
Exploring Text Classification for Messy Data: An Industry
Use Case for Domain-Specific Analytics

Industrial Paper

Laura B. Kassner
Daimler AG

71059 Sindelfingen
laura_bernadette.kassner@daimler.com

Bernhard Mitschang
Institut für Parallele und Verteilte Systeme

Universitätsstraße 38
70569 Stuttgart

bernhard.mitschang@ipvs.uni-
stuttgart.de

ABSTRACT
Industrial enterprise data present classification problems
which are different from those problems typically discussed
in the scientific community – with larger amounts of classes
and with domain-specific, often unstructured data. We ad-
dress one such problem through an analytics environment
which makes use of domain-specific knowledge. Companies
are beginning to use analytics on large amounts of text data
which they have access to, but in day-to-day business, man-
ual effort is still the dominant method for processing un-
structured data. In the face of ever larger amounts of data,
faster innovation cycles and higher product customization,
human experts need to be supported in their work through
data analytics. In cooperation with a large automotive man-
ufacturer, we have developed a use case in the area of quality
management for supporting human labor through text ana-
lytics: When processing damaged car parts for quality im-
provement and warranty handling, quality experts have to
read text reports and assign error codes to damaged parts.
We design and implement a system to recommend likely er-
ror codes based on the automatic recognition of error men-
tions in textual quality reports. In our prototypical imple-
mentation, we test several methods for filtering out accurate
recommendations for error codes and develop further direc-
tions for applying this method to a competitive business
intelligence use case.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Linguistic Pro-
cessing; H.3.3 [Information Search and Retrieval]: In-
formation Filtering; H.4.2 [Information Systems Appli-
cations]: Types of Systems—Decision Support
; J.1 [Administrative Data Processing]: Manufacturing

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

General Terms
Text-Based Classification, Domain-Specific Semantic Re-
sources

Keywords
recommendation system, automotive, text analytics,
domain-specific language, automatic classification

1. INTRODUCTION
Analytics and automatized processing of unstructured

data to support business processes and decisions have be-
come a topic of interest for the research community and the
enterprise world in recent years only [15]. Companies are
realizing that valuable knowledge can be gained especially
from the large amounts of unstructured text data which they
are storing internally and able to access publicly on the so-
cial web. In past decades, this knowledge was only accessible
to the human mind. The means for storing and processing
large amounts of data and scalable text analytics or cognitive
computing tools [5] are both relatively new developments.

In cooperation with a large automotive original equipment
manufacturer (OEM), we have developed an overarching use
case in the area of quality management, with a concrete
example for supporting human labor through text analyt-
ics. This use case presents a particularly challenging classi-
fication problem with several hundred possible classes and
mainly unstructured text data as input. We develop a mod-
ular environment for classifying these data with the help of
natural language processing. In this paper, our main points
are (1) a first proof of concept for a “messy” industrial data
source and (2) the investigation of the usefulness of a legacy
domain-specific resource in the context of a new analytics
task. To this end, we evaluate various adaptations of an
established classification algorithm in order to customize it
to the given situation.

1.1 Motivation
Industrial enterprises are generating and collecting large

amounts of unstructured text data. These data are often
highly domain-specific. Most current approaches to auto-
matically analyzing these unstructured data with traditional

Industrial and Applications Paper

Series ISSN: 2367-2005 491 10.5441/002/edbt.2016.47

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.47

���������	�

������

�������

�������	�

��������

����

���������

�������

��������

����	�

������

�����	�

���������

��������	

��	���	

Figure 1: Data Analytics around the Product Life
Cycle

analytics for structured data are either very specific and
case-based or too generic [11]. What is needed is a flexi-
ble framework for analytics with re-usable and modular re-
sources and analytics toolboxes.
Enterprises are beginning to transition to more

widespread and streamlined use of text analytics. But
in day-to-day business, a lot of manual effort is still
used to process unstructured data, for example in quality
management or customer relationship management. This
effort is important because these data contain value-adding
knowledge, and human expertise cannot and should not
be fully replaced in these tasks. But in the face of ever
larger amounts of data, faster innovation cycles and higher
product customization especially in the manufacturing
industry, human experts need to be better supported
through data analytics. Beyond the support of current
manual analytics tasks, data analytics can also provide
important novel business insights (cf. Figure 1).
Domain-specific resources, for example taxonomies of

domain-specific languages, are often developed for a single
case-based analytics scenario and rarely re-used for others.
This leads to inefficiencies and loss of valuable knowledge.
Related research on this topic [11, 12] has proposed require-
ments and an architectural paradigm for flexible, re-usable
and value-adding analytics software. Within this framework
we develop a proof of concept for a toolbox using legacy
code and semantic resources, unstructured data from sev-
eral sources, and modular, tailored text analytics.

1.2 Contribution and Outline
When processing damaged car parts for quality improve-

ment and warranty handling, quality experts have to read
large numbers of text reports from various sources and as-
sign error codes to damaged parts from a large pool of op-
tions. We investigate methods to handle these unstructured
text data analytically and to support this labor through au-
tomatic recommendation of likely error codes, which is a
specialized application of automatic classification.
This use case is different from typical classification prob-

lems in several respects: The amount of potential classes is

larger (several hundred), and the data to be classified are
short text reports which we term “messy data”: Text which
consists of non-standard, domain-specific language, riddled
with spelling errors, idiosyncratic and non-idiomatic expres-
sions and OEM-internal abbreviations.

We design and implement the Quality Engineering Sup-
port Tool QUEST with an included Quality Analytics
Toolkit (QATK), a system to recommend likely error codes
based on the automatic recognition of error mentions in tex-
tual quality reports. It also includes the functionality for
comparing error distributions across different data sources,
which we have implemented for a public data source, the
database of automotive malfunctioning complaints main-
tained by the Office of Defects (ODI) of the National High-
way Traffic Safety Administration (NHTSA) [13].

We test a domain-specific and a domain-ignorant ver-
sion of a custom classification algorithm derived from k-
Nearest-Neighbors (kNN), and evaluate both against a base-
line which ignores the text content as well as with respect
to their industrial feasibility.

We also investigate in more detail the influence of the re-
port source and its place in the error classification process –
early or late and contributed by mechanics or part suppliers.

In sum, we address three different industry-focused goals:
(1) to make classification work easier for the workers who
do it by sorting error codes in a meaningful way, (2) to do
this as early as possible in the life cycle of a damaged car
part, and (3) to make data comparable to other data sources
through text analytics.

The remainder of this paper is structured as follows: In
the following chapter 2, we present the research background.
In chapter 3, we describe in detail the industrial context of
our application (3.1) and discuss the challenges presented
by the data (3.2). The methods and implementation are
explained in chapter 4. We then present and evaluate two
experiments and an extension of the original use case in
chapter 5. We look at the feasibility of text-based error
classification (5.2) and the role of the report source for clas-
sification accuracy (5.3) as well as the potential use of auto-
mated error code assignment to compare the performance of
a product with competitors (5.4). Chapter 6 concludes our
paper with a summary of the results and outlook on future
research.

2. BACKGROUND
In prior research, we have motivated the need for Prod-

uct Life Cycle Analytics integrating structured and unstruc-
tured data within a holistic framework [11]. In this chapter,
we present two background foci which are relevant for the
present research topic, namely text analytics in the automo-
tive industry (2.1) and the general field of automatic text
categorization (2.2), which deals with applying classification
algorithms to text data.

2.1 Text Analytics in the Automotive Industry
In the automotive domain, there have been a number of

efforts to use unstructured text data for business analyt-
ics. Most recently, several interconnected research projects
[3, 16, 8] have developed software for extracting information
about frequent problems from internal error reports and cus-
tomer sentiment related to problems from social media. This
research has also led to the creation of a valuable semantic
resource, a taxonomy of parts and errors [17, 18], which we

492

use as a central component in our analytics framework (cf.
4.5.3) as well as in the domain-specific classification algo-
rithm.

2.2 Automatic Text Categorization
Automatic text categorization has been a widely re-

searched field since the late 1990s / early 2000s [19]. Typi-
cally, the task is to label texts as belonging to one of a small
number of classes, e.g. one of five different topics for news
texts or one of three known potential authors for literary
works. Our task differs from this in that we have a very
large number of classes.
Features for classification are usually derived by their in-

formation content across a large number of texts. Using
pre-defined features such as author, user mentions and sig-
nal words in tweets [20] has also been shown to achieve high
accuracies. We investigate the suitability of features drawn
from a domain-specific knowledge resource.
An important part of this investigation is the mapping of

words in the text to concepts from a semantic resource. We
agree with the argument of [10] that words and stems do
not represent the semantic content of a text very well. They
try to map words to concepts using WordNet [4]. This is
important for disambiguation, but also for highlighting and
exposing shared concepts as latent features across texts with
no shared word material. Because our semantic resource is
rich in synonyms, we can map text to concepts via surface
entity recognition.
[7] point out a weakness of the kNN algorithm which we

also encounter – it is instance-based and thus potentially
memory-intensive. They develop a modified kNN which cre-
ates generalized instances and representatives of instances
based on local neighborhoods. We modify kNN to use rep-
resentatives of instances based on abstractions of texts to
contained concepts in our domain-specific variant, and also
store these instances in a relational database with on-the-fly
access to further address memory concerns.

3. PROBLEM DESCRIPTION
In this chapter, we present the industrial context of our

use case (3.1) and discuss the challenges of the data we are
working with (3.2).

3.1 Industrial Context
An automotive OEM is evaluating car parts which were

removed during repairs in customer-owned vehicles for the
warranty process and in order to gain insight into quality
issues. The evaluation is a complex and multi-step process
which involves unstructured text data from many sources
and large amounts of human work:
The removed and potentially damaged car part is first

evaluated in a short textual report by the mechanic who re-
moved it. It is then shipped to the OEM, where an optional
initial report can be written. Next, the car part is sent on
to the supplier who manufactured it. The supplier evalu-
ates the part’s damage, writes a textual report and assigns
a damage responsibility code (indicating whom they hold re-
sponsible for the problem). Eventually, a quality expert at
the OEM assigns the car part a final error code and writes
a short final report. This process of data accumulation is
depicted in Fig. 2.
In order to assign the correct error code, the quality expert

needs to read all reports written about the part at hand and

�������� �	�
������ �	�

��������	�
��� ��������	�
����

	���������

������

��������	�
��� ��������	�
���

	��
�����������

����
����������������

�����������������

����

�����������

����

�������������

����

Figure 2: Process of data accumulation

then pick the error code from a list of potentially over 100
error codes available for this type of car part.

Due to the largely textual nature of the data and the
large number of potential error codes, a substantial amount
of the quality experts’ time is taken up by assigning error
codes to known errors. We want to support the quality
workers by offering them automatically derived error code
recommendations to speed up the decision process. If the
set of error codes for a given part is smaller and sorted,
the final error code assignment will take less time. The
quality experts can then spend more time investigating novel
or more complex errors, thus improving the overall quality
of the evaluation.

3.2 Challenges of the Data
We developed our prototype around a randomized and

anonymized subset of the original data input from the eval-
uation documentation tool. We extracted a fraction of the
data concerning three larger component classes which have
already been assigned error codes, such that a portion of the
data can be used for evaluation. Other component classes
are subject to future research to further validate the ap-
proach. Any information about individual persons (quality
workers assigned to tasks, supplier contacts, etc.) was re-
moved, as well as select mentions of supplier names and
the OEM name, and the fields listing vehicle identification
numbers and information about vehicle make and model.
In total, we are working with data for 7500 individual car
parts. These data, including the text reports, are stored
across several tables in a relational database.

We define all data pertaining to an individual component
as a data bundle. The data bundles for each component are
structured in the following way:

• A component is identified by a unique reference num-
ber and also assigned an article code and a part ID.
These have vastly different levels of granularity: In
our data set, there are 831 distinct article codes and
31 distinct part IDs.

• A further challenge is the extremely high number of
distinct error codes: There are 1271 distinct error
codes in our data set of 7500 data bundles. 718 of these
error codes only appear a single time, so we remove
them for our experiments since nothing can be learned
from them for the classification task at hand (for in-
formation extraction tasks we would of course consider
them). This leaves us with 553 potential classes and
6782 data bundles with an error code that appears
more than once. The largest number of distinct error
codes for one part id in our data set is 146, and 25 of
the 31 part IDs have instances of over 10 error codes.

493

���������	�
��

��

�����	�
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����������	�
��

	����� ������������� ����������

������������
�������������
���

��������	
���	����	������������

	����� �
����������������	���������

��	������������

�����������������	����������

������������������������	���

���������������������

��������� !"��������	�����������

���������������##������

$���%�����������

Figure 3: Structure of the data bundles before fi-
nal classification, with missing structured data fields
highlighted in red

• Each component is further associated with three or
four textual reports: (1) the mechanic report, (2) the
initial OEM report (optional), (3) the supplier report
and (4) the final OEM report.

Other textual resources are the standardized descriptions
of part id and error code in German and English. Fig. 3
shows a schematic overview of one data bundle and contains
a fictional but representative text example.
These text resources can be used to derive textual indica-

tors of error codes during the training phase of classification.
In the testing phase, we use only the mechanic report, the
optional initial report, the supplier report and the part id
description. This reflects the circumstance that the final
OEM report and the error code description are unavailable
as sources for textual indicators in data which have not yet
been assigned an error code. In 5.3, we investigate the per-
formance of classification when using only the mechanic re-
port or only the supplier report as input to the classifier.
The reports in our data sample are mostly a mix of Ger-

man and English, but the entire data set contains several
other languages. Robustly recognizing meaning in multilin-
gual input is therefore a requirement for our system. In our
prototype, we achieve this by using a multilingual seman-
tic resource for the domain-specific approach and primar-
ily relying on natural language processing steps which are
language-independent. The domain-ignorant approach does
not address multilinguality. Future investigations will also
deal with how to incorporate language-specific tools.

4. METHODS AND IMPLEMENTATION
In this chapter, we present the general architecture of our

analytics toolkit (4.1), develop a basic algorithm derived
from kNN (4.2), discuss our adaptation of this algorithm in
the domain-specific and the domain-ignorant variant (4.3),
and describe the processing pipeline (4.4) as well as the pro-
totypical implementation (4.5).

����

������	�
�����

��������������

���������
��	
�����

����
��

���������	

���

�����	���	

�������

���������	��
��

���
������

�	�
���������
�	�

����������

�����

�����������

��������	
�

����������

����

����	�����

������
��

�	�	�������

�	��	��

�����

���	�������

�����������

���������������

��������

Figure 4: General architecture of the recommenda-
tion system

4.1 Architecture
The architecture of our general analytics framework com-

prises data sources and two main components (cf. Fig. 4),
the Quality Analytics Toolkit (QATK) and the Quality En-
gineering Support Tool (QUEST) web application.

The QATK provides a highly modular analytics pipeline
to process the text data, build a knowledge base representing
structure extracted from the unstructured data, and assign
scored and sorted potential error codes to new data bun-
dles using the classification approach outlined in 4.3. This
pipeline can be seen in detail in Fig. 8 and is further dis-
cussed in 4.4.

The functionality of the QATK can easily be adapted to
classify data from a different source according to the same
classification schema of part IDs and error codes as the in-
ternal source. This allows for comparisons of error distribu-
tions across different data sources. In 5.4, we show how such
comparisons can be implemented for a public data source,
the complaints database of the NHTSA ODI available via
safercar.gov [13].

4.2 Basic Classification
The reports and the error key and part ID labels contain

unstructured text descriptions of the problems encoded by
the error keys. If we can abstract from these descriptions to
structured features, we can use them as input for a classifi-
cation algorithm.

In our approach and in the prototypical implementation,
we employ a classification algorithm derived from the k-
Nearest-Neighbor algorithm. The standard kNN algorithm
(Fig. 6) determines class membership of a data point by
majority vote from the classes of the k nearest neighbors of
this data point, where nearness is equivalent to similarity
with respect to the chosen classification features. This ma-
jority vote can also be weighted by the individual nearness
of neighbors, which is determined by a similarity measure of
choice between the data points.

kNN is a
”
lazy” machine learning algorithm – it does not

build a statistical model, it just holds instances of already

494

���������	
���

���

���	����	��

�������	

��������	��	

�������	

����	������

��	�	������	�������	��

�

�

�

Figure 5: Selecting candidate nodes

classified data in memory (or on disk, as is the case in our
implementation) for comparison with the data instances to
be classified.
We have decided to focus on variants of kNN in our proof

of concept for several reasons: We are dealing with an ex-
treme multi-class classification problem, and in contrast to
many other algorithms, kNN handles multi-class classifica-
tion in a straightforward manner. It is also instance-based
and therefore allows for predictions about class member-
ship even with a small data set and a large number of
classes, which makes it especially suitable for our example
data. Further, since our focus is on establishing whether this
particular multi-class classification problem can be solved
semi-automatically and on investigating the role of domain-
specific vs. domain-ignorant features, we decided in favor of
an algorithm which allows for very straightforward control
over the features, is easy to implement and easy to under-
stand, and can easily be used with different similarity or
distance measures, such that we are not fixed on represent-
ing our data in one particular way. Other algorithms are to
be investigated in future research after we have established
that the challenges of the data can be met at all.
Thus, we can derive a bare-bones classification algorithm

with maximum parametrizability:
Given set of objects S with assigned classes, object o

without assigned class
for oi in S: calculate similarity(o, oi)
sort S by descending similarity
assign class to o based on sorting of S
The similarity measure, the choice of features on which to

base the similarity measure and the method for deriving the
class assignment from the similarity ranking can be adjusted
to the needs of the use case.

4.3 Adaptation and Parametrization
Starting from the basic algorithm described in 4.2, we

make the following modifications: It is unlikely that a clear
majority of the nearest neighbors of a data bundle will all
share the same error key because of the sparsity introduced
by the large number of classes and the small size of the data
set. Therefore, instead of majority vote to determine one
definitive class, we output a list of all potential error keys
ranked by the distance of the knowledge base instances to
the data bundle, then cut off the list at k for initial presenta-
tion to the expert (see the schematic depiction in Fig. 7). A
similar type of ranking categorization is already mentioned

��������

	
���
�������
�����
��

��
���
�������
�����
��

����
�����

��
��
����������

��
��������
����

Figure 6: Standard unweighted instance-based kNN
classification for k = 6 and k = 15 with class assign-
ment by majority vote

����������

	
��

���

��	�

���

�	

�	��

	��

��	�

	
��

���

	�	�

���

������������

����������������

������������������

����������������������

����������� ����!����!�

��	�!�	
��!�	
��!�	�	�!�

���!��	���

Figure 7: Adapted ranked-list kNN classification for
abstracted data bundle representations

in [19]. Thus, we also address a weakness of standard kNN
which becomes evident in Fig. 6 – the sensitivity to local
data structures. For k = 6, the class assigned by majority
vote is different from that for k = 15. Since our goal is to
support the human expert, not fully automatic classifica-
tion, we can avoid this inconsistency. Items lower on the list
can be accessed by the quality expert in the user interface
(cf. Fig. 4).

We determine the closeness of the data bundles by com-
paring them with respect to features derived from the text.
For the domain-ignorant approach, we use all words in the
text (bag-of-words), for the domain-specific approach, we
choose mentions of parts and errors as features (bag-of-
concepts). On average, a text has about 70 words, resulting
in as many bag-of-word features. With the domain-specific
approach, we detect on average 26 part/error mentions per
text. We use the concept mentions as attributes without dis-
tinguishing between types of concepts (part or error). Anno-
tating the text with the help of a domain-specific, synonym-

495

rich part-and-error taxonomy from prior research with the
OEM [16] allows us to collapse mentions of the same part
in different wordings into identical features. For example,

”
mud guard”,

”
splashboard” and

”
fender” all belong to the

same concept within the taxonomy and are all represented
by the same concept ID. The taxonomy has about 1.800 /
1.900 distinct concepts in German and English, respectively.
Thus, we can represent each unique combination of part ID,
error key and concept mentions as a node in a knowledge
base, which is derived in a first training step.
This also allows us to abstract from data instances to con-

figuration instances, reducing the size of the knowledge base
and allowing for faster data comparisons when calculating
similarity measures. We thus address one of the weaknesses
of the standard kNN approach in a way which is similar
to the kNN Model algorithm in [7]. For the bag-of-words
approach we accordingly store combinations of part ID, er-
ror key and individual words (excluding punctuation) in a
knowledge base of the same structure.
We retrieve error code suggestions for data bundles from

the knowledge structure by computing the similarity of po-
tential nearest neighbors. In order to do this efficiently, we
filter the knowledge nodes to first retrieve a neighbor candi-
date set fitting to the data bundle under consideration (Fig.
5). From the entire set of knowledge nodes (1), we first se-
lect the subset of nodes with the same part ID as the data
bundle to be classified (2). From this subset, we select those
knowledge nodes which share at least one concept mention
with the data bundle under investigation (3) – or one word
for the bag-of-words approach. This selection is made via
the indexes of the knowledge structure. If the part ID is not
found in the knowledge structure, we select all nodes into
our neighbor candidate set.
Next, we compute a pairwise similarity score for each

candidate node with reference to the current data bundle.
We retrieve the error codes of the 25 best-scored candidate
nodes. For each of these error codes, we assign an error
code with associated score to the data bundle under inves-
tigation. These scored error codes are stored in a relational
database and presented to the quality worker via the web
app interface for final error code assignment.
To evaluate performance of the classification algorithm,

we have experimented with two established similarity mea-
sures – the Jaccard similarity, computed as the number
of shared attributes divided by the total number of at-
tributes, and the overlap similarity, computed as the num-
ber of shared attributes divided by the size of the smaller
attribute set.
Jaccard Similarity Coefficent: The similarity of two

items (knowledge nodes) with feature sets A and B is rep-
resented by:

|A ∩B|
|A ∪B|

Overlap Similarity Coefficent: The similarity of two
items (knowledge nodes) with feature sets A and B is rep-
resented by:

|A ∩B|
min(|A| , |B|)

4.4 Processing Pipeline
The classification step is embedded in a pipeline which in-

cludes linguistic preprocessing and the creation of a knowl-

edge base. This processing pipeline is detailed in the follow-
ing.

Figure 8 shows the entire analytics pipeline for the
domain-specific approach. It can conceptually be split in
two parts: one to extract structure from unstructured data,
which includes data preparation, linguistic preprocessing
and annotation with domain-specific knowledge, and one for
processing the extracted structured data, which includes the
building of a knowledge base and the classification step.

We assume the classical phase-oriented data mining pro-
cess which differentiates a training phase from the subse-
quent test phase and the application phase.

In the training phase, we extract domain-specific classifi-
cation features from within the unstructured data portion,
following several steps:

1. Creating Data Bundles: read data from the database
and combine related reports into one document.

2. Unstructured Data Analytics

(a) Text Preprocessing: Tokenization and Language
Recognition

(b) Concept Annotation: mark up domain-specific
concepts in the text (words describing parts and
errors)

3. Structured Data Analytics

(a) Knowledge Base Extraction: for each data bun-
dle, extract into a ”knowledge node”(cf. Fig. 9)...

• the error code

• the part number

• the occurring concepts (numeric IDs)

(b) Knowledge Base Persistence: store knowledge
nodes in a relational database

After the knowledge base has been created, we exploit this
knowledge for the classification step (cf. 4.3) in the test and
application phases. Steps 1 - 2 of the process are identical
to the training phase:

1. Creating Data Bundles: read data from the database
and combine related reports into one text document.

2. Unstructured Data Analytics

(a) Text Preprocessing: Tokenization and Language
Recognition

(b) Concept Annotation: mark up domain-specific
concepts in the text (words describing parts and
errors)

3. Structured Data Analytics

(a) Candidate Set Generation: select knowledge
nodes which share a minimum of 1 feature with
the data bundle to be classified (cf. Fig. 5)

(b) Classification of the data bundle (cf. 4.3)

(c) Result Persistence: store scored error code sug-
gestions in a relational database

496

����������	
���

��	����

Ranked
Error Code
Recommend
-ations

��������	

�����������	
�
���
������������������	
�
���
�����

�����
���
������	�

����	�	��
�����
�
��

����������	
���	

��	�����	

�������

���������

��	��	��

����
�

��	��

�����	
��

���������	
�

��
�������

���
���
���
���
���

�
�

�

�

�

� � �

��������	����

�������������

Error
Reports

Part IDs
Error Codes

Figure 8: Detailed view of the domain-specific classification pipeline

������� ���	��
	��

	�	������

• �����

• �����

• �����

• �����

����	��

• �����

• �����

• �����

• �����

������� ���	��
	��

	�	������

• �����

• �����

• �����

• �����

����	��

• �����

• �����

• �����

• �����

Figure 9: Two Knowledge Nodes with shared con-
cepts underlined

The domain-ignorant approach proceeds accordingly but
eliminates the concept annotation step and instead extracts
all words of the document as features to be stored in the
knowledge nodes.
It is obvious that this approach to a processing pipeline

reflects a high degree of flexibility and extensibility for both
preprocessing and classification steps. In our current setting
we use the kNN-derived algorithm described in 4.3 for the
classification step. This step is realized as an extension point
where different classification algorithms can be plugged in
easily.

4.5 Prototypical Implementation
In the following, we give a short overview of the technolo-

gies used in the prototypical implementation of the QATK
framework and QUEST app.

4.5.1 Data Storage
For data storage, we use relational databases. We store

raw data from the industrial source as well as from the
NHTSA ODI source and the knowledge bases and classi-

fication results.

4.5.2 Text Analytics and Classification
In our implementation of the Quality Analytics Toolkit,

we build on the Java version of the open-source Apache stan-
dard UIMA (Unstructured Information Management Archi-
tecture) [6], which enables us to easily build modular linguis-
tic processing pipelines. These pipelines are composed of
Analysis Engines containing annotators with single text an-
alytics functionalities. Annotations on the text are recorded
as typed feature structures with a start and end index rela-
tive to the document text in the Common Analysis Structure
(CAS) which is handed over from one Analysis Engine to the
next, such that annotators can build on findings from previ-
ous steps of analysis. In our case, one CAS contains one data
bundle, including all available reports and text descriptions
plus the part ID and error code.

We chose this framework for several reasons: It is open-
source, extremely modular and well supported by the re-
search community. High-quality implementations exist for a
large number of standard natural language processing com-
ponents, e.g. in the DKPro repository [21]. Functionality for
quick and flexible pipeline building and testing is provided
by the uimaFIT library [14].

The core of the QATK toolkit is a UIMA pipeline corre-
sponding to the processing steps explained in 4.4 and de-
picted in Fig. 8. It reads the report and identifier data bun-
dles from a database, segments the text into words using a
simple custom whitespace-/punctuation-tokenizer, identifies
occurrences of car part and problem synonyms in the text,
builds a knowledge base from these identified concepts and
uses the knowledge base to assign error code suggestions to
previously unseen data bundles.

4.5.3 Domain-specificity: The Automotive Part and
Error Taxonomy

A domain-specific resource used in our analytics module
is a taxonomy of car parts and error symptoms, developed
in prior research and originally used for an information ex-
traction task on social media data [18, 9] . The taxonomy is
stored in a custom XML format and has a shallow structure
which is nevertheless well suited to the differentiations we
want to make: It distinguishes components, symptoms, loca-
tion and solutions. The error codes we want to recommend
correspond to symptoms and also depend on components,
which is why we choose to annotate the texts with occur-

497

�������

���	

�������	
 �

�����	

���
�� ���

� ��� ����

�������
�

���
�
��
��

�������
�

�
�
��
��

Figure 10: Automotive Taxonomy (graphic adapted
from [18])

rences of components and symptoms from the taxonomy as
features for our classification task. The taxonomy is multi-
lingual – its upper category levels are language-independent
with multilingual labels, its leaf categories are language-
specific and contain synonyms of terms for the same concept
(cf. Fig. 10).
QATK builds upon some closed-source legacy libraries

for maintaining and using the taxonomy resource: An edi-
tor GUI for adding, changing and removing taxonomy con-
cepts and concept features, as well as compiled Java archives
which contain the classes needed for modifying and using the
taxonomy. Among them are UIMA components for anno-
tating occurrences of taxonomy concept words in text docu-
ments. These libraries do not entirely meet the requirements
of the present use case. Therefore, some efforts had to be
made in order to be able to use the taxonomy for text an-
notation.
We made a number of changes to the representation of

the taxonomy and to the taxonomy annotator component
which improve performance (cf. [12]): Annotation becomes
faster, less memory-intensive, achieves higher coverage and
is more accurate for multiwords. We represent the taxon-
omy as a trie data structure, a tree structure which allows
for fast search and retrieval. Like the original approach,
we expand the concepts of the taxonomy with synonyms of
concept label substrings as found in the taxonomy itself.
Our optimized implementation has a left-bounded greedy

longest-match approach for mapping text sequences to tax-
onomy concepts, eliminating concept matches which are
completely enclosed by other concept matches. By apply-
ing multilingual annotation and correctly capturing multi-
words, we achieve an overall higher recall of concepts than
the annotator from the legacy code. For instance, the orig-
inal taxonomy annotator does not recognize any taxonomy
concepts in 2530 out of the 7500 data bundles, but the new
annotator finds concepts in all of these.

4.5.4 User Interface
The QUEST web application partly reconstructs the user

interface and functionality of the original quality engineering
software which is used by the automotive OEM to record,
maintain, and classify the data. In QUEST as in the origi-
nal software, users can view the data and assign error codes.
The core difference is that in the QUEST error code assign-
ment interface, the user is first presented with a selection of
the 10 most likely error codes in descending order of likeli-
hood. If the user decides that the correct error code is not
among these 10 codes, they can access the list of all error

codes available for the part ID of the current data bundle,
as is the default in the original software.

Also, users with extended rights can define new error
codes right in the QUEST interface. Furthermore, all users
can view the comparison of error code distributions between
the OEM data set and the public US complaints database
(cf. 5.4). The QUEST web app is compatible with most
browsers and implements responsive design to be viewable
on mobile devices. It is written in Java, uses PrimeFaces
graphical components [1] and is deployed on a WSO2 web
server [2].

5. EXPERIMENTS
In this section we present and discuss the results of two

experiments into the feasibility of text-based classification
with our data set. In 5.1 we establish the conditions for
our experiments, in 5.2 we compare the performances of
the domain-specific and the domain-ignorant modified clas-
sification algorithms with respect to a baseline, and in 5.3
we test the performance of classification on different report
types (mechanic and supplier report). In 5.4, we describe
the setup of an extended use case in the web app which is
currently under development and evaluation.

5.1 Experiment Setup
We test the classification algorithm (cf. chapter 4.3) with

different similarity measures and with different data abstrac-
tion models.

As a performance measure, we report accuracy defined as
the percentage of test data which include the correct error
code in the error code list at k <= 1, 5, 10, 15, 20 and 25,
respectively.

Accuracy@k:
For Dk the set of data bundles where the correct error code
is found within the first k suggestions, corresponding to the
k nearest neighbors, and T the test set,

A@k =
|Dk|
|T |

We run all experiments with stratified 5-fold cross-
validation on the 6782 data bundles whose error code ap-
pears more than once in the data. This means that for each
error code, we use 4/5 of the data bundles with this error
code as input to the knowledge base and assign error codes
to the remaining 1/5 using the knowledge base built from
the rest of the data. We do this five times with distinct splits
of the data and average the accuracies obtained in each it-
eration. The test data sets consist of 1250 data bundles on
average.

We use two similarity measures, the Jaccard coefficent and
the overlap measure (cf. 4.3). We work on whitespace- and
punctuation-tokenized text without further preprocessing or
normalization.

We compare the results of the classification to two base-
lines obtained without or with very little consideration of
the text:

1. the code frequency baseline, where all error codes
which are available in the database for the part ID of
the data bundle under consideration are sorted by their
frequency in this database, and the first k returned

2. the unsorted candidate set baseline (cf. 4.3), contain-
ing all nodes in the knowledge base which share the

498

part ID and at least one concept / word with the data
bundle under consideration

The baselines themselves merit a look at their perfor-
mance: The candidate set baseline depends on the applied
variant of the algorithm, but all candidate set baselines have
similar accuracy profiles. Accuracies are rather low through-
out, with <1% accuracy for k = 1 and approximately linear
development towards around 83 % accuracy for k = 25 (cf
Fig. 11). This baseline could obviously not be used for
automated recommendations of error codes.
The code frequency baseline performs better than the can-

didate set baseline, with an accuracy@1 of 35 %, accuracy@5
of 76 % and accuracy@10 of 88 %. At k = 25, it even has
perfect accuracy of 100 %. Since we know that there are
potentially over hundred error codes for one part ID, we as-
sume that this is an artifact of our randomly selected data
set. In any case, sorting available codes by their frequency
can be a first step towards supporting quality workers in
finding the correct error code more quickly.

5.2 Experiment 1 – Text-Based Error Code
Prediction

In this experiment we establish whether error codes can be
predicted at all on the basis of the text reports alone. We
compare two variants of the classifier, a domain-ignorant
bag-of-words model on the tokenized text, and a domain-
specific bag-of-concept model created with the help of
domain-specific text annotations from the automotive part
and error taxonomy.

5.2.1 Results
The results of experiment 1 can be seen in Figure 11. We

find that both the bag-of-words and the bag-of-concepts clas-
sifier outperform the baselines for k < 25 when using Jaccard
similarity. The four variants we tested – bag-of-words and
bag-of-concepts with each similarity measure respectively –
differ considerably in their performance.
In general, overlap similarity performs worse than Jac-

card, and the bag-of-concepts classifier does not perform sig-
nificantly better than the code frequency baseline (in fact,
slightly worse for k = 1) when combined with the overlap
measure.
Combined with the Jaccard measure, the bag-of-concepts

approach out-performs both baselines with accuracy@1 of
56 %, accuracy@5 of 85 %, and accuracy@10 of 92 %. For
k of 15, 20 and 25, all approaches as well as the baseline
deliver accuracies between 90 and 100 %.
For smaller k (1 and 5), the accuracy of the bag-of-words

classifier is markedly better than that of the bag-of-concepts
classifier regardless of similarity measure used, with accu-
racy@1 of 76 % (overlap) and 81 % (Jaccard), accuracy@5
of 93 % (overlap) and 94 % (Jaccard), respectively.

5.2.2 Discussion
Three out of the four text-based classification algorithm

variants provide accuracies which out-perform the code fre-
quency baseline, and all four could be used for recommend-
ing error codes on the basis of text reports. The bag-of-
words model is currently providing better accuracies than
the bag-of-concept model, especially for small k. This means
that its ranking of the potential error codes more closely re-
sembles the actual probabilities of error codes based on the
content of the problem reports.

����

����

����

����

����

����

����

�	� �	
 �	�� �	�
 �	�� �	�

���������	

��������������������� ���������������������

������������������������ ������������������������

����� ��!"���#������$�� ����$�����%��������$���&��������������'

����$�����%��������$���&�����������'

Figure 11: Results of experiment 1, with k on the
x-axis and accuracy@k on the y-axis.

This tells us that the concepts which are currently being
recognized using the automotive parts and error taxonomy
do not represent ultimately accurate features for classifica-
tion and are not the best option for recommending error
codes to the quality worker. This is not altogether surpris-
ing, since the taxonomy was originally developed for a dif-
ferent task (information extraction, cf. [17]) and has not
yet been adapted to the current data source. Adapting the
taxonomy thus suggests itself as a next step.

However, the bag-of-words variant is not a feasible indus-
trial solution because of time and memory needs due to the
larger number of features per data bundle and the larger
number of pairwise similarity computations to be made. On
our small data set which includes only 3 out of hundreds of
components, running the bag-of-words classifier takes about
11 minutes for one iteration of the five-fold cross-validation,
classifying ca. 1250 data bundles, which means computation
time per data bundle is at ca. 0.5 seconds. In contrast, run-
ning the bag-of-concepts classifier takes about three minutes
for one iteration, which means computation time per data
bundle is at ca. 0.14 seconds. When applying our processing
pipeline to the entire data set with a larger number of data
bundle to data bundle comparisons, it is important to keep
the number of pairwise feature comparisons low. Remov-
ing German and English stopwords (articles and personal
pronouns) as an additional step during the bag-of-words ap-
proach has no impact on the accuracy of classification, but
shortens the runtime to ca. 7 minutes for one iteration and
ca. 0.3 seconds per data bundle. This is still slower than
the bag-of-concepts approach.

499

����

����

����

����

����

����

����

�	� �	
 �	�� �	�
 �	�� �	�

���������	�
��������

���������������������� �������� �!����"��#����$

�������� �!����"�%����� �������� ������$&�"�%�����

�������� ������$&�"��#����$ ��������&��'�&�(����� �!���)

��������&����&�(����� ������$&�)

Figure 12: Classification results for features derived
from the mechanic reports only, with k on the x-axis
and accuracy@k on the y-axis.

In contrast to the bag-of-concepts approach, the bag-of-
words approach is also not suited for further domain-specific
analysis steps. Improving the coverage of the taxonomy used
for the bag-of-concepts approach is therefore a worthwhile
avenue to pursue. An overview of the issue of taxonomy
extension and an argument for re-using semantic resources
across tasks is given in [12]. Investigations into methods
to automate the extension of a domain-specific semantic re-
source are on-going.
There are thus two conclusions to be drawn from exper-

iment 1: (1) the text reports can indeed be used to sup-
port quality workers by automatic recommendation of error
codes, (2) to create a feasible industrial solution, an im-
proved domain-specific resource is needed.

5.3 Experiment 2 – Point of Entry for Error
Code Prediction

In the second experiment, we test how early it is possible
to make a prediction about the error code of a report bundle.
Recall that data about the nature of the problem from dif-
ferent sources – mechanic, OEM and supplier – accumulate
over time during the quality evaluation process (cf. Fig. 2).
The earliest report which reaches the OEM is the mechanic
report, whereas the supplier report is added later. It would
be beneficial if the error code could already be predicted on
the basis of the mechanic report only.
Retaining the knowledge base models learned on all re-

ports, we have therefore attempted classification with all
variants of our adapted classification algorithm on test data
bundles which included only one type of report, namely, the
mechanic report or the supplier report.

����

����

����

����

����

����

����

�	� �	
 �	�� �	�
 �	�� �	�

���������	��
����
��

���������������������� ����������������������

��������������� ��������� !���"��#$���%�����&��

��������������� ��������� !���&�� ��� '������������(

!���&�� ��� '������������� �(

Figure 13: Classification results for features derived
from the supplier reports only, with k on the x-axis
and accuracy@k on the y-axis.

5.3.1 Results
The results of experiment 2 can be seen in Figures 12

and 13. We find that the classifier performs very badly on
test data which only include the mechanic report (cf. Fig.
12): All four variants of the algorithm have lower accuracies
across the board than those provided by the code frequency
baseline, with accuracy@1 between 16 and 29 % vs. the base-
line’s 35 %. Still, the bag-of-word models perform slightly
better than the bag-of-concept models.

On test data which only include the supplier report, we
observe accuracies which are nearly as good as those for the
test data including mechanic report and supplier report (and
in some cases an early OEM report): 78 % accuracy@1 for
the bag-of-words model with Jaccard similarity, accuracies
of > 90 % starting at k = 5 for the bag-of-words model and
at k = 10 for the bag-of-concepts model, and a very close
resemblance of accuracies between the bag-of-concepts with
overlap similarity and the code frequency baseline (cf. Fig.
13).

5.3.2 Discussion
It is evident that the mechanic reports alone do not

contain good features for predicting error codes with the
adapted classifier, either as bag-of-words or as bag-of-
concepts representations. In contrast, the supplier reports
are a more reliable source of features. This is in accordance
with observations about the information content and the
data quality of the respective data sources: Mechanic reports
tend to be poor in detail, focused on superficial problem de-
scription and often error-riddled, such that even human ex-
perts cannot draw conclusions about the detailed nature of
the problem, whereas supplier reports tend to contain more

500

���������	

��������	

���������	

����������	

��������	

�������	

���������	

����������	

����������	
����
��� ����
����

Figure 14: Data Comparison Screen in the QUEST
web app, showing a side-by-side comparison of the
top 3 error codes in two different databases.

detail and include descriptions of potential causes.
While we have to conclude that (1) an earlier entry point

into automatic error code suggestion is not feasible, we also
find that (2) even a comparatively simple text-based classi-
fication approach accurately reflects the amount of informa-
tion which human experts can draw from the text sources.

5.4 Extending the Use Case – Error Distribu-
tion in Different Data Sources

As mentioned earlier, it is easy to exploit additional data
sources using the knowledge bases created with the internal
OEM error report data. This allows for an interesting ex-
tension of our use case. If we assign error codes from the
schema we use to classify our own quality data to texts from
a different data source, for instance one which covers com-
plaints from a different market and includes reports about
other manufacturers’ vehicles, we can gain insights about
where we stand in terms of product quality in contrast to the
competitors. This is crucial business intelligence for staying
competitive, e.g. by identifying brand-specific weaknesses
or issues with shared suppliers.
Obviously, there will be substantial inaccuracies in the

fully automatic classification of the public data source. In
particular, the bag-of-words approach suffers in accuracy as
soon as test and training data are different text types or in
different languages, whereas the bag-of-concepts approach is
in principle independent of the document language or other
text features. However, an approximate impression of the
distribution of similar errors can still be gained from the
data. The usability and desirability of this functionality
have been confirmed in conversation with the OEM.
In the QATK/QUEST implementation, we provide a

mockup of this use case extension: We use our knowl-
edge base to classify problem reports from the US-American
complaints database maintained by the Office of Defects
(ODI/NHTSA) [13]. In the web app, we have implemented
the function for viewing side-by-side pie charts showing the
distribution of the n most frequent error codes in both data
sources (cf. Fig 14).

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper, we have presented a specific multi-class clas-
sification problem from a real-life industry context, namely,

the filtering and recommendation of error codes for bundles
of textual reports concerning damaged car parts. This prob-
lem is challenging because of the nature of the data, which
are mostly unstructured text using domain-specific vocabu-
lary, and because of the high number of classes.

We have tested alternative variants, domain-specific and
domain-ignorant, of a custom classification algorithm de-
rived from k-Nearest-Neighbors (kNN), and evaluated both
against a baseline which ignores the text content as well as
with respect to their industrial feasibility. We have shown
the QATK/QUEST toolkit as a viable approach and pre-
sented a prototypical implementation.

In order to identify domain-specific terms in the text, we
have used a legacy semantic resource originally designed
for a different task. We have tested the validity of these
domain-specific features with a custom classification algo-
rithm adapted from k-Nearest-Neighbors. We have shown
that the use of domain-specific knowledge leads to good ac-
curacies of recommended classes, with up to 92% of correct
classes recovered within the first 10 ranked recommenda-
tions. We have compared this domain-specific approach to
a domain-ignorant bag-of-words approach and found that
the domain-ignorant approach currently performs better, al-
though it is not a viable solution in the industrial context
due to performance and scalability properties.

Therefore, we plan the following extensions of our work:

• introducing more linguistic preprocessing – here we
will profit from the modularity of the UIMA frame-
work and of the QATK/QUEST toolkit

• enhancing the domain-specific taxonomy

• evaluating the extended use case and discovering more
use case extensions

• evaluating the web UI in a field study with quality
experts

Work on improving the coverage and maintainability of
the domain-specific taxonomy is already in progress.

7. ACKNOWLEDGMENTS
Many thanks to our colleagues in the quality management

and quality engineering departments for providing inspira-
tion for the use case and ongoing discussions, as well as
to our colleague C. Kiefer for important feedback and to
the students of project

”
Mobile User-Driven Infrastructure

for Factory IT Integration” for crucial implementation work.
We also thank the Graduate School advanced Manufacturing
Engineering (GSaME) for supporting the broader research
context of this paper.

8. REFERENCES
[1] PrimeFaces JSF.

[2] WSO2 Server.

[3] M. Bank. AIM-A Social Media Monitoring System for
Quality Engineering. PhD thesis, 2013.

[4] C. Fellbaum. WordNet. Blackwell Publishing Ltd,
1999.

[5] D. Ferrucci, E. Brown, J. Chu-Carroll, and J. Fan.
Building Watson: An overview of the DeepQA
project. AI magazine, pages 59–79, 2010.

501

[6] D. Ferrucci and A. Lally. UIMA: an architectural
approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348, 2004.

[7] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer. Using
kNN model for automatic text categorization. Soft
Computing, 10(5):423–430, 2006.

[8] C. Hänig. Unsupervised Natural Language Processing
for Knowledge Extraction from Domain-specific
Textual Resources. PhD thesis, Universität Leipzig,
2012.

[9] C. Hänig and M. Schierle. Relationsextraktion aus
Fachsprache - ein automatischer Ansatz für die
industrielle Qualitätsanalyse. eDITion, 1(1):28 – 32,
2010.

[10] G. Ifrim, M. Theobald, and G. Weikum. Learning
word-to-concept mappings for automatic text
classification. Learning in Web Search Workshop, . . . ,
2005.

[11] L. Kassner, C. Gröger, B. Mitschang, and
E. Westkämper. Product Life Cycle Analytics - Next
Generation Data Analytics on Structured and
Unstructured Data. In CIRP ICME 2014, volume 00.
Elsevier Procedia, 2014.

[12] L. Kassner and C. Kiefer. Taxonomy Transfer:
Adapting a Knowledge Representing Resource to new
Domains and Tasks. In Proceedings of the 16th
European Conference on Knowledge Management,
2015.

[13] NHTSA. NHTSA Data, 2014.

[14] P. V. Ogren and S. J. Bethard. Building test suites for
UIMA components. SETQA-NLP ’09 Proceedings of
the Workshop on Software Engineering, Testing, and
Quality Assurance for Natural Language Processing,
(June):1–4, 2009.

[15] P. Russom. BI Search and Text Analytics. TDWI Best
Practices Report, 2007.

[16] M. Schierle. Language Engineering for Information
Extraction. PhD thesis, Universität Leipzig, 2011.

[17] M. Schierle and D. Trabold. Extraction of Failure
Graphs from Structured and Unstructured Data. 2008
Seventh International Conference on Machine
Learning and Applications, pages 324–330, 2008.

[18] M. Schierle and D. Trabold. Multilingual knowledge
based concept recognition in textual data. In
Proceedings of the 32nd Annual Conference of the
GfKl, pages 1–10, 2008.

[19] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47,
Mar. 2002.

[20] B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu,
and M. Demirbas. Short text classification in twitter
to improve information filtering. Proceeding of the
33rd international ACM SIGIR conference on
Research and development in information retrieval -
SIGIR ’10, page 841, 2010.

[21] TUDarmstadt. DKPro Toolkit, 2011.

502

	Industrial and Applications Papers
	Exploring Text Classification for Messy Data: An Industry Use Case for Domain-Specific AnalyticsLaura Kassner, Bernhard Mitschang

