editors and users to understand how
the knowledge is evolved and updated.
• Knowledge Auditing and Verification [35]. Timestamping, as

an important part of provenance, is important for ensuring the
quality of facts in many applications. A system with tempo-
ral query support also provides administrators with previous
states of knowledge bases for auditing purposes.
• Backup and Recovery. The history of knowledge bases can

be used to backup and recover missing information.
In this paper we present query extensions and an efficient system
for managing and querying the transaction time history of knowl-
edge bases. However, the user model and query constructs apply
to valid-time histories as well. At the physical level, although the
storage structure is designed for the transaction time model, our
implementation remains effective for most valid-time histories as
discussed in our technical report [2].

Figure 1 shows the high level architecture of our system, which
can be divided into two main components as follows.
Historical Query Compiler. To express queries against the his-
tory of knowledge bases, we introduce a temporal extension of
SPARQL called SPARQLT . Users can write and submit SPARQLT

queries through our interface. Then the SPARQLT queries are com-
piled to query plans represented as graphs of query patterns and
passed to the temporal query optimizer. The optimized query plans
are submitted to the Execution Engine for evaluation.
Execution Engine. In our engine, the historical information is rep-
resented as temporal RDF triples and stored using compressed MVBT
indices that support fast query processing. The query processor
transforms the query plans from compiler to execution plans ex-
pressed in query operators (e.g. temporal selection and join) and
executes them on the compressed MVBT indices.
1Provenance annotations that record the tardiness of refreshes can
go a long way to cure this problem.
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Predicate Object Timestamp

president
Mark Yudof 06/16/2008 . . . 09/29/2013

Janet Napolitano 09/30/2013 . . . now
endowment

(billions)
10.3 07/01/2013 . . . 06/30/2014
13.1 07/01/2014 . . . now

undergraduate
184,562 05/14/2013 . . . 01/29/2015
188,300 01/30/2015 . . . now

staff
18,896 08/29/2013 . . . 01/29/2015
19,700 01/30/2015 . . . now

budget
(billions)

22.7 01/30/2013 . . . 01/29/2015
25.46 01/30/2015 . . . now

Table 2: Temporal RDF Triples for University of California

2.2 Data Model
Knowledge bases such as DBpedia [10] and Yago2 [18] can be

represented as RDF graphs which consist of RDF triples in the for-
mat (subject, predicate, object). The subject and predicate of an
RDF triple are elements from the set of Uniform Resource Identi-
fiers U , while the object is a URI from U or a value from the set
of literals L. For example, the RDF triple for “The president of
University of California is Mark Yudof.” is:

• subject: http://www.w3.org/edu/University_of_California
• predicate: http://www.w3.org/elements/president
• object: http://www.w3.org/people/Mark_Yudof

For the sake of simplicity, we do not discuss the concept of blank
nodes and assume the prefix parts of URI (e.g. http://www.w3.org/
edu/) are given. Above RDF triple is represented as (University of
California, president, Mark Yudof ).

Since the basic RDF model is designed for static information,
we represent the evolution history of knowledge bases using the
temporal RDF model proposed in [17] that extends the RDF model
with temporal elements. Each RDF triple is annotated with a tem-
poral element to represent the time when this triple is valid. For-
mally, given a point-based temporal domain T , a Temporal RDF
Graph consists of a set of temporal RDF triples where each tempo-
ral RDF triple is a RDF triple (s, p, o) annotated with a temporal
element t ∈ T . A set of temporal RDF triples with consecutive
time points {(s, p, o) [t] | ts ≤ t ≤ te} are encoded using the
interval-based expression as: (s, p, o) [ts . . . te].

The evolution history of subject University of California is rep-
resented as a set of temporal RDF triples, as shown in Table 2. All
the triples share the same subject University of California. We use
DAY as the granularity of time and now as the current time. Typi-
cally, one triple is valid over several days, which we represent with
. . . between the start day and the end day (start and end included):
e.g. [07/01/2013 . . . 06/30/2014] represents all the days between
07/01/2013 and 06/30/2014.

3. SPARQLT QUERY LANGUAGE
To support temporal queries over the history of knowledge bases,

we propose a temporal extension of SPARQL called SPARQLT.
One main difference between SPARQLT and previous works is the
choice of the temporal model. Many existing works [29, 30, 32]
use the interval-based model because of efficiency considerations.
However, to express temporal queries, the interval-based represen-
tation requires additional operators such as temporal interval over-
lap, intersect and coalesce, which introduce complications and dif-
ficulties [12, 42], particularly for casual users working with friendly
wysiwyg interfaces. Therefore, we use a point-based temporal model
that resolves these problems at the logical level; however at the
physical level we retain the interval representation for efficiency

reasons. Queries on the point-based model can be easily mapped
into equivalent ones on the interval-based model for execution.

3.1 SPARQLT Syntax
SPARQLTextends SPARQL with temporal patterns and constructs

to query temporal RDF data. To simplify our presentation, we first
review the standard syntax of SPARQL [28] and then explain our
temporal extension.
SPARQL graph patterns are defined as follows:
• A SPARQL graph pattern is a triple {s p o} from (U ∪ L ∪
V)× (U ∪ V)× (U ∪ L ∪ V) where V is a set of variables.
• If S and S′ are SPARQL graph patterns and F is a filter

clause, (S AND S′), (S OPT S′), (S UNION S′) and (S
FILTER F ) are also graph patterns.

where (S AND S′), (S OPT S′) and (S UNION S′) denote the
conjunction, optional and union graph patterns.

Temporal queries against the history of knowledge bases are ex-
pressed as SPARQLT graph patterns.
SPARQLT graph patterns are defined as follows:
• A SPARQLT graph pattern is a tuple {s p o t} from (U ∪
L ∪ V)× (U ∪ L)× (U ∪ L ∪ V)× (T ∪ V).
• If P and P ′ are two SPARQLTgraph patterns and F ′ is a filter

clause, (P AND P ′) and (P FILTER F ′) are also SPARQLT

graph patterns.
Where F ′ is constructed using the elements from U ∪ L ∪ T ∪ V ,
comparison symbols, logical connectors and the temporal built-in
functions discussed next. In SPARQL, there are 8 types of graph
patterns as: S, P, O, SP, SO, PO, SPO, and full scan. For example,
SP refers to a query pattern in which subject and predicate are con-
stants and object is a variable. SPARQLTsupports 16 types of graph
patterns, which enable the expression of many interesting queries
over temporal RDF graphs.

(P UNION P ′) and (P OPT P ′) are not supported in current
SPARQLT, and their implementation is planned for the future. In
current state, SPARQLT supports efficiently all the queries described
in this paper, including the applications discussed in Section 2.1.
In passing we observe that they follow the patterns of (i) retrieving
information from a previous version of knowledge bases, and (ii)
joining the information with similar keys and timestamps. These
two scenarios correspond to two operators: single graph pattern
matching and temporal join that are supported very efficiently in
our system.
Time Representation and Functions. In SPARQLT , timestamp is
from a discrete time domain with a minimum unit as chronon [13].
We define two temporal types: dateTime and period. dateTime cor-
responds to a single timestamp. period corresponds to a set of con-
secutive timestamps, represented as a pair of two datetime points.
For timestamps, SPARQLT is equipped with YEAR/MONTH/DAY
functions to enable flexible temporal conditions. For periods, we
define two built-in functions TSTART and TEND to return the first
and last element in a set of consecutive timestamps.

Many temporal queries involve the reasoning of duration. Thus
we define a built-in function LENGTH that counts the number of
time units (we use DAY as the minimum unit in this paper) within
the same consecutive period of time. If one fact is associated with
multiple intervals, we return the length of max duration. Another
similar function TOTAL_LENGTH is defined to compute the total
length of all intervals.

3.2 Semantics and Examples
SPARQLT is a graph matching language for querying temporal

RDF data. The input of a SPARQLT query is a temporal RDF
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graph and the output is a set of mappings that replace the variables
with values from the input temporal RDF graph. The operators
of SPARQL are extended to manipulate the temporal element t of
SPARQLTgraph patterns. For single pattern matching, the query re-
sult is the set of temporal RDF triples that match the graph pattern
and the filter clause. If there are two or more patterns in the query,
the results of single pattern matching are joined. Due to space lim-
itations, we omit the discussion of formal semantics which can be
instead found in our technical report [2]. All the syntax discussed in
previous section are implemented in RDF-TX . Next we illustrate
the usage of SPARQLT via several examples.

Temporal Selection. We first discuss temporal selection queries
that have one query pattern (a four-element tuple {s, p, o, t}). An
example of temporal selection query is the “when” query that re-
trieves the valid timestamps of given facts. Users only need to spec-
ify the values for (s, p, o) and a variable for the temporal element.

EXAMPLE 1. When did Janet Napolitano serve as the president
of University of California.
SELECT ?t

{University_of_California president Janet_Napolitano ?t}
In the query result, the timestamps will be displayed in the com-

pact format [ts . . . te]. Running Example 1 against the temporal
RDF graph in Table 2 returns [09/30/2013 . . . now]. Another com-
mon type of temporal selection queries retrieves information from
a previous version of the knowledge base. The temporal constraints
(e.g. within a period) can be specified in the FILTER clause.

EXAMPLE 2. Find the budget of University of California in
2013.
SELECT ?budget
{University_of_California budget ?budget ?t .
FILTER(YEAR(?t) = 2013) }

EXAMPLE 3. Find each person who served as the president of
University of California for more than one year before 2010.
SELECT ?person ?t
{ University_of_California president ?person ?t .
FILTER(YEAR(?t) <= 2010 && LENGTH(?t) > 365 DAY)}
Temporal Join. More complex queries often use temporal joins

which, in SPARQLT , are expressed by multiple query patterns that
share the same temporal element. General temporal join may in-
volve both key and temporal dimensions.

EXAMPLE 4. Find the name of the university in which Mark
Yudof served as the president and the number of undergraduate
students when he was in office.
SELECT ?university ?number ?t
{?university undergraduate ?number ?t .
?university president Mark_Yudof ?t . }

Queries using multiple temporal joins are rather simple to ex-
press in SPARQLT, whereas in languages based on an interval-based
temporal model, such queries tend to be much more complex. For
example, if users want to search the number of undergraduate and
graduate students when Mark Yuodf was in office, we only need to
add one more query pattern: {?university graduate ?number2 ?t}
to Example 4. If we switch to interval-based model, the query will
consist of three query patterns and three temporal conditions: ?I1
overlap ?I2, ?I1 overlap ?I3, ?I2 overlap ?I3 where ?I1, ?I2, ?I3
are three variables for intervals.

Besides temporal join, the point-based query patterns also sup-
port the expression of other temporal operations such as MEET and
CONTAIN using the built-in functions TSTART and TEND.

EXAMPLE 5. Find who succeeded Mark Yudof as the president
of University of California.

SELECT ?successor
{ University_of_California president Mark_Yudof ?t1 .

University_of_California president ?successor ?t2 .
FILTER(TEND(?t1) = TSTART(?t2)) . }

4. STORAGE AND INDEXING
Since the performance of query engines is heavily influenced by

its use of indices, it is important to choose an appropriate index
structure as well as storage schema for the temporal RDF data.

A natural approach followed by previous works [29] consists in
managing temporal RDF triples using existing RDBMS. However,
for searching both RDF information and temporal information, two
sets of indices are required, and this results in significant costs in
storage and retrieval time, which are shown in Section 7. A second
natural approach will be using RDF engines, such as Jena and Vir-
tuoso, which have seen recent improvements in performance and
functionality. However, this requires the standard RDF reification
approach in which a temporal RDF triple is represented as an entity
instance with five properties: subject, predicate, object, start time
and end time. Thus we need to use five triples for each temporal
fact, whereby the space cost increases along with complexity of the
queries and time required to optimize and execute them.

Therefore, rather than modifying and extending existing systems
we design and build a new system that integrates advanced indexing
and data compression techniques into an architecture conceived for
efficient support of SPARQLT queries

4.1 Index Scheme
Many index structures [7, 19, 22, 24] have been proposed for

temporal data. Each index has its own strength and they have
shared issues such as space overhead and limited support for gen-
eral temporal queries.2 In this project, we employ Multiversion
B+ Tree (MVBT) to index temporal RDF data for the following
reasons. First, MVBT is a bi-dimensional index with asymptotic
worst-case guarantee and delivers good performance in real world
datasets. Second, we propose an effective approach to compress
MVBT which greatly reduces the space cost. The algorithms [8,
41] are extended and optimized on compressed MVBT to enable
fast index scan and join. Next we briefly review the structure of
MVBT and discuss the index scheme in RDF-TX system.

4.1.1 MVBT
Multiversion B+ Tree [7] is a temporal index structure with op-

timal worst case guarantees for data insert, update, and delete. The
complexity of a temporal query in version i is asymptotically equal
to the complexity of the query on a B+ tree that maintains all the
data valid in version i. Rather than a single tree, an MVBT is ac-
tually a forest of trees. It has multiple root nodes and each of them
corresponds to a temporal partition of data, as shown in Figure 2(a).
An entry in the MVBT node can be represented as (key, start ver-
sion, end version, data value/pointer) where key is unique for a
given version and start version and end version together denote the
live period of data. An entry that stores data inserted in version i
carries a period of (i, now). We denote an entry with end version
now as a live entry. The delete operation modifies the end version
of a live entry.

A simple example of MVBT insertion/deletion is shown in Fig-
ure 2(b). We first insert five values into an empty MVBT in Version
1, which results in an MVBT tree (i). Then we insert key 14 in Ver-
sion 2 and delete key 46 in Version 3. The MVBT index becomes

2A detailed discussion of temporal index can be found in Section 8.
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Figure 2: MVBT Example (a) Index Structure; (b) Data Insertion and Deletion; (c) Node Structure Changes.

(ii) with <14, 2, *> added to Node A and <46, 1, *> changed to
<46, 1, 3> in Node B.

To guarantee the performance, MVBT has weak version condi-
tion that there must be at least k live entries in a live node. When
there are too many entries or not enough live entries (weak version
underflow) in an MVBT node, node structure changes (version split
or merge) are triggered. After structure changes, the number of live
entries in a node should be in the range [kl, kh] (strong version
condition), which prevents long sequences of split and merge oper-
ations.

There are four types of node structure changes in MVBT, illus-
trated in Figure 2(c). We assume that an insertion results in too
many entries in a node O. Then a Version Split is performed that
copies all the live entries in O to a new node N. If node N has more
than kh entries, then an additional key split is performed that splits
N into two nodes, as shown in Version & Key Split. If N has less
than kl entries, Merge is triggered.

Assume we need to perform Merge operation on the node O1.
MVBT identifies a live sibling node O2, performs version split and
copies the live entries into the new node N. If node N has more
than kh live entries, a key split is performed immediately, as shown
in Merge & Key Split. Due to the space limitation, we address the
readers to [7] for more details of MVBT node structure changes.

4.1.2 Indexing Temporal RDF
In RDF-TX all the data and indices are stored in the main mem-

ory. We implement in-memory MVBT to index the temporal RDF
triples. The insertion of an interval-encoded RDF triple {(s, p, o)
[ts, te]} on MVBT index M is decomposed into two operations :
(i) insert data item (s, p, o) into M at time ts; (ii) delete data item
(s, p, o) at time te.

Since the variable may be located in any position of (s, p, o),
we create four MVBT indices (SPO, SOP, POS, OPS) for differ-
ent orders of keys (s, p, o). These MVBT indices cover all 16
SPARQLT graph patterns. For example, the MVBT index for tem-
poral RDF triples in POS order can cover four patterns: P, PT, PO,
POT. In query evaluation, the query engine parses the SPARQLT

prefix patterns to identify the corresponding MVBT index.
We employ dictionary encoding in the index construction, which

reduces the index size and avoids the slow comparison between
long string literals. Thus RDF-TX replaces the literals with dic-
tionary IDs, and the triples that consist of IDs and timestamps are
inserted into our indices. The mapping relations are maintained
in our in-memory dictionary for index update and query evalua-
tion. Since the main space cost in our indices is the large number
of MVBT entries, dictionary encoding only reduces space cost by
10% - 20%. After dictionary encoding, we exploit delta compres-
sion which significantly reduces the space cost of MVBT indices.

4.2 Index Compression
For the Wikipedia Infobox History, the size of one standard MVBT

index implemented in Java is 1.5–2.2 times of the raw data. More-

over, a temporal RDF graph requires four MVBT indices. If a naive
approach is used, comprehensive indexing of temporal RDF data
becomes prohibitively expensive. Thus effective compression tech-
niques are needed for large scale datasets.

We observe two characteristics of MVBT. First, the entries in
the MVBT node are sorted and neighboring entries often share the
same prefix, which could be utilized to reduce space cost. Second,
all the node structure operations start from version split. This guar-
antees the query performance but leads to a lot of long intervals.
Given these characteristics, we introduce an effective delta encod-
ing method to compress MVBT indices.

4.2.1 Compression Techniques
We design a compression scheme for variable delta encoding of

MVBT entry. An MVBT entry for temporal RDF data consists of
five values: (v1, v2, v3, ts, te) where v1, v2, v3 are elements in RDF
triples. We store the minimum values for keys and timestamps in
each node as base values. Since the data entries are sorted by start
version (ts) and key, most entries have very close start versions.
Therefore for ts, we only keep the minimal value of each node, and
compute and store the delta start versions. For te, the compression
rules are as follows: (i) if the valid interval (ts, te) is a short inter-
val, te is stored as the length of intervals; (ii) if the valid interval
is long, te is stored as the delta value between te and minimum te
in the node; (iii) if the valid interval is a live interval (te is now),
a special flag is set and te is stored as empty. Other values (v1,
v2, v3) are compressed as the delta values (i) between current value
and the value in neighbor entry or (ii) between current value and
minimum value in leaf node.

The compressed values are stored in a compact byte array. Fig-
ure 3(a) illustrates the format of compressed MVBT entry. Every
entry consists of three parts: header, key block (v1, v2, and v3),
and time block (ts and te). A normal header (2 bytes) contains a
flag (H Flag, 1 bit) for header type (normal/compact), a payload
(13 bits in total, 7 bits for key block and 6 bits for time block) that
stores the number of bytes for each delta value, and the te flag (2
bits) that records the compression rule for te. For the delta values
in key block, we use 1 bit to record how the delta is computed (with
neighbor or with node minimum value).

We observe that in large datasets, it is very common that two
neighboring MVBT entries (i) share at least one element in key
block; (ii) have very close ts (delta size ≤ 4 bytes) (iii) both te are
now. Thus for these entries, we propose a compact header which
consists of 1 bit header type and 7 bits payload (for two delta values
in key block and ts delta value).

There is a trade-off between the compression ratio and query
performance. Since the number of index nodes is much smaller
than the number of leaf nodes and the index nodes are accessed
more frequently than leaf nodes, we only compress the leaf nodes
of MVBT indices. As shown in evaluation (Section 7), the size of
compressed MVBT is about 24% of standard MVBT.

We build MVBT indices for different subsets of Wikipedia dataset
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Uncompressed Value1, Value2, Value3 Ts, Te 

Compressed 

H Flag Payload Te Flag

Header (2 bytes) Key Block

V1 Flag

Time Block 

V1 Data ... ...

Compact Header (1byte) H Flag Payload

(a)
# of triples (million) 5 10 15 20 25 30
Time (seconds) 1.36 2.65 3.87 4.81 6.18 7.25

(b)

Figure 3: (a) Compressed MVBT Entry (b) Compression Time

and then test the time for compressing MVBT entries, as shown in
Figure 3(b). The result shows that it takes very little time to apply
the delta encoding technique. Given an MVBT index built from 30
million temporal RDF triples, the time for compressing all the leaf
nodes is only 7.25 seconds.

4.2.2 Index Maintenance
An important principle of index compression is to reduce the

storage overhead while maintaining the performance of index up-
date and search. For data insertion, we first look up index nodes and
identify the leaf node to be updated. In the leaf node, we decom-
press the start versions (ts) to find the position of input start version
i and compute the delta values of input data. Then we modify the
(i + 1)th entry if its delta values are changed. One issue is that we
need to scan from the beginning of all entries. To address this is-
sue, we add a checkpoint in each node that stores the position of
MVBT entry with largest ts. Then in data insertion, since the ts
of input data must be larger than existing ts, we only decompress
the entries after checkpoint. Deletion in MVBT only updates the
end version of a live entry. Thus we simply scan all the entries and
modify the te of the matched entry. As shown in Section 7, inser-
tion/deletion on compressed MVBT only takes 5% more time than
standard MVBT.

5. QUERY PROCESSING
In this section, we present the design and implementation of

RDF-TX query engine, which makes use of MVBT to process the
temporal operations of the language.

5.1 Compiling SPARQLT Query
The overall evaluation of SPARQLTqueries consists of four steps:

• Parse the input query and translate point-based query pat-
terns to interval-based query patterns.
• Construct a query plan. The plan is represented as a graph in

which each node is an interval-based query pattern.
• When the query contains multiple temporal joins, optimize

the query plan to improve the join order.
• Translate the query plan to an execution plan that is evaluated

on compressed MVBT indices.

Next we elaborate each step with more details.
Translating Query Patterns. Since the temporal RDF graph

is stored as interval-based temporal RDF triples, we translate the
point-based SPARQLT query patterns to the interval-based patterns
that can be converted to range queries and executed on MVBT. For
key elements, we take the literals as prefix and convert the unknown
parts to key ranges. For temporal element (t), if there exist temporal
constraints in the FILTER clause, we generate time ranges based

time

key

A
C

B
D

E

Figure 4: An Example of MVBT Backward Link

on the constraints; otherwise, the default range is [0, now] where
0 refers to the minimum time point. Consider the query pattern
{University of California budget ?budget ?t} (YEAR(?t) = 2013)
in Example 2. The interval-based query pattern can be described as
a query region with key range and time range as follows:
• key range: (University of California, budget, _ ) – (Univer-

sity of California, budget,∞)
• time range: 01/01/2013 – 12/31/2013

Here _ and∞ denote the extrema of the string domain.
Constructing and Optimizing Query Plan. The query engine

generates a query plan that consists of interval-based query patterns
from the first step. This query plan can be represented as a graph
in which the edges between the nodes are added when two query
patterns share the same variable. If there are multiple join opera-
tions, the query optimizer (discussed in Section 6) is called to find
efficient query plans using the statistics of temporal RDF graphs.

Executing the query plan on MVBT. Lastly, the optimized plan
is translated to an execution plan which is similar to the query plan
in relational databases. Every query pattern is converted to an in-
dex scan operator on MVBT indices. Then the join operators are
added based on the optimized join order. Finally, appropriate filter
operators are added using the FILTER clause of SPARQL.

5.2 Executing Query Plan
Next we describe the implementation of index scan and tempo-

ral join in RDF-TX . Other operators (e.g. filter) are implemented
similar to their counterparts of existing engines thus omitted.

5.2.1 Index Scan
We perform an index scan for each interval-based query pattern.

For the index scan on MVBT, we employ the link-based range-
interval algorithm [8] which introduces Backward Link in MVBT to
process the range queries. The MVBT leaf nodes are equipped with
backward links that point to the temporal predecessors. The index
scan is performed as: (i) search all the nodes that intersect the right
border of query region; (ii) follow the backward links of the nodes
to find all the nodes that intersect query region; (iii) scan the leaf
nodes found in the first two steps to retrieve the entries. An example
of linked index scan is shown in Figure 4. The shadowed rectangle
represents a query. MVBT nodes D and E are first visited. Then
as the predecessor of D and E, node B is checked. Lastly, node A
is visited.

5.2.2 Temporal Join
Temporal join represents one of the most expensive operations

in the temporal query language, especially when the size of knowl-
edge base is very large. Therefore we explore three types of joins:
Merge Join, Hash Join, and Synchronized Join.

Merge join is very popular and widely used in existing SPARQL
engines [27, 38]. These systems build indices for all permuta-
tions so that the optimizer leverages the indices to perform order-
preserving merge joins. However, this does not work for MVBT
index since the entries are sorted by time. We mainly use Hash
Join in our query engine.
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When the size of result is large, the cost of building a hash table
may be very expensive. Thus we extend the synchronized join [41].
The basic idea of synchronized join is as follows: (i) synchronously
find the set of all MVBT node pairs (e1, e2) that intersect each other
and the right border of query region; (ii) join e1 and e2; (iii) join the
predecessors of e1 and e2 by following the backward links. This al-
gorithm avoids materializing the intermediate result, but it is much
slower than hash-based join since one page and its predecessors are
visited many times. So we optimize this algorithm by caching re-
cently visited records; that is, given a page e from step (i), we cache
the records in e and its predecessors, and perform joins between e
and other pages. This optimized synchronized join is used when
the query pattern in the join accesses a large portion of index (e.g.
find all the triples valid in a certain period).

6. OPTIMIZATION
In RDF-TX , improper join orders may generate large interme-

diate results and slow down execution. Therefore, a natural step
is to optimize complex SPARQLT queries by finding efficient join
orders. The key of join optimization is to efficiently estimate the
costs of different join orders, which is not a trivial task for tempo-
ral queries. In this section, we present a query optimizer that uses
estimated statistics of temporal RDF graph to optimize the orders
of temporal joins in SPARQLT queries.

6.1 RDF-TX Query Optimizer
For queries that involve multiple temporal joins, we implement

a query optimizer that uses the bottom-up dynamic programming
strategy [23] to find the cost-optimal query plans. Our optimizer
generates multiple query plans and finds the plan with lowest esti-
mated cost. A large query plan is generated by joining two small
optimal query plans. The cost is computed based on the cardinali-
ties of query patterns and intermediate results.

The cardinality estimation is a well-studied problem in relational
databases and SPARQL engines [26, 27, 31]. To estimate the cardi-
nality of join result, an effective approach is characteristic set [26].
In a RDF graph R, the characteristic set SC(s) of a subject s is the
set of related predicates: SC(s) = {p|∃o, (s, p, o) ∈ R}.

The idea of characteristic set is that semantically similar sub-
jects (e.g. University of California and University of Michigan)
usually have the same characteristic set. For every characteristic
set, the number of distinct subjects that belong to the characteristic
set, and the number of occurrences of the predicates in these sub-
jects are recorded and used to estimate the cardinality. For exam-
ple, given a characteristic set {president, undergraduate}, there are
100 distinct subjects belong to this characteristic set. The numbers
of occurrences for president and undergraduate are 150 and 110
respectively. Consider a SPARQL query with two query patterns:

SELECT ?s ?o1 ?o2 .
{?s president ?o1 .

?s undergraduate ?o2 . }
Suppose that only this characteristic set contains both predicates

in the query. Then the result cardinality is estimated as: 100 × 150
100

× 110
100

= 165.
Characteristic sets provide highly accurate estimation of cardi-

nality. But it can not be used to estimate the cardinality of SPARQLT

queries since the statistics of temporal RDF graph vary on different
time points. Consider following SPARQLT query:

SELECT ?s ?o1 ?o2 ?t
{?s president ?o1 ?t.

?s undergraduate ?o2 ?t.

time
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Figure 5: An Example of MVSBT Entry Split

FILTER(?t ≤ 01/01/2013) . }
To estimate the cardinality of this SPARQLT query, we need to

know the number of subjects that (i) belong to the set of temporal
RDF triples valid in the period [0, 01/01/2013] and (ii) share the
the characteristics set {president, undergraduate}. These statistics
change with time and none of existing data structures can provide
estimation of these statistics. Thus we introduce a temporal his-
togram to maintain the statistics of temporal RDF data in next Sec-
tion. With temporal histogram, the characteristics sets can be easily
integrated into our query optimizer.

6.2 Temporal Histogram
The problem of estimating the statistics of temporal RDF data

is similar to the temporal aggregation that computes the aggregate
value in a certain period. Thus we propose Compressed MVSBT that
extends the temporal aggregate index Multiversion SB Tree to main-
tain the statistics of characteristic sets.

6.2.1 MVSBT
MVSBT [39, 40] is a temporal index that combines the features

of MVBT and SB Tree [37] and supports the dominance-sum query.
Given key k and time t, it returns the aggregation value of data
records with keys less than k and timestamps smaller than t.

Similar to MVBT, MVSBT is a forest of trees with multiple root
nodes and each of them points to an SB Tree for a temporal partition
of data. Each entry in MVSBT corresponds to a rectangle in the
key-time space. The structure of MVSBT entry is as follows:

• Leaf Entry: < ks, ke, ts, te, v >
• Index Entry: < ks, ke, ts, te, v, ptr >

A leaf entry has a key range (ks, ke), an interval (ts, te), and a value
v. The key range and the interval represent the rectangle covered by
this entry in the key-time space. v maintains the aggregate value.
The index entry has one additional pointer ptr that points to a child
node. The rectangles of the entries are mutually disjoint and the
union of all the rectangles is equal to the whole key-time space.

The node structure of MVSBT is similar to MVBT while the in-
sertion algorithm is quite different. First we need to review two
concepts introduced in [39]. Given a point (k, t), and max key
value max_key, an entry is referred as partly covered entry if its
key range intersects the range [k, max_key] but not contained in
this range; an entry is referred as fully covered entry if its key range
is contained by the range [k, max_k]. When a new point p (k, t) is
inserted into a node N , the fully covered entries are vertically split
at t. If there exists a partly covered entry, then p is inserted into the
child page. If node N is in the leaf level, the partly covered entry
is split into three entries based on point p. The node structure oper-
ations of MVSBT are similar to the ones of MVBT (Section 4.1.1)
thus omitted.

An example of MVSBT for aggregate COUNT is shown in Fig-
ure 5. Figure 5(a) shows the initial entry of an empty MVSBT. The
aggregate value is 0 since no point is inserted. Then one point with
key 30 and timestamp 2 is inserted. The initial entry is split into
three entries as shown in Figure 5(b). The entry on the top right
corner has aggregate value 1 and other entries has aggregate value
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Algorithm: leafEntrySplit(nf , r, q)
Input: CMVSBT leaf node nf , entry r, new point p (k, t)
1: r.c = r.c + 1
2: if p.k > r.km then
3: r.km = p.k
4: r.tm = p.t
5: if r.c = cm then
6: if r.km 6= r.ks and r.tm 6= r.ts then
7: // Split r to three entries
8: v′ = r.c/2 + r.v
9: r1 = new entry(r.ks,r.km,r.tm,r.te,ks,tm,v′,0)

10: r2 = new entry(r.km,r.ke,r.tm,r.te,km,tm,r.c/2,0)
11: nf .add(r1); nf .add(r2)
12: r.te = r.tm
13: else
14: // Split r to two entries, similar to step 7 - 11, omit

Algorithm: indexEntrySplit(ni, r, p)
Input: CMVSBT index node ni, entry r, new point p (k, t)
1: r.list.add(p)
2: if length(r.list) == lm then
3: r1 = new entry(r.ks,r.ke,p.t,r.te,new list(),r.ptr,r.c)
4: ni.add(r1)
5: r.te = p.t

Figure 6: Algorithms for Entry Split in CMVSBT

0 since all the points in top right entry are larger than split point
(30, 2). Suppose we have two queries (10, 1) and (40, 5). The first
query point falls in the left entry and returns 0. The second query
points falls in the top right entry and thus gets the result 1.

6.2.2 Compressed MVSBT
Although MVSBT has good performance on temporal aggrega-

tion, it takes too much space for storage. Since query optimization
does not require very accurate estimates, we can trade accuracy
with efficiency. Compressed MVSBT (CMVSBT) is based on the
idea that instead of accurately recording the points and splitting en-
tries for every new point, a CMVSBT entry contains m (m ≥ 1)
points. Then we can estimate the aggregate value using the ratio of
covered space to full space. Instead of storing the exact values of
points, we store the statistic values such as total number of points
and max value. The structure of CMVSBT entry is as follows:

• Leaf Entry: < ks, ke, ts, te, km, tm, v, c >
• Index Entry: < ks, ke, ts, te, list, ptr, c >

where ks, ke, ts,te are for the key range and associated time inter-
val. km and tm store the max key value and time value of the points
located in the rectangle of this entry; list is a list of points; ptr is
the pointer to a CMVSBT node; v and c are fixed and current statis-
tic values. fixed statistic value refers to the aggregate value, while
current statistic value refers to the aggregate value computed over
the points contained in the current entry. The final statistic value is
estimated by combining both values (discussed in Section 6.3).

Since the index nodes are visited more frequently than leaf nodes,
we store the exact values of points in a list in the index nodes,
while in leaf nodes we only maintain three statistics (km, tm, c).
The algorithm for data insertion in CMVSBT is similar to the one
for MVSBT. Instead of splitting the entry for every input point,
CMVSBT entry is split when the number of points in an entry is
larger than the threshold. The split point is (km, tm). The algo-
rithm for entry splitting in CMVSBT for COUNT is shown in Fig-
ure 6. Let cm and lm denote the thresholds for the number of points
in leaf nodes and index nodes. When a new point p (k, t) is inserted
into compressed MVSBT, we look up the index nodes to find a set
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Figure 7: An Example of CMVSBT Entry Split

of nodes N whose rectangles cover this point. In a leaf node nf ,
if p falls in the rectangle, c is increased by 1, and the max values
(km, tm) are updated if p.k > km or p.t > tm. Then if c = cm,
we split the entry based on the position (km, tm). After split, the
statistical values (v) of new entries will be equal to (i) c/2 + v
if the new entry has the same ks with old one; (ii) c/2 otherwise
(based on the logical splitting in MVSBT [40]). We use c/2 since
we assume the points are uniformly distributed in the entry. The c
of new entries are initialized to be 0. In an index node ni ∈ N , if
ri is the lowest entry that fully covers p, p is appended to the end of
list. Like MVSBT, compressed MVSBT also assumes that the data
items come in nondecreasing time order. Thus list is automatically
sorted by time. If length(list) = lm, the entry is split on p.t and
c is copied to new entry. If r.km = r.k or r.tm 6= r.ts, the split
point (r.km, r.tm) falls on the borders of rectangle. Then r is split
into two entries. When we set cm = 1 and lm = 1, the algorithm
in Figure 6 is the same with the split algorithm of MVSBT. More
details about CMVSBT construction are available in our technical
report [2].

Here we prepare a simple example to illustrate the process of
entry split in CMVSBT. We assume that we have inserted six points
into a compressed MVSBT, as shown in Figure 7(a). The threshold
cm is set to be 6. The max key r1.km is 30 and the max time
r1.tm is 6. Although the rectangle of r1 is the whole space, all the
points fall in the effective rectangle rec (key range:[0, km], time
range:[0, tm]). Since r1.c ≥ 6, we split it into three rectangles as
shown in Figure 7(b). The values of r1 are not changed since all the
points still fall in r1. r2.v is approximated by the number of points
covered by the virtual center of r2 (the red point). As we can see,
the red rectangle covers half of rec, so r2.v = r1.c/2 + r1.v = 3,
r3.v = r1.c/2 = 3.

For each characteristic set, we need to maintain: (i) the number
of distinct subjects and (ii) the number of predicate occurrences.
As discussed in next section, each type of statistic values requires
two CMVSBTs: one for start points and one for end points. Thus
our temporal histogram consists of four CMVSBTs and the schema
of characteristic sets. In RDF-TX , we set the max size of temporal
histogram as 10% of raw data. If the size of temporal histogram
is larger than the threshold, we increase cm and lm and merge the
neighbor entries until the temporal histogram is small enough.

6.3 Statistics Estimation
Given a query q (k, t), compressed MVSBT estimates the statis-

tics of data records with keys less than k and timestamps smaller
than t. The query algorithm consists of two main steps: (i) starting
from root node, we look up the CMVSBT nodes whose rectan-
gle covers q; (ii) in each node, we find all the rectangles whose
time range contains t and ks ≤ k, and accumulate the approxi-
mate statistic value va of these rectangles. In a CMVSBT entry,
va equals to the sum of fixed statistics value v and current statistic
value ve. ve is approximated by multiplying c by the proportion
of query region in the rectangle ratio, as c × ratio where ratio
= ratiok × ratiot. If q.k ≥ r.k, ratiok = 1; otherwise, ratiok
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Figure 8: (a) Compression Saving for MVBT Index; (b) Index Size Comparison. The size of dictionary is included in the results.

= (r.km − q.k)/(r.km − r.ks). And ratiot can be computed in a
similar way.

The query pattern in SPARQLT is translated to a range query
which is not supported by CMVSBT. Thus we use the query reduc-
tion approach [40] which reduces one range query into four point
queries. In this approach, we need two CMVSBTs for the start
points and end points of temporal RDF triples. Then the statistics
in the query region (key: [k1, k2], time: [t1, t2]) is calculated as:
Qs(k2, t2) - Qe(k2, t1) - Qs(k1, t2) + Qe(k1, t1)

whereQs(k, t) andQe(k, t) refer to the point queries on the CMV-
SBT of start points and end points respectively.

During query optimization, we cache all the statistics to reduce
the time on scanning CMVSBTs. When one statistic value is re-
quired, we first search the statistics cache. If it is not cached, then
we use the CMVSBTs to estimate the statistic value.

7. EXPERIMENTAL EVALUATION
RDF-TX is implemented in Java as a sequential main memory

query engine. To evaluate the performance of our system, we con-
duct experiments on several real world datasets and compare results
with alternative approaches.

7.1 Experiment Setup

7.1.1 Dataset
Wikipedia. Wikipedia [4] is a real world dataset extracted from
the edit history of English Wikipedia. We parse the raw file and
generate 38 million temporal RDF triples as our test benchmark.
This dataset contains the history of 1.8 million subjects and 3500
frequent predicates (used in more than 500 triples).
GovTrack. GovTrack [1] is a public dataset that contains the infor-
mation about congressmen, votes, bills and committees. There are
20 million historical records for 0.4 million subjects and 60 related
events (e.g. conressman election or bill voting). We parse the XML
source files to temporal RDF triples as our test dataset.
Yago2. Yago2 [18] is a knowledge base derived from Wikipedia,
WordNet and GeoNames with more than 30 million temporal RDF
triples. Due to space limit and the fact that the evaluation results
on Yago2 are very similar to Wikipedia and Govtrack, we leave the
results on Yago2 in our technical report.

7.1.2 Implementation and Configuration
RDF Reification. RDF reification provides a way to store RDF
triple and its meta knowledge in standard RDF model by represent-
ing annotated RDF triple as an entity with following properties:
subject, predicate, object, meta knowledge. Similarly, we represent
a temporal RDF triple as an entity with five properties: subject,
predicate, object, start time, end time. Then SPARQLT queries are

easily rewritten to SPARQL queries. We evaluate the reification ap-
proach in three well known RDF engines: Jena v2.13 [36], Virtuoso
v7.20 [3] and RDF-3X v0.3.8 [27].
RDBMS-based Approach. Temporal RDF triples can be stored in
a relational table with five columns subject, predicate, object, start
time, end time. We choose MySQL memory engine (v5.5) in our
evaluation since it supports in-memory B+ tree index. We build
four B+ tree indices on SPO, SOP, PSO, OPS and two additional
indices on start/end time for evaluation of temporal constraints.
Named Graphs. Named graph [11] is an extension of RDF model
that identifies graphs with URLs and allows graph metadata such
as provenance and trust. We implement the approach described
in [32] that stores temporal information as graph metadata using
Jena Named Graph implementation. We also test Ng4j v0.9.3 im-
plementation [9], but it is much slower than Jena and other ap-
proaches, so we leave the results on Ng4j in our technical report [2].
In the rest of this paper, we use “Jena Ref” and “Jena NG” to de-
note Jena Reification and Jena Named Graph respectively.
RDF-TX . Our query engine is a single-thread implementation us-
ing compressed MVBT as indices. Only the construction of com-
pressed MVBT is paralleled (using at most four threads).

All the experiments are performed on a machine with 4 AMD
Opteron 6376 CPUs (64 cores) and 256GB RAM running Ubuntu
12.04 LTS 64-bit. The index decompression time is included in the
query execution time. The execution time reported is calculated by
taking the average of 5 runs. The datasets and queries are available
in our website [2].

7.2 Index Space
We first investigate the effectiveness of our delta encoding tech-

niques (Section 4.2). We implement the standard MVBT indices (4
indices: SPO, SOP, POS, OPS) with numeric keys as baseline. Fig-
ure 8 (a) shows the space costs of standard MVBT and compressed
MVBT in Wikipedia dataset. On average, our delta encoding tech-
nique reduces the space cost of MVBT by 76%.

Then we compare the space overhead of compressed MVBT and
other types of index in Wikipedia, as shown in Figure 8 (b). Since
Wikipedia has a large number of unique timestamps, most named
graphs are very small (≤ 5 triples). Thus indexing named graph in-
curs a lot of overhead and Jena Named Graph takes far more space
than other approaches. The space cost of MySQL memory engine
and Jena Reification are similar, which are 3-4 times of raw data.
The index space of our implementation is almost the same with
Virtuoso and RDF-3X, while the query performance is much better
as shown in Section 7.3. On average, the space of our comprehen-
sive indices (4 compressed MVBT + dictionary) is about 1.8 times
of raw data. The results for GovTrack dataset are similar and thus
omitted.
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Figure 9: Query Running Time in (a - c) Wikipedia; (d - f) GovTrack.

7.3 Query Performance
To evaluate the query performance of our system, we created

three sets of queries: (a) Temporal selection queries, as Example 2
in Section 3; (b) Temporal join queries, as Example 4; (c) Complex
queries (2 or more temporal joins). We use the first two query sets
to evaluate the performance as the dataset size increases, and the
third query set to evaluate the performance as the query pattern
size increases. For all the implementations, we report the average
warm-cache query execution time.
Temporal Selection and Join. We create 10 temporal selection
and 10 temporal join queries for each dataset and conduct the ex-
periments as the size of dataset N increases (N : 5-30 million in
Wikipedia and 4-20 million in GovTrack).

Figure 9(a) shows the query execution time for temporal selec-
tion in Wikipedia. RDF-TX and MySQL show similar performance
in small datasets. As the size of dataset increases, RDF-TX shows
better performance than MySQL. In the largest dataset (30 million),
RDF-TX is about 3X faster than MySQL and 10X faster than Virtu-
oso. Jena Named Graph and Reification are 2 orders of magnitude
slower than SPARQLT engine due to the slow index scan.

RDF-3X is much slower than other systems due to its poor sup-
port of constraints. Most historical queries involve temporal con-
straints. For instance, consider Example 2 in Section 3 that searches
the budget of University of California in 2013. This query has one
temporal constraint that the valid period of temporal RDF triple
should overlap (01/01/2013, 12/31/2013). This constraint can be
expressed as: ?ts ≤ 12/31/2013 && ?te ≥ 01/01/2013. In
RDF-3X, the numbers are encoded as strings. So for temporal con-
straints, RDF-3X converts strings back to integers at running time
to evaluate the constraints, which is inefficient.

The results of temporal join in Wikipedia are shown in Figure 9(b).
RDF-TX is about 2 orders of magnitude faster than MySQL and
Jena, and 6X faster than Virtuoso. RDF-3X is still slow since
the condition of temporal join (e.g. OVERLAP and MEET) is ex-
pressed as constraints in FILTER clause.

Figure 9 (d) (e) show the query execution time for temporal se-
lection and join in GovTrack. These approaches take more time to
execute since the query patterns (e.g. P and PT) return much more

results in GovTrack due to the reduction of predicates. The RDF-3x
performs better than Jena on this dataset since it has a smaller num-
ber of distinct time periods (∼ 10000) and predicates. MySQL and
Virtuoso are about 1 order of magnitude slower than RDF-TX on
selection and 2 orders of magnitude slower on Join.

RDF-TX performs 1-2 orders of magnitude faster than most com-
petitors for selection and join. An important reason behind this
is that MVBT can process two-dimensional (key and time) range
query in one operation, while SPARQL and SQL engines need ad-
ditional join and index scan.
Complex Queries. We generate 25 complex queries for each dataset
with increasing query pattern size (3-7). The generation process is
as follows: a set of 5 queries is created initially, and each query
has 3 query patterns; then we incrementally add query patterns to
existing queries until the size of query patterns reaches 7. The ex-
periment is conducted on two datasets (each has 20 million triples)
and the optimizers are enabled in all compared approaches.

The evaluation results in Wikipedia are shown in Figure 9 (c)3.
Jena Named Graph and RDF-3X are not reported since they are
much slower than other approaches so we omit them. For RDF en-
gine and RDBMS, a query with more patterns is translated to more
joins, which increases the complexity of parsing and optimization.
On average, RDF-TX is 2 orders of magnitude faster than MySQL
and Jena, and 1 order of magnitude faster than Virtuoso.

The evaluation results for GovTrack are shown in Figure 9 (f).
A notable change in this graph is that Jena is not reported in this
experiment. Jena is too slow compared to other approaches on
GovTrack since the query patterns usually cover a large portion
of dataset, which leads to slow execution time if an inefficient join
order is generated; meanwhile, the column-store traits of Virtuoso
excel in this small predicate cardinality case. On average, our sys-
tem is still about 2 orders of magnitude faster.

7.4 Effectiveness of Query Optimizer
In this section, we explore the impact of query optimizer in the

3The query running time of Virtuoso on pattern size 6/7 is averaged
over four queries since Virtuoso generates a very inefficient join
order for one query which takes more than 1 hour to finish.
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Figure 10: (a) Query Execution Time of the best/worst plans, and the plan generated by SPARQLT optimizer for complex queries in
Wikipedia (b) Index Construction Time (c) Index Maintenance Time

query evaluation. We enumerate all the possible query plans of the
complex queries (Section 7.3) in Wikipedia and find the best and
worst execution times. Figure 10 (a) shows the query execution
times of best/worst plans and the plan generated by RDF-TX query
optimizer (blue bar) in a Wikipedia set with 20 million triples. The
result shows that the plan generated by our query optimizer is very
close to the best performing execution plan. On average, the execu-
tion time of optimized query plan is about half of the time used by
worst plan. In the relatively simple queries (3 query patterns), the
difference between the best plan and the worst plan is small. As the
number of query patterns increases, the difference becomes much
larger. Thus, the optimizer is important for scaling up towards com-
plex queries with a lot of query patterns. We also measure the time
used for query optimization, which varies from 3.5 to 10 millisec-
onds as the size of query increases.

Then we measure the storage overhead of temporal histogram.
The CMVSBTs for temporal statistics are built using the dictio-
nary IDs. As discussed in Section 6.2, we merge CMVSBT entries
and increase cm and lm until the size is small enough. In this exper-
iment, the size of temporal histogram is 177.5 MB, which is about
8.5% of raw data size.

7.5 Index Construction & Maintenance
For large datasets, we first build standard MVBT and then com-

press the MVBT indices. In RDF-TX , the process of index con-
struction is paralleled using at most 4 threads. We evaluate the
index construction time for compressed MVBT time on different
sizes of subsets of Wikipedia in Figure 10 (b) (compression time
included). The time for index construction is approximately lin-
ear with the size of datasets, and it increases slightly faster in the
datasets with 25 million and 30 million triples due to degraded per-
formance caused by JVM garbage collection .

RDF-TX also supports the index update on compressed MVBT,
which is important for real-time applications. Thus we further mea-
sure the average index maintenance time on a compressed MVBT
index built from a 25 million subset of Wikipedia. We perform
1 million updates (68% insert, 32% delete) which simulates the
changes in real Wikipedia edit history. Figure 10 (c) shows the re-
sults by comparing maintenance time of compressed MVBT with
the time used on standard MVBT. Our compression technique shows
a decent performance. Comparing with the update on MVBT, the
update on compressed MVBT only takes 5% more time. This little
overhead is negligible w.r.t. 76% space saved using compression.

8. RELATED WORK
Temporal Index. There has been a large body of research on

temporal index in the literature [7, 19, 22, 24, 34]. MAP21 [24]
is an index over B+Tree by mapping time ranges to one dimen-

sional points, thus time intervals/points can be used as keys and
queried in a B+Tree. OB+tree [34] organizes B+Trees in a ver-
sioned way with shared nodes whose contents do not change over
versions. However, MAP21 and OB+tree only support single di-
mension query. BT-tree [19] enables branched versions along with
the temporal index, while the time in our system is linear, i.e. no
branching. MVBT [7] and TSB-Tree [22] are bi-dimensional in-
dices, which satisfy our requirements exactly. TSB-Tree is a tem-
poral index very similar to MVBT and implemented in Immortal
DB [21] on Microsoft SQL Server, with better integration to SQL
Server’s existing index structures. The major difference between
these two is that TSB-Tree migrates old data to a historical store
during node splitting, while MVBT moves new data. Since MVBT
is a general approach which is not targeted on specific platforms,
we adopt and extend it in RDF-TX .

Query Languages and Systems for Temporal RDF. Several
query languages [16, 29, 30, 32] have been proposed for temporal
RDF triples. T-SPARQL [16] is a temporal extension of SPARQL
based on a multi-temporal RDF model. The RDF triple is annotated
with a temporal element that represents a set of temporal intervals.
Thus a temporal join is expressed using additional functions (e.g.
OVERLAP). At the best of our knowledge, no actual implementa-
tion of T-SPARQL is available. The τ -SPARQL system reported
in [32] uses the temporal RDF model [17] and augments SPARQL
query patterns with two variables ?s and ?e to bind the start time
and end time of temporal RDF triples and express temporal queries.
The evaluation is done by rewriting τ -SPARQL queries to standard
SPARQL queries. Perry et al. [29] propose a framework to sup-
port temporal and spatial semantic queries. Simple selection and
join queries are expressed using two temporal operators. These
operators are implemented in Oracle by extending Oracle Seman-
tic Data Sore and SQL functions. These works rely on relational
databases/RDF engine to store and query temporal RDF triples,
which results in complex SPARQL and SQL queries.

The tRDF system [30] extends the temporal RDF model [17]
with indeterminate temporal annotations. The temporal queries are
evaluated using tGrin index that clusters the temporal RDF triples
based on graphical-temporal distance. However, tRDF only sup-
ports a subset of temporal queries discussed in this paper. Most
significantly, temporal joins are not supported since tGrin index re-
lies on the temporal distance to filter the triples, while the temporal
distance between two temporally joined patterns can not be deter-
mined. STUN [20] system supports queries on annotated RDF, but
it is not scalable for large temporal datasets.

9. CONCLUSION
In this paper, we present SPARQLTand its system RDF-TX which

supports powerful queries over the history of knowledge bases.
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SPARQLTenables the expression of a wide variety of temporal queries
via simple extension of SPARQL graph patterns and built-in func-
tions. SPARQLT queries are efficiently evaluated in the backend
query engine that achieves excellent performance by exploiting M-
VBT as index and leveraging fast algorithms for range selection and
temporal join. RDF-TX also features a query optimizer that uses
the statistics of temporal RDF graphs to find the efficient join or-
ders for complex SPARQLT queries. Extensive experiments on real
world datasets show that RDF-TX outperforms other approaches
that use state-of-art RDF engines and relational databases in all
kinds of queries and delivers 1 - 2 orders of magnitude performance
improvement in complex queries. This confirms the effectiveness
and superior performance of RDF-TX .
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