
Visualization through Inductive Aggregation

Parke Godfrey ∗ Jarek Gryz ∗ Piotr Lasek ∗† Nasim Razavi ∗

York University, Canada ∗
Rzeszów University, Poland †{

godfrey, jarek,plasek,nasim
}

@cse.yorku.ca

1. INTRODUCTION
Visualization provides a powerful means for data analysis.

To be useful, visual analytics tools must support smooth and
flexible use of visualizations at a fast rate. This becomes
increasingly onerous with the ever-increasing size of real-
world datasets. First, large databases make interaction more
difficult as a query across the entire data can be very slow.
Second, any attempt to show all data points will overload
the visualization, resulting in chaos that will only confuse
the user.

Many solutions have been proposed to solve these prob-
lems,1 but only one [1] addresses both of them simultane-
ously: hierarchical aggregation. Since it is not feasible to
show all answers to a query, a natural way to reduce the
size of the answer set is to aggregate it. We also need to
support real-time interactivity; that is, to support an effi-
cient way to move between levels of aggregation. Thus, we
need a hierarchy of aggregations.

Hierarchical aggregation is not a new idea, of course. For
data, it has been explored in OLAP, starting with the data-
cube model. For images, it is only recent that new visual
aggregation strategies have been developed for standard vi-
sualization techniques [1]. These strategies turn existing vi-
sualizations into multi-resolution versions that can be ren-
dered at any desired level of detail. The visual aggregate can
convey various information about the underlying data, such
as their average, minima and maxima, and distribution.

Thus, data visualization systems face two challenges.
First is an issue of efficiency. Most visualizations today
are produced by first retrieving data from a database, and
then using a specialized tool to render it. This decoupled
approach results in significant duplication of functionality,
while missing opportunities for cross-layer optimizations [5].
Second is an issue of expressiveness. Data visualization sys-
tems have not exploited modern graphics processing and ren-
dering, due to architectural limitations, and lack of aware-
ness. These graphics shaders meanwhile can significantly

1See [2] for an overview.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

improve visualization.
We combine data aggregation with visual aggregation in a

tightly coupled system that provides for smooth user inter-
action. Our implementation is based on a hierarchical data
structure we call an aggregate pyramid.2 By interacting with
the pyramid in the back-end (via the database system), the
front-end visualization client can quickly filter the data to
move up and down in the aggregation hierarchy. We want
the visualization mantra, “overview first, zoom and filter,
then details on demand,” [4] to be more like skydiving than
gliding.

Skydive’s general architecture enables us to exploit mod-
ern graphics processing and rendering in new ways that
other systems have not been able to exploit. Thus, for inter-
active data visualization, Skydive is innovative in both ex-
pressiveness, by flexibly enabling new rendering techniques,
and efficiency, due to tight-coupling in its architecture.

2. EXPRESSIVENESS
In Skydive, a data visualization is defined by the user in

two parts:
1. the aggregate-pyramid query, which defines the dataset

cut from the database the user wishes to explore; and
2. the visual mapping, which maps the aggregate mea-

sures of the aggregate pyramid to visual channels in
the data texture the user will explore.

In the next section, we define the concept of the aggre-
gate pyramid in more detail, and how it is used to sup-
port efficient data visualization and exploration. For now
in overview, we consider how it supports expressive visual-
izations.

Anatomy of the aggregate pyramid. The aggregate
pyramid represents a hierarchy of aggregation levels we call
strata. (This is visualized in Fig. 1.) The base of the pyramid
represents the stratum with the highest resolution of our
data (the data aggregated the least); higher strata represent
successively lower resolutions (the data further aggregated).
As with a data cube, the columns of an aggregate pyramid
consist of dimensions and aggregates. Each tuple in the
pyramid, called a cell, represents the aggregates of the raw
data within the cell’s area. The cells of any given stratum
tile the dataset at the stratum’s resolution. We consider
here two-dimensional pyramids, with “X” and “Y” dimension
columns.3

2This concept is described in more detail in [3].
3One-dimensional pyramids are also useful for visualization,
but with specific presentation models that we do not discuss
here. Pyramids generalize to more than two dimensions,

Demonstration

 

 

Series ISSN: 2367-2005 600 10.5441/002/edbt.2016.58

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.58


The aggregate columns are defined over the measures of
the raw data. For the pyramid, an inductive-aggregate func-
tion is defined in two parts, a base and an inductive function.
The base function aggregates over the raw data to produce
the cells of the base stratum of the pyramid. The inductive
function then aggregates over the appropriate cells of the
stratum below the current to compute the aggregate values
for the cells of each stratum.

For example, consider scatter-plot data of event points—
say fires that have occurred in the Seattle area—that we
want to visualize. One aggregate we likely will want is to
count events within each cell’s area. The base function can
simply be the aggregate count over the group-by into cells
for the pyramid’s base stratum. The inductive function is
then sum, to sum up the counts of the sub-cells to compute
the count for the cell.

It is important that the inductive functions are only al-
lowed to look one stratum below, for efficiency of computa-
tion. This also means a good deal of care and thought must
go into defining appropriate, meaningful inductive-aggregate
functions that are effective for visualization.

Even with the simple example of scatter-plot data of
events that have no specific qualities—an event simply oc-
curred at a location—there are still a number of aggregates
of this information in which one might be interested. Count-
per-area is an obvious one, as discussed above. Additionally,
there are statistical aggregates that can tell us something
about how the events are distributed in the area represented
by the cell. Are they uniformly distributed across the area,
or are they highly clustered in given spots? An entropy func-
tion can be devised that offers a measure of such dispersion
across the area.

If the scatter-plot data is richer, then there are many more
aggregates we might wish to convey. Fire events might addi-
tionally carry a measure of intensity. We then may wish to
convey information about the intensity of events in addition
to the count of events. Maximum may be a reasonable aggre-
gate over intensity, to convey the highest intensity of event
to have occurred in an area (the cell). Another aggregate
could carry the standard deviation over intensity of events
within the cell. Fire events will also have time associated
with them, and so forth.

The visualization mapping. The second thing that must
be specified for a visualization is a mapping of the aggre-
gates of the pyramid into visual channels. If the presentation
model is a 2D image, these channels are the usual suspects
from image processing: e.g., red, green, and blue (RGB) or
hue, saturation, and lightness (HSL), depending on how one
wants to consider the color space.

The mapping consists of functions that map (and normal-
ize) the aggregates of the pyramid to available channels in
the presentation model. The mapping should be done with
care to be “orthogonal”, so that each aggregate as mapped
can be clearly distinguished. We envision developing a li-
brary of standard mappings to be available. Skydive’s ar-
chitecture, however, is a general platform that allows for
devising new, novel mappings.

The problem of channel paucity. A critical problem is
the absolute paucity of channels for visual conveyance. If
we are mapping to an image, we effectively have but three
channels we can use in the mapping (e.g., HSL).

albeit presentation models for these are limited.

Figure 1: The Aggregate Pyramid Model.

While much work in data visualization has strived to
address the problem of channel paucity—for instance, by
graphical symbols, layout, and such to add effectively “chan-
nels” for conveyance—these do not work for interactive visu-
alization in an inductive way, where one can zoom to change
dynamically the degree of aggregation. Meanwhile, no work
yet has taken advantage of the additional channels that the
modern graphics environment afford us. Skydive is de-
signed to exploit just that, to great advantage.

Presentation models. The presentation model defines the
“structure” that will be visualized. The model provides a set
of channels that can be used by the mapping.

The 2D model. One model is that of a 2D image. The viewer
manages the visualization as an image—which we call a data
texture—within a canvas, allowing the user to zoom and pan
around it. This view is, in essence, a heat-map. Skydive’s
benefit is that the data texture makes it possible to explore
dynamically this heat-map view progressively in realtime.
This model suffers still from channel paucity, however; it
is effective only if one can live within such a constrained
channel space.

The 21/2D model. A second model we call 21/2D. For this,
the model is rendered in 3D. The visualization now consists
of two parts: the data texture, as before; and a terrain—a
manifold4 rendered as a mesh—onto which the texture is
overlaid (UV-mapped).5 This exploits modern 3D graphics
rendering, which supports meshes and UV-mapping. This
offers Skydive additional channels of conveyance over points
in the terrain: elevation (Z); specular ; and normal. A specu-
lar map determines how“reflective”a point is on the surface.
As scenes in 3D have external lighting, this is quite notice-
able. A normal map dictates deviations of the normals, the
“perpendicular” of a point with respect to the surface. By
perturbing the normals of a neighborhood, that part of the
surface can be made to look rough; leaving them as dic-
tated by the mesh, the surface looks smooth. These are
standard in graphics processing and used in game produc-
tion for making scenes look more realistic. That is, these
channels visually stand out.

We can use the alpha channel additionally, as the terrain
can be floated over a flat reference plane; the bleed-through
of the reference through translucency of the terrain is readily

4A manifold is function that maps 2D coordinates to values.
This can be rendered in 3D using elevation, “Z”, over the 2D
plane to indicate the 2D points’ values.
52D images are called textures in this context, and the map-
ping of textures onto the mesh surfaces is called the UV-
mapping.

601



DB D2I VC

Update view

Texture

Mesh 3-D View

2-D View

3-D interactive
operations

Aggreg.
pyramid

Database

API

3-D box

2-D tiles Interactive data
operations

Raw
data

(a) Skydive’s architecture. (b) Skydive’s main window.

Figure 2: The Skydive System.

obvious. This means we have effectively seven channels of
conveyance in the 21/2D model, versus just the three in the
2D model.

Mixed models. Skydive can mix presentation models for
the same pyramid to provide simultaneous, synchronized al-
ternative viewports into the same data. We also intend to
support “cross-product” pyramids that could, for example,
let one zoom and pan on XY and on T (time) independently.

3. EFFICIENCY
Structure of the aggregate pyramid. The idea be-
hind this mirrors approaches taken by progressive image for-
mats such as JPEG-2000. The image “pyramid” is multi-
resolution data structure that represents a 2d × 2d image
as a sequence of copies (2D arrays) of the original image,
each “half” the resolution—half on the rows and half on the
columns—of the next. Thus the base stratum of the pyra-
mid is the full resolution version of the image, while the top
stratum is a single pixel approximation of it.

Similarly, the aggregate pyramid represents 2d × 2d data
cells at its base, with each subsequent stratum halving the
“resolution” (doubling the aggregation). Construction of a
aggregate pyramid can be accomplished efficiently by the
database engine by building it from the base upwards. First,
the base stratum is created by aggregating the raw data into
the base cells. Then subsequent strata can be produced re-
cursively by aggregating spatially the constituent quadrant
cells of the stratum below. The cells can be indexed by stra-
tum, and by Hilbert order that linearizes their order, which
then can be indexed via a B+-tree. As such ordering pre-
serves locality of sub-cells that are needed to merge for the
next higher stratum, a stratum can be produced in proper
order by a single scan of the cells of the stratum below it.

Skydive employs the aggregate pyramid to preprocess
data so the visualization process can be handled efficiently.
Given a query defining the dataset to explore, the data-
base system materializes the aggregate-pyramid version of
the dataset query, and indexes the pyramid by stratum and
Hilbert order, as discussed above.

The materialized pyramid is managed by the database en-
gine during the visual exploration of that dataset. Interac-
tive operations at the visualization client are then supported
by querying into the aggregate pyramid at the appropri-
ate stratum and range (bounding box), which can be han-
dled efficiently and at real-time, interactive speeds. Thus,
Skydive tightly couples database support for processing the

data with the interactive visualization.

Operations. Skydive is designed to support the following
visual operations over the dataset for visualizing. Each, in
turn, can be supported efficiently by the database system
over the materialized aggregate pyramid.

Resizing. The user can change the current viewport by
changing the size of the visualized data (up or down). In
sizing, the visualizer may need to present a different level
of resolution. For instance, in a size-up operation, the user
requests a higher resolution image. As a result, the system
needs to retrieve the aggregated data from a higher resolu-
tion stratum in the pyramid.

Zooming. The user can request to view more detail of a part
of the image by specifying a window of interest, selecting a
portion of the image by zooming in. The system maps the
requested window to the stratum with high enough resolu-
tion to fit the canvas, and selects the appropriate range.

Panning. In panning, the user changes the viewport in the
image, but within the same level of resolution. If the user
pans, the system will check the availability of the visual data
in the current stratum, and request the additional range
from the pyramid in that stratum.

4. ARCHITECTURE
Skydive’s components. Skydive is composed of three
main components, as shown in Figure 2:
• the Database Module (DB);
• Data-to-Image module (D2I); and
• the Visualization Client (VC).

Each is designed to use a different type of computer mem-
ory. The DB module uses disk to store and manage the raw
data, and materialized aggregate pyramids. The D2I mod-
ule works with a small subset of the aggregated dataset,
and stores data in main memory (RAM). The VC mod-
ule uses the graphic card’s capabilities to perform more ad-
vanced operations—such as zooming, scaling, panning, and
rotation—over the graphical representation of the data.

This separation of concerns provides useful flexibility.
Each component can be implemented as a separate service,
deployed on a different machine. This leverages the idea of
compression of data conveyed between the modules, letting
us implement a tightly coupled visualization system. The
Skydive prototype is implemented as a desktop application
with the three modules as described above and shown in
Fig. 2a. The main window of Skydive, shown in Fig. 2b, is

602



(a) Overview image. (b) Zoomed in, terrain view.

Figure 3: Visualizations of the Seattle 911 Dataset.

composed of a few simple elements: an upper menu for per-
forming basic file operation; a left panel for tuning a loaded
and currently displayed visualization; and a visualization
view for rotating, panning and zooming.

Graphical variables. The user also defines the presen-
tation model to be used and the visualization mapping (of
aggregates to channels) to be employed, as discussed in §2.
The system prototype supports three presentation models:
• a 2D heat-map;
• a 21/2D heat-map by 3D barchart; and
• a 21/2D terrain (by mesh and UV-mapping).

Generating meshes and textures. The data texture is
generated by the D2I module by selecting the appropriate
window out of the aggregate pyramid, and applying the vi-
sualization mapping. For the 21/2D terrain model, a mesh
is additionally computed by the D2I. The mesh is created
based on a stratum of lower resolution, for better visual ap-
peal, and for efficiency in the VC.

User interface. The user interface, as shown in Fig. 2b,
allows the interactive visualization operations, as discussed
above. The user can scale, translate, and rotate the cur-
rently displayed visualization in the Visualization Client
(VC). The VC is implemented using JavaFX, which natively
supports these functions. Scaling, translation, and rotation
do not require to query the aggregate pyramid, hence are
performed entirely within the VC, supported by the GPU.

Other interactive functions do require queries to be issued
from VC to the DB module. For instance, if the user wants
to focus more on a certain area of a visualization, then the
system must request the data from the appropriate stratum;
of higher resolution for zooming in, and lower for zooming
out. Issuing such a request results in the loading and gen-
erating of the mesh and texture by the D2I. The VC then
displays this using the GPU’s graphics pipeline.

5. DEMONSTRATION SCENARIO
Datasets. We test Skydive using several datasets, two of
which are described below.

9-1-1 calls. The Seattle Police Department 911 Incident
Response dataset 6 contains over one million records. Each
represents the police response to a 911 call within the city.
Fig. 3a shows a density map of the calls. Color denotes
the number of calls made within the area represented by a
pixel. Based on the plotted heat-map, a user is not able to
conclude anything more than that there are some areas of
slightly higher density than their neighbors.

6https://data.seattle.gov/

(a) Data texture of check-ins.

M T W R F S U

(b) Zoomed in, terrain view.

Figure 4: Visualizations of the Brightkite dataset.

In Fig. 3b, we have switched to the terrain view, where
elevation indicates the density, and color refers to a most
frequent type of a call within the cell. In this view, we see
more detail. For example, the red pixel indicated by the
arrow represents unusual activity within the magnified area.

Brightkite check-ins. The Brightkite Check-ins Dataset7

consists of over four millions records of geographical posi-
tions reported by users of a geo-location social service. In
Fig. 4a, the heat-map represents the dataset over one mea-
sure: color represents days of week for which user activity
was highest within the areas represented by the pixels. In
Fig. 4b, a terrain map is shown of a zoomed in portion with
more in the mapping. The texture color again denotes day
of week with highest activity. Elevation denotes number of
check-ins. We can deduce that weekends were most active
days for Brightkite users in the USA. We can additionally
see the areas in which the most users were active.

Richer mappings. We will demonstrate the richer map-
pings offered by the 21/2D model with normal, specular, and
alpha channels. These are not easy to show in static pic-
tures, but stand out in display in the demo. With these,
additional aggregates can be conveyed to a viewer simulta-
neously. Roughness of the surface (a normal map) can be
used to represent variance of a measure within cells. Shini-
ness (a specular map) can be used to show spatial dispersion
within the area represented by a point on the terrain.

6. REFERENCES
[1] N. Elmqvist and J. Fekete. Hierarchical aggregation for

information visualization: Overview, techniques, and
design guidelines. IEEE Trans. Vis. Comput. Graph.,
16(3):439–454, 2010.

[2] P. Godfrey, J. Gryz, and P. Lasek. Interactive
visualization of large data sets. Technical Report
EECS-2015-03, York University, March 2015.

[3] P. Godfrey, J. Gryz, P. Lasek, and N. Razvi. Skydive:
An interactive data visualization engine. In IEEE
Symposium on Large Data Analytics and Visualization,
Chicago, USA, October 25-26., 2015.

[4] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In Visual
Languages, 1996. Proceedings., IEEE Symposium on,
pages 336–343. IEEE, 1996.

[5] E. Wu, L. Battle, and S. R. Madden. The case for data
visualization management systems [vision paper].
Proceedings of the VLDB Endowment, 2014.

7https://snap.stanford.edu/data/

603


	Visualization Through Inductive AggregationParke Godfrey, Jarek Gryz, Piotr Lasek, Nasim Razavi

